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Abstract

Background: Plasmodium falciparum can cause a diffuse encephalopathy known as cerebral malaria (CM), a major contributor
to malaria associated mortality. Despite treatment, mortality due to CM can be as high as 30% while 10% of survivors of the
disease may experience short- and long-term neurological complications. The pathogenesis of CM and other forms of severe
malaria is multi-factorial and appear to involve cytokine and chemokine homeostasis, inflammation and vascular injury/repair.
Identification of prognostic markers that can predict CM severity will enable development of better intervention.

Methods: Postmortem serum and cerebrospinal fluid (CSF) samples were obtained within 2—4 hours of death in Ghanaian
children dying of CM, severe malarial anemia (SMA), and non-malarial (NM) causes. Serum and CSF levels of 36 different
biomarkers (IL-1B, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, Eotaxin, FGF basic protein,
CRP, G-CSF, GM-CSF, IFN-y, TNF-a, IP-10, MCP-I (MCAF), MIP-1a, MIP-18, RANTES, SDF-1a, CXCLI1 (I-TAC), Fas-ligand
[Fas-L], soluble Fas [sFas], sTNF-RI (p55), sTNF-R2 (p75), MMP-9, TGF-B |, PDGF bb and VEGF) were measured and the results
compared between the 3 groups.

Results: After Bonferroni adjustment for other biomarkers, IP-10 was the only serum biomarker independently associated with
CM mortality when compared to SMA and NM deaths. Eight CSF biomarkers (IL-1ra, IL-8, IP-10, PDGFbb, MIP-1§, Fas-L, sTNF-
R1, and sTNF-R2) were significantly elevated in CM mortality group when compared to SMA and NM deaths. Additionally, CSF
IP-10/PDGFbb median ratio was statistically significantly higher in the CM group compared to SMA and NM groups.

Conclusion: The parasite-induced local cerebral dysregulation in the production of IP-10, 1L-8, MIP-13, PDGFbb, IL-Ira, Fas-
L, sTNF-RI, and sTNF-R2 may be involved in CM neuropathology, and their immunoassay may have potential utility in predicting
mortality in CM.
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Background

Malaria is an important neglected disease and one of the
most important global health problems, potentially
affecting more than one third of the world's population.
Cerebral malaria (CM) is a deadly complication of Plasmo-
dium falciparum infection, associated with a 10-14% mor-
tality rate and approximately 1-2 million annual deaths
among young children predominantly in sub-Saharan
Africa and Southeast Asia, yet its pathogenesis remains
incompletely understood. In Ghana, malaria has a wide
spectrum of presentations: from asymptomatic carriers to
mild malaria to multifactorial severe disease, including
CM and severe malarial anemia (SMA) [1-5].

CM, a clinically complex syndrome of coma and poten-
tially reversible encephalopathy, is associated with
increased levels of proinflammatory cytokines like tumor
necrosis factor (TNF)-a, interferon (IFN)-y and lympho-
toxin [6,7], and increasingly recognized long-term seque-
lae in survivors [7-15]. Although the physiopathology of
CM has been extensively investigated, the exact cellular
and molecular basis of the neuropathology is still unclear.
Recent studies have shown that mechanical blockage
caused by sequestration of parasitized red blood cells
(pRBCs), leukocytes and platelets [3,4,8-12], secretion of
cytokines and chemokines [2,6,7,13], angiogenic failure
[14,15], immune status and the genetic background of the
host, and parasite factors [7,16] are involved in the patho-
genesis of CM. However, it is generally accepted that two
major factors are involved: (i) metabolic insufficiencies
due to the sequestration of pRBCs, leukocytes and plate-
lets within brain vessels via upregulated adhesion mole-
cules [3,4,8-12], and (ii) immunological reactions with
the local involvement of T cells and monocytes activated
by Plasmodium antigens [7,11]. These two major mecha-
nisms appear to act together under the control of
cytokines [7], and chemokines [2] to exacerbate CM.

Postmortem data in humans and murine models of CM
show that neuronal damage in brain tissue occurs in CM,
although the parasites remain confined to the intravascu-
lar space (with no contact with neurons). This strongly
suggests that the blood-brain barrier (BBB) is perturbed,
and thus the BBB represents a key interface between the
intraerythrocytic stages of the parasite and the human
host. The functional and morphological evidence sup-
ports mild-to-moderate impairment of the BBB, but
whether this is sufficient to cause neurological complica-
tions such as CM is inconclusive [16,17]. Mechanical
blockage could occur from the ability of pRBC's to adhere
to unparasitized erythrocytes and endothelial cells, and
sequester in the deep cerebral microvasculature [3,4,8-
12]. Parasite sequestration alone, however, cannot
account for fatal CM pathogenesis as there is evidence that
survivors of CM have the same degree of sequestration
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during comas as those succumbing to disease. It is evident
that host immune factors play an important role in the
pathogenesis of CM. [8,16]. Although parasite sequestra-
tion during severe malaria is central to pathogenesis of
severe malaria, the role of cytokines, chemokines, apop-
totic, and angiogenic factors in exacerbating disease sever-
ity remains unclear.

The balance between specific cytokines and chemokines
produced in response to infection with Plasmodium falci-
parum is thought to play an important role in CM and
other forms of severe malaria. Severe malaria has been
associated with high TNF-a plasma levels in conjunction
with increased production of IFN-y and IL-1f [18,19] and
decreased production of anti-inflammatory cytokines,
notably IL-10 and TGF-f [1,19-22]. Pro-inflammatory
Th1-type cytokines (eg. TNF-a, IFN-y, interleukin IL-1f,
and IL-6) are thought to be critical to the control of exo-
erythrocytic and erythrocytic Plasmodium falciparum infec-
tion [23,24], but their exaggerated production may also
contribute to organ damage, particularly in the brain. It is
widely accepted that anti-inflammatory Th2-type
cytokines down-regulate Th1-derived cytokines. Th2-type
cytokines, such as IL-10, has been shown to regulate Th1-
cytokines and prevent CM in some animal models [18].
The regulation of TNF-a levels by IL-10 appears to con-
tribute to the prevention of severe malarial anemia in
humans [1,20,21]. However, the role that IL-10 plays may
depend on its levels, since very high levels of IL-10 have
been associated with severe malaria in humans [19] and
some animal models [25]. Therefore, cytokines appear to
maintain a delicate balance between the control of infec-
tion and contribution to disease in falciparum malaria
infection. However, the expression of Thl and Th2
cytokines in CSF, either from the peripheral circulation
via the BBB or from neuronal immune cells (glia) has not
been adequately addressed.

Chemokines, or chemoattractant cytokines, and their cor-
responding receptors have also been shown to mediate
mobilization and coordination of immune responses to
malaria. Chemokines have lympho-chemotactic activity
and modulate many infectious and inflammatory dis-
eases, including malaria. The recent demonstration of leu-
kocyte sequestration, in addition to pRBC sequestration
[3,4,8-12], within brain vessels in human CM suggests a
more important role for leukocytes, including eosi-
nophils, in CM immunopathology than previously
thought. Thus, chemokines, including eotaxin, may play
an important role in human CM by attracting leukocytes
to sequestration sites. Chemokines are less well studied in
severe malaria, but recent studies have associated severe
malaria infection with increased production of chemok-
ines of the C-C or B subfamily, including regulated upon
activation, normal T cell expressed and secreted
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(RANTES), monocyte chemotactic protein (MCP)-1, mac-
rophage inflammatory protein (MIP)-1a, MIP-18, and IL-
8 [2,13,26-28]. MCP-1, MIP-1a and MIP-1f are potent
chemoattractants for monocytes to produce TNF-a and IL-
6. IL-8 preferentially recruits neutrophils and plays an
important role in inflammatory diseases. Recently, low
levels of RANTES have been associated with severe
malaria [26,27,29], and specifically associated with mor-
tality in children with CM [26]. The low levels of RANTES
in severe malaria have been associated with malaria-
induced thrombocytopenia [26,29], given that platelets
are a major reservoir of RANTES in the peripheral circula-
tion. In contrast, increased mRNA and protein expression
of RANTES and CCR5 was found in localized brain
regions of children dying of CM [2]. Interferon inducible
protein 10 (IP-10) is a member of the CXC or a subfamily
of chemokines, and is induced in response to IFN-y
attracting activated Th1 cells [30]. IP-10 levels have been
shown to increase in cultured intervillous blood mononu-
clear cells isolated from placenta's infected with malaria
[31,32], although no studies have characterized IP-10 lev-
els in human cerebral malaria. Hanum and colleagues
recently demonstrated the induction of IP-10 expression
in the brain of both CM-susceptible (C57BL/6) and CM-
resistant (BALB/c) mice as early as 24 hours post-infection
with Plasmodium berghei ANKA, and in KT-5 astrocyte cell
line in vitro upon stimulation with a crude antigen of
malaria parasites [33]. Currently, the role of chemokines
in clinical severity and outcome of malaria, especially the
development of CM and SMA in children remains poorly
defined.

Angiogenic factors, long implicated as prognostic factors
in cerebral ischemia or stroke [34], have been suggested to
play a role in the petechial hemorrhages and BBB dysfunc-
tion associated with CM pathology [14,15]. Vascular
endothelial growth factor (VEGF) stimulates endothelial
cell growth and migration as well as enhancing vascular
permeability. VEGF levels (more VEGF+ astrocytes) were
higher in CM patients as compared with controls in a
post-mortem immunohistology study of CM patients
[15]. Platelets, that accumulate with pRBCs in the brain
miscrovasculature in CM patients [10,12], are also impli-
cated in CM pathology through TGF-f induced apoptosis
in TNF activated human brain endothelial cells [35,36].
Platelet derived growth factor (PDGF) is another ang-
iogenic factor that stimulates vascular growth, and has
been implicated as a neuroprotective factor inducing
regeneration of damaged axons and neuronal growth after
ischemia [37]. These angiogenic factors play a dominant
role in the recovery from stroke and may be applicable in
CM due to their effect on the endothelium, which is cen-
tral to CM pathology. These angiogenic factors most prob-
ably impact the regenerative potential of the parasite-
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induced BBB damage, rather than impacting neoangio-
genesis, since CM is an acute neurological syndrome.

Parasite-induced apoptosis in the host may also mediate
the severity of malaria. High levels of Fas-Ligand in sera of
human [38,39], monkey [40], and mice [41] are associ-
ated with severity of malaria. Lymphocytes and macro-
phages express increased levels of Fas and Fas-Ligand
during an acute Plasmodium chabaudi infection [40].
TNFR2-deficient mice are resistant to experimental cere-
bral malaria (ECM), Fas-deficient mice showed 50%
reduction in ECM incidence, and TNFR1-deficient mice
showed the least reduction in ECM incidence [42-46]. Lpr
& Gld mice, deficient in Fas & Fas-Ligand, are protected
from fatal ECM [47]. The presence of these apoptotic fac-
tors in CSF and serum, and their relevance in CM and CM-
associated mortality has not been fully investigated. The
rapid reversibility of the clinical symptoms of CM suggests
that tissue necrosis is unlikely to occur [9,16,48], making
apoptosis a more likely pathogenic mechanism.

Recently, new strategies including magnetic resonance
imaging and ophthalmological evaluation of children
with CM have been proposed as clinically useful predic-
tors of CM severity, but their reliability is being evaluated.
The study hypothesis was that parasite-induced dysregula-
tion in the levels of inflammatory, apoptotic and ang-
iogenic factors at the time of CM death would predict
mortality risk of CM. The goal of this study was to identify
factors that are tightly associated with CM mortality in
Ghanaian children for further development as biomarkers
of CM disease. The present study employed a high
throughput multiplexed immunoassay to evaluate the
predictive value of serum and CSF levels of key immu-
nomodulators (inflammatory, apoptotic and angiogenic
proteins) in determining mortality risk in severe malaria
in Ghanaian children. We investigated the serum and CSF
profiles of 36 different biomarkers (IL-1f, IL-1ra, IL-2, IL-
4, 1L-5, IL-6, IL-7, 1L-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-
15, IL-17, Eotaxin, FGF basic protein, CRP, G-CSF, GM-
CSF, IEN-y, TNF-a, IP-10, MCP-1 (MCAF), MIP-1a, MIP-
1B, RANTES, SDF-10, CXCL11 (I-TAC), Fas-ligand [Fas-L],
soluble Fas [sFas], sSTNF-R1 (p55), SINF-R2 (p75), MMP-
9, TGF-B1, PDGF bb and VEGF) in order to identify the
immune factors which influence progression to fatal out-
comes associated with CM.

Methods

Case Selection

The post-mortem serum and CSF samples investigated
were collected from children who died during the peak
malaria season of 2005 (i.e. June-August), after being
admitted to the Emergency Unit at the Department of
Child Health, Korle-Bu Teaching Hospital, Accra, Ghana.
Only children for who detailed clinical and laboratory
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records and a clinically certified cause of death were avail-
able were included in the study. Samples were only col-
lected only after written informed consent from parents or
guardians of the deceased child. Nineteen (19) deceased
children meeting the above inclusion criteria had serum
and CSF samples removed at autopsy within 2-4 hours of
death. Cadavers were moved immediately after consent
had been given, from the Emergency Unit to the hospital's
mortuary, for storage at 4°C. A full autopsy, with removal
of serum and cerebrospinal fluid samples, was conducted
on each consented case. At autopsy, blood samples of 2—
5 mL were obtained by left ventricular aspiration, and CSF
samples of 1-2 mL were obtained by lumbar or cistern
puncture. Blood samples for serum testing were collected
in a BD Vacutainer® CPT Cell Preparation Tube [BD Diag-
nostics, New Jersey, USA], gently inverted 8-10 times, and
then centrifuged for 20 minutes at 1500 rcf. These special
tubes with polyester gel and density gradient liquid sepa-
rated the blood into three distinct layers, namely serum,
blood mononuclear cell and red blood cell layers. The
separated serum and CSF were pipetted into aliquots and
frozen at -70° C until testing was performed. Paired serum
and CSF samples from all 19 children were available for
testing.

The gross findings of the full autopsy and the examination
of the brain, the observations on the brain smears and his-
tological sections, and the data from the clinical and diag-
nostic-laboratory records of each subject were together
used to classify the 19 cadavers into three illness groups.
Nine (9) of the cadavers were categorized as cerebral
malaria (CM), 5 as malaria complicated by severe anemia/
severe malarial anemia (SMA), and 5 as non-malaria
(NM) deaths. To be considered a case of CM while alive, a
child had to fulfill the World Health Organization's defi-
nition of severe malaria [49], have a Blantyre coma score
of < 2; have a Plasmodium falciparum parasitemia, and have
no other clinically evident cause of unconsciousness. At
autopsy, the CM cases had a slaty-grey discoloration of the
brain, white-matter petechial hemorrhages in the brain,
and/or parasitized erythrocytes and/or malaria pigment in
the cerebral microvasculature. While alive, the SMA cases
had also clinically fulfilled the World Health Organiza-
tion's definition of severe malaria [49], and also had a
Plasmodium falciparum parasitemia, but were found to
have no more than 5 g hemoglobin/dl and to remain con-
scious until shortly (< 2 hours) before their death. At
autopsy, the brains of the SMA cases showed no slaty-gray
discoloration, white-matter petechial hemorrhages, or
parasitized erythrocytes and malaria pigment in the cere-
bral microvasculature, but all the internal organs of these
cases had moderate to severe pallor. None of the NM cases
(included as non-malarial controls) had been found clin-
ically parasitemic, had normal biochemical and micro-
biological assessment of the CSF, and, at autopsy, none
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showed any slaty-grey discoloration of the brain, liver or
spleen, or any white-matter petechial hemorrhages, or any
parasitized erythrocytes, or any malaria pigment in his or
her cerebral microvasculature, and no other gross or
microscopic evidence of central nervous system (CNS)
pathology. The study was approved by the Ethical and
Protocol Review Committee of the University of Ghana
Medical School (Accra, Ghana), and the Institutional
Review Boards of both the Morehouse School of Medicine
(Atlanta, GA) and the Noguchi Memorial Institute for
Medical Research (Accra, Ghana).

Multiplexed Microsphere Immunoassay

The 19 paired serum and CSF samples were evaluated
simultaneously for 27 different circulating cytokines (IL-
1B, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-
12 (p70), IL-13, IL-15, IL-17, Eotaxin, FGF basic protein,
G-CSF, GM-CSF, IFN+y, IP-10, MCP-1 (MCAF), MIP-1q,
MIP-1B8, PDGF bb, RANTES, TNF-a and VEGF) using a
commercially available multiplex colorimetric bead-
based cytokine immunoassay coupled with the Luminex™
system (Austin, TX) and human-specific bead sets (Bio-
Rad, San Diego, CA), according to the manufacturer's
instructions. The results were interpolated from 5-param-
eter-fit standard curves generated using the relevant
recombinant human proteins (BioRad). Samples were
tested at a 1:4 dilution.

Enzyme-Linked Immunosorbent Assay

The 19 paired plasma and CSF samples were evaluated for
the 9 other immune markers not available on the Multi-
plex-Luminex immunoassay system (TGF-B1 [latent and
bioactive], STNF-R2 (p75), sTNF-R1 (p55), sFas, Fas-L,
SDF-1a, CXCL11 (I-TAC), MMP-9 and CRP) were meas-
ured by standard commercially available solid-phase
sandwich ELISA kits, using human-specific primary and
secondary antibodies (Biosource, R&D, and BD Pharmin-
gen, San Diego, CA). The results were interpolated from 5-
parameter-fit standard curves generated using the relevant
recombinant human proteins (Biosource, R&D, and BD
Pharmingen). Samples were tested at a 1:4 dilution.

Statistical Analysis

Demographic variables were compared across the 3 study
groups using analysis of variance (for continuous varia-
bles) and chi-squared testing (for categorical variables).
Non-parametric test (Mann-Whitney rank sum test) was
used for individual immune biomarker analysis between
the 3 study comparison groups, while multivariate analy-
ses (Least Squares with Bonferonni correction) was used
to determine immune biomarker significance between the
3 groups after modeling and controlling for covariates
(age, sex, and parasitemia). Correlations between
immune biomarker levels were assessed by Spearman's
rank correlation. Box plots representing medians with
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25thand 75t percentiles, bars for 10t and 90t percentiles,
and values outside the 10th and 90t percentiles of biomar-
ker concentrations were plotted as points. Statistical sig-
nificance for each biomarker was set at a two tailed P <
0.05, and Spearman's rank coefficients p > 0.25. The
STATA™ (College Station, TX, USA) and SAS™ (Cary, NC,
USA) Statistical Software were used to calculate statistics
and plot graphs.

Results

Clinical and Diagnostic Characteristics of the Study
Participants

The demographic, parasitological, and hematological
characteristics of the 19 children (10 male, 9 female)
investigated are summarized in Table 1. Children with
SMA (5; 3 male, 2 female) were significantly (P = 0.021)
younger than children with CM (9; 4 male, 5 female) and
NM (5; 3 male, 2 female) (Table 1). Anemia (hemoglobin
< 11 g/dl) was found among all the 3 study groups, but
severe anemia (hemoglobin < 5 g/dl) was not found in the
CM and NM groups. As expected, children with SMA had
significantly (P < 0.01) lower hemoglobin levels than chil-
dren with CM and NM, and CM children in turn had
lower levels than children with NM (Table 1). All 5 chil-
dren in the NM group were aparasitemic. The parasite
density was significantly (P < 0.001) higher in children
with SMA than CM (Table 1). Children with CM had sig-
nificantly (P < 0.001) lower platelet count than children
with SMA and NM, and SMA children in turn had lower
levels than children with NM (Table 1).

The 5 non-malaria (NM) cases investigated were made up
of a case each of severe bronchopneumonia, severe gastro-
enteritis, abdominal tuberculosis, purulent bacterial peri-
tonitis, and acute lymphoblastic leukemia. All 9 CM cases
investigated had seizures, hypertonicity or posturing of
limbs, and 4 CM cases had clinical and biochemical aci-
dosis. None of the CM cases had hemoglobinuria, jaun-
dice or renal failure. Although 4 of the 5 SMA cases
investigated had hemoglobinuria, there was no clinical or
biochemical evidence of renal failure. None of the SMA
cases had clinical evidence of jaundice, an abnormal
bleeding tendency, or meningitis or any other focus of
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infection. The CSF samples obtained from all 19 cases
investigated were biochemically and microbiologically
normal. No parasitized erythrocytes or sequestered mono-
nuclear leukocytes were detected when the brain tissues of
the 5 non-malaria cases studied were subjected to cytolog-
ical and histological examination. Sequestered parasitized
erythrocytes were seen, in the cytological and histological
preparations, in brain microvessels of all the fatal malaria
cases studied (CM and SMA), and sequestered mononu-
clear leukocytes (monocytes and lymphocytes) were seen
in the preparations from 7 of the 9 CM cases but none of
those from the SMA cases. In the cytological and histolog-
ical preparations of the brain samples from the fatal
malaria cases, the intra-erythrocytic malarial parasites
were either nonpigmented or pigmented, and malaria pig-
ment was found in intra-erythrocytic and intraleukocytic
locations as well as lying free within the microvessels. The
extent of sequestration and the distribution of malarial
pigment in the cerebrum, cerebellum, brainstem, white
matter and grey matter of each brain from the fatal
malaria cases appeared identical.

Serum Levels of Biomarkers in Children with CM, SMA,
and NM

Pair wise comparisons were used to determine levels of
significance of the differences between the serum biomar-
ker levels of the 3 disease groups after controlling for age,
sex and parasitemia. The serum levels of 35 biomarkers
(IL-1B, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10,
IL-12 (p70), IL-13, IL-15, IL-17, Eotaxin, FGF basic pro-
tein, CRP, G-CSF, GM-CSF, IFN-y, TNF-a, MCP-1 (MCAF),
MIP-1a, MIP-1B, RANTES, SDF-1a, CXCL11 (I-TAC), Fas-
L, sFas, sSTNF-R1 (p55), sTNE-R2 (p75), MMP-9, TGF-B1,
PDGF bb and VEGF) demonstrated marginal changes, but
did not show statistically significant differences between
the 3 disease groups, after Bonferroni adjustment for the
other biomarkers (Figures 1, 2, 3). However, serum level
of IP-10 was independently predictive of CM mortality
when compared to SMA and NM deaths. The serum level
of IP-10 was significantly higher in children with CM
compared with those children with SMA (P = 0.001) and
NM (P = 0.002) (Figure 3).

Table I: Demographic, parasitological, and hematological characteristics of the study participants

CHARACTERISTIC CcM SMA NM P value
No. of children 9 5 5
Gender (male/female) 4/5 32 32 0.249
Age (months) 61.2 (3.1) 14.6 (1.2) 79.0 (4.3) 0.021
Parasite density (/uL) 51,604 (9,468) 195,003 (23,613) 0 <0.001
Hemoglobin level (g/ 7.2 (0.1) 3.7(0.1) 7.9 (0.1) <0.0l
dL)
Platelet count (x103/uL) 170.8 (12.7) 288.4 (19.5) 330.7 (27.3) <0.001
CM, cerebral malaria; SMA, severe malarial anemia; NM, non-malaria; P < 0.05 considered statistically significant.
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Postmortem serum biomarker levels of IL-1f, IL-Ira, IL-6, IL-8, TNF-a., and IFN-y in children dying with CM, SMA, NM causes.
CM, cerebral malaria; SMA, severe malarial anemia; NM, non-malaria. Box plots representing medians with 25t and 75t per-
centiles, bars for 10th and 90t percentiles, and points for outliers of biomarker concentrations. Only statistically significant P
values after Bonferroni adjustment for the other biomarkers are shown.
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CSF Levels of Biomarkers in Children with CM, SMA, and

NM

Pair wise comparisons were used to determine levels of
significance of the differences between the CSF biomarker
levels of the 3 disease groups after controlling for age, sex
and parasitemia (Table 2). The CSF levels of 27 biomark-
ers (IL-1B, IL-2, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12
(p70), 1L-13, IL-15, IL-17, Eotaxin, FGF basic protein,
CRP, G-CSF, GM-CSF, IFN-y, TNF-a, MCP-1 (MCAF),
MIP-1a, RANTES, SDF-1a, CXCL11 (I-TAC), MMP-9,
TGF-B1, and VEGF) did not differ significantly between
the three disease groups, after Bonferroni adjustment (Fig-
ures 4, 5, 6). The CSF levels of 9 biomarkers (IL-1ra, IL-8,
IP-10, PDGFbb, MIP-1B, sFas, Fas-Ligand, sTNF-R1, and
STNF-R2) were independently predictive of CM mortality
when compared to SMA and NM deaths (Figures 4, 5, 6).
The CSF levels of IL-1ra, IL-8, IP-10, MIP-1, sFas, Fas-Lig-
and, sTNF-R1, and sTNF-R2 were significantly higher in
children with CM compared with those children with
SMA and NM. On the contrary, PDGFbb was significantly
lower in children with CM compared with those children
with SMA and NM (Figures 4, 5, 6) (Table 2). These 9
biomarkers that were independently predictive of CM
mortality can be grouped into four major categories such
as cytokines (IL-8), cytokine receptors (IL-1ra, sSTNF-R1,
and sTNF-R2), chemokines (MIP-1$ and IP-10), apop-
totic (sFas and Fas-L), and angiogenic factors (PDGFbb).

Serum Biomarker Ratios in Children with CM, SMA, and
NM

Serum pro-inflammatory or angiostatic to anti-inflamma-
tory or angiogenic cytokine median ratios were deter-
mined and compared between the 3 disease groups (Table
3). Serum TNF-a/IL-10 median ratio was higher in CM
group compared to the SMA and NM groups, but the dif-
ference was not significantly different (Table 3). Similarly,
the serum TNF-a/IL-8, TNF-o/PDGFbb, 1P-10/IL-10, IP-

http://www.malariajournal.com/content/6/1/147

10/1L-8, and IP-10/PDGFbb median ratios were consist-
ently higher in the CM group compared to the SMA and
NM groups, but the differences were not statistically sig-
nificant (Table 3).

CSF Biomarker Ratios in Children with CM, SMA, and NM
CSF pro-inflammatory or angiostatic to anti-inflamma-
tory or angiogenic cytokine median ratios were deter-
mined and compared between the 3 disease groups (Table
4). CSF IP-10/PDGFbb median ratio was significantly
higher in the CM group compared to the SMA and NM
groups (Table 4). However, the CSF TNF-0/IL-10, TNF-a/
IL-8, TNF-o/PDGFbb, IP-10/IL-10, and IP-10/1L-8
median ratios varied between the 3 disease groups, but the
differences were not statistically significant (Table 4).

Correlation between Serum and CSF Levels of Biomarkers
The relationships of the serum and CSF levels of individ-
ual inflammatory markers with each other were examined
using Spearman's rank correlational analyses. With the
exception of IP-10, sTNF-R1 and sTNF-R2, there was no
significant association between the serum and CSF levels
of the other inflammatory markers studied (Spearman's p
< 0.25; P > 0.05). There was a strong positive correlation
between the serum and CSF levels of IP-10, sTNF-R1 and
STNF-R2 (Spearman's p = 0.58-0.82; all P < 0.0001) [data
not shown)].

Correlation between Biomarker Levels and Clinical
Characteristics

The relationships of individual inflammatory markers
with each other, and with parasite density, hemoglobin
level, and platelet count were examined using Spearman's
rank correlational analyses. With the exception of IP-10
and MIP-10q, there was no significant association between
the serum levels of the other inflammatory markers stud-
ied (Spearman's p < 0.25; P > 0.05). A moderately strong

Table 2: Comparison of Least Squares (Predicted) Means by Category, Controlled for Covariates (age, sex and parasitemia) For
Biomarkers Showing Overall Statistically Significant Differences between the three Study Groups

BIOMARKER OVERALL P VALUE P VALUE FOR PAIRED GROUPS
CMvs. NM CM vs. SMA SMA vs. NM

Serum IP-10 0.005 0.002 0.001 NSS
CSF IP-10 0.005 0.001 0.004 NSS
CSF IL-8 0.0005 0.0001 0.001 NSS
CSF MIP-13 0.0005 0.0001 0.001 NSS
CSF PDGFbb 0.008 0.0002 0.0l NSS
CSF IL-Ira 0.002 0.0004 0.005 NSS
CSF Fas-L 0.04 0.002 NSS NSS
CSF sTNF-RI 0.0001 0.00001 0.0002 NSS
CSF sTNF-R2 0.001 0.0001 0.002 NSS

Statistically significant differences in biomarkers between the three disease groups determined by multivariate analyses [Comparison of Least
Squares (Predicted) with Bonferonni correction] after modeling and controlling for covariates (age, sex, and parasitemia); P < 0.05 considered

statistically significant; NSS, not statistically significant.
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Postmortem CSF biomarker levels of IP-10, RANTES, MCP-1, MIP-1a, MIP-18, and PDGFbb in children dying with CM, SMA,

NM causes. CM, cerebral malaria; SMA, severe malarial anemia; NM, non-malaria. Box plots representing medians with 25t and
75t percentiles, bars for 10t and 90t percentiles, and points for outliers of biomarker concentrations. Only statistically signifi-
cant P values after Bonferroni adjustment for the other biomarkers are shown.
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Table 3: Comparison ofSelected Serum Biomarker Median Ratios between the three Study Groups

PRO-INFLAMMATORY OR ANGIOSTATIC vs. ANTI- CcM SMA NM OVERALL P VALUE
INFLAMMATORY OR ANGIOGENIC BIOMARKER MEDIAN RATIO

TNF-o.: IL-10 4.11 322 3.18 NSS

TNF-o : IL-8 2.48 2.29 2.26 NSS

TNF-o : PDGFbb 1.64 x 102 1.54 x 102 1.56 x 102 NSS
IP-10:IL-10 34.85 18.86 23.23 NSS

IP-10: IL-8 231 x 100 127 x 10" 1.63 % 10! NSS

IP-10 : PDGFbb 57.52 2641 32.73 NSS

Median ratios of serum levels of pro-inflammatory/angiostatic versus anti-inflammatory/angiogenic biomarkers were compared between the 3
disease groups; P < 0.05 considered statistically significant; NSS, not statistically significant.

positive correlation was seen between the serum levels of
IP-10 and MIP-1a (Spearman's p = 0.40; P = 0.001). With
the exception of IL-1ra, IL-8, IP-10, PDGFbb, MIP-1p,
STNF-R1, and sTNF-R2, there was no significant associa-
tion between the CSF levels of the other inflammatory
markers studied (Spearman's p < 0.25; P > 0.05). The CSF
level of PDGFbb correlated strongly and inversely with
levels of IL-1ra, IL-8, IP-10, MIP-1B, sSTNF-R1, and sTNF-
R2 (Spearman's p = 0.61-0.76; all P < 0.0001). A moder-
ately strong positive correlation was seen between the CSF
levels of IL-1ra and sTNF-R1, IL-1ra and sTNF-R2, IL-1ra
and IL-8, IL-1ra and 1P-10, IL-1ra and MIP-1f, and sTNF-
R1 and sTNF-R2 (Spearman's p = 0.41-0.48; all P <
0.001). A weak positive correlation was seen between the
CSF levels of IP-10 and MIP-1, IP-10 and sTNF-R1, IP-10
and sTNF-R2, IP-10 and IL-8, MIP-1f and IL-8, MIP-13
and sTNF-R1, MIP-1B and sTNF-R2, IL-8 and sTNF-R1,
and IL-8 and sTNF-R2 (Spearman's p = 0.26-0.37; all P <
0.05). Finally, there was no significant association
between parasite density, hemoglobin level, and platelet
count, and the serum and CSF levels of all the inflamma-
tory markers studied (data not shown).

Discussion

The present study examined a broad range of disease asso-
ciated inflammatory mediators, including cytokines,
chemokines, and markers of apoptosis and angiogenesis,
in postmortem serum and CSF samples of children with

CM, SMA, and NM. The study was conducted in an area of
moderate Plasmodium falciparum transmission where all
the life-threatening complications of malaria occur,
namely, coma, severe anemia, and respiratory distress [1-
5]. Although post-mortem studies have provided a wealth
of detailed information they reflect, at best, pathology at
a single time point after death in the most severely ill
patients and may be potentially biased by post-mortem
artifacts (agonal changes that may simulate disease-
induced pathology). The concurrent studying of these
inflammatory, apoptotic and angiogenic biomarkers in
appropriate time-matched post-mortem controls from
other disease causes helps place the results in context. Due
to these limitations, further studies would be required to
confirm the functional roles of these host factors in CM.

Cerebral malaria (CM) is a major life-threatening compli-
cation of Plasmodium falciparum infection in humans. The
mechanisms underlying the fatal cerebral complications
are still not fully understood. However, two predominant
hypotheses are generally proposed to explain the neu-
ropathology of CM, namely the sequestration and immu-
nological hypotheses. The sequestration hypothetical
model suggest that the adhesion of pRBCs to the cerebral
vasculature leads to obstruction of the microcirculation,
metabolic depletion, BBB breakdown, and alteration in
brain function resulting in coma [16]. The immunological
hypothetical model suggest that hyperimmune responses

Table 4: Comparison of Selected CSF Biomarker Median Ratios between the three Study Groups

PRO-INFLAMMATORY OR ANGIOSTATIC vs. ANTI- CcM SMA NM OVERALL P VALUE
INFLAMMATORY OR ANGIOGENIC BIOMARKER MEDIAN RATIO

TNF-o.: IL-10 333x 102 751 x 102 2.04x 10! NSS

TNF-o : IL-8 776 x 102 7.52x 10" 6.67 x 10! NSS

TNF-o : PDGFbb 5.05x% 102 756 x 102 [.53 x [02 NSS
IP-10:IL-10 10.28 2.07 3.14 NSS

IP-10: IL-8 23.08 20.12 10.29 NSS

IP-10 : PDGFbb 15.35 2.28 2.32 x 102 0.003

Median ratios of CSF levels of pro-inflammatory/angiostatic versus anti-inflammatory/angiogenic biomarkers were compared between the three
disease groups; P < 0.05 considered statistically significant; NSS, not statistically significant.
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(originally evolved for the destruction of the parasite and
protection of the host) and Th1/Th2 cytokine or chemok-
ine dysregulation results in localized recruitment of
immune effectors cells (T cells, monocytes, etc) and BBB
impairment resulting in the development of cerebral com-
plications [7]. However, recent studies indicate that para-
site induced apoptosis and tissue degeneration, as well as
angiogenic factors may be involved in the pathogenesis of
CM [14,15,36,38]. Understanding the cytokine/chemok-
ine cascade, parasite induced apoptotic pathways, and
dysregulation of angiogenic factors in CM patients will
elucidate the underlying pathogenesis and identify poten-
tial predictive prognostic biomarkers for CM mortality.

In the present study, evidence is provided indicating that
the serum levels of various cytokines and chemokines are
altered in children with CM compared to SMA and NM.
The elevated serum level of IP-10 is particularly remarka-
ble since it was the only independent predictor of CM
mortality. Eight (8) CSF inflammatory biomarkers (IL-
1ra, IL-8, IP-10, PDGFbb, MIP-1f, Fas-L, sTNF-R1, and
STNF-R2) were independently predictive of CM mortality,
when compared to SMA and NM deaths. The significant
increase in CSF levels of IL-1ra, IL-8, IP-10, MIP-1p, sTNF-
R1, and sTNF-R2 in CM compared to SMA and NM sug-
gests a critical role for the brain parenchymal expression
of these biomarkers in CM pathogenesis and mortality. In
the present study, both the serum and CSF levels of
RANTES were not predictive of CM mortality, although
low serum levels of RANTES have recently been associated
with mortality in Ugandan children with CM [26].

TNF-R1 and TNF-R2 are key mediators of the classical
extrinsic apoptotic pathway, as well as in inflammation.
The increased expression of STNF-R1 and sTNF-R2 in CSF
of CM non-survivors when compared to SMA and NM
suggests that parasite-induced apoptosis in host CNS is
critical to CM pathogenesis and mortality. Recent studies
in murine experimental CM have shown that the TNF
receptor super family also plays a role in CM pathogenesis
[42-47]. Mice deficient in TNF-R2 (TNF-R2-/-) and Fas
(Fas-/-) survived significantly longer than wild type in
experimental CM, and TNFR2-/- mice survived the longest
in the absence of anti-malarial treatment [42,47]. Addi-
tionally, the serum levels of STNF-R1 and sTNF-R2, which
act as binding proteins for TNF, were elevated in patients
with acute Plasmodium falciparum malaria compared to the
levels in convalescent children and in healthy controls
[38,39].

Platelet derived growth factor is a key factor that mediates
vascular smooth muscle cell proliferation and serves a
neuroprotective role by inducing regeneration of dam-
aged axons and neuronal growth after ischemia [37]. In
this study, a significant decline in PDGFbb production

http://www.malariajournal.com/content/6/1/147

was independently predictive of CM mortality. Therefore,
it seems that the down regulation of this angiogenic
growth factor and upregulation of apoptotic factors in CM
patients may be a result of parasite-induced damage or
depletion of cells producing PDGF, a highly angiostatic
microenvironment with high levels of proinflammatory
cytokines/chemokines (notably IP-10), or even an uni-
dentified parasite-derived factor that initiates/exacerbates
the inflammatory and apoptotic cascades.

IFN-inducible protein of 10 kDa (IP-10) is a chemokine
induced by IFN-y and TNF-a.. Although IP-10 was initially
shown to have chemotactic activity for activated Th1 lym-
phocytes, there is growing evidence implicating this
chemokine in both infectious and non-infectious causes
of neuronal injury, dementia and inhibition of angiogen-
esis [50-54]. This is the first report demonstrating that sig-
nificant elevation of serum and CSF levels of IP-10 is
associated with CM mortality. Our finding suggests that
IP-10 plays a major role in the CM immunopathology,
and begs for further study in other endemic settings. Inter-
estingly, Plasmodium berghei ANKA infection induced IP-
10 and monocyte chemotactic protein (MCP)-1 gene
expression in the brain of both CM-susceptible (C57BL/6)
and CM-resistant (BALB/c) mice as early as 24 hours post-
infection [33]. Additionally, the expression of IP-10 and
MCP-1 genes in KT-5, an astrocyte cell line, was induced
in vitro upon stimulation with a crude antigen of malaria
parasites, suggesting astrocytes as the potential cellular
source of cytokine and chemokine expression in brain
parenchyma in response to plasmodial infection [33].
Therefore, in response to plasmodial infection, the cells
that produce these inflammatory mediators may be differ-
ent in the brain (microglia and astrocytes) and peripheral
circulation (platelets, monocytes, and lymphocytes), and
their effects may also differ in the two areas.

This study has revealed new associations, underlying
pathogenic events, between different biomarkers and CM
mortality in Ghanaian children that may be applicable to
other malaria endemic populations. The most important
finding demonstrates the association between the eleva-
tion of serum and CSF factors involved in the classical
extrinsic apoptotic pathways (such as IP-10, TNF-a-sTNEF-
R1-sTNF-R2 and Fas-L) and the reduction of growth fac-
tors that confer endothelial and neuronal cell protection
(such as PDGF) with CM mortality. We propose the fol-
lowing hypothesis to explain our observations. It appears
that both inflammatory and apoptotic mechanisms may
be triggered locally in the human brain during CM that
result in the damage of the constituent cells of the BBB
(glial cells, astrocytes, and endothelial cells) and possibly
neurons. Additionally, this localized BBB damage may be
further exacerbated by the significantly decreased levels of
neuroprotective angiogenic growth factors (such PDGF),
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induced by the angiostatic effects of the elevated local CSF
levels of IP-10, ultimately resulting in death.

Furthermore, we propose that TNF-o. and other proin-
flammatory factors which are activated following the
release of malaria antigens after schizont rupture may
induce the local production of IP-10 by the constituent
cells of the BBB (glial cells, astrocytes, and endothelial
cells) [33]. Subsequently, IP-10 in concert with TNF-a
may induce apoptosis of endothelial cells leading to BBB
breakdown. Additionally, activated circulating immu-
nomodulator cells (T cells, monocytes, etc) attracted to
the BBB by IP-10, may also play a pathogenic role in this
process. The significantly decreased production of PDGF
may further inhibit angiogenesis and negatively impact
the regeneration of damaged endothelial cells and blood
capillaries at the BBB. Recently, elevated CSF level of IP-10
has been demonstrated in viral meningitis [54]. Elevated
CSF level of IP-10 has been shown to be significantly cor-
related with the neuropsychiatric impairment in HIV-
associated dementia [55]. Furthermore, mouse studies
have demonstrated that the HIV-1 virus encoded protein
gp120 directly activates astrocytes to produce IP-10 using
a novel mechanism independent of IFN-y and STAT-1
pathway of IP-10 induction [52]. Therefore, elevated
serum and CSF levels of IP-10 may be an important path-
ogenic factor in CM neuropathology, as observed in other
infectious disease models. Most CM deaths occur within
24 hours of admission before antimalarials have had time
to kill the parasites [9,16,48], hence new interventions
that address pathophysiological processes causing these
early deaths is a public health priority, in addition to
addressing the public-health problems resulting in
delayed presentation to hospital and ensuring children
receive prompt and appropriate resuscitation. Thus, this
study provides new insights into the processes leading to
cerebral malaria and mortality associated with it.

Conclusion

This study has demonstrated an association between CM
associated mortality with elevated serum and CSF levels of
apoptotic factors (IP-10, IL-1ra, sSTNFR1, sTNFR2, sFas)
and reduced serum and CSF levels of neuroprotective ang-
iogenic growth factors (PDGFbb). The observations sup-
port recent reports that implicate parasite-induced
apoptosis and angiogenic factors in CM neuropathology.
Further studies in other endemic areas to confirm these
findings are necessary.
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