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Mapping the Kansas City Cardiomyopathy

Questionnaire (KCCQ) Onto EQ-5D-3L in
Heart Failure Patients: Results for the

Japanese and UK Value Sets

Matthias Hunger, Jennifer Eriksson , Stephane A. Regnier, Katsuya Mori,

John A. Spertus, and Joaquim Cristino

Background. Health technology assessment bodies in several countries, including Japan and the United Kingdom,
recommend mapping techniques to obtain utility scores in clinical trials that do not have a preference-based measure
of health. This study sought to develop mapping algorithms to predict EQ-5D-3L scores from the Kansas City
Cardiomyopathy Questionnaire (KCCQ) in patients with heart failure (HF). Methods. Data from the randomized,
double-blind PARADIGM-HF trial were analyzed, and EQ-5D-3L scores were calculated using the Japanese and
UK value sets. Several different model specifications were explored to best fit EQ-5D data collected at baseline with
KCCQ scores, including ordinary least square regression, two-part, Tobit, and three-part models. Generalized esti-
mating equations models were also fitted to analyze longitudinal EQ-5D data. To validate model predictions, the
data set was split into a derivation (n = 4,465) from which the models were developed and a separate sample (n =
1,892) for validation. Results. There were only small differences between the different model classes tested. Model
performance and predictive power was better for the item-level models than for the models including KCCQ domain
scores. R2 statistics for the item-level models ranged from 0.45 to 0.52. Mean absolute error in the validation sample
was 0.10 for the models using the Japanese value set and 0.114 for the UK models. All models showed some under-
prediction of utility above 0.75 and overprediction of utility below 0.5, but performed well for population-level esti-
mates. Conclusions. Using data from a large clinical trial in HF, we found that EQ-5D-3L scores can be estimated
from responses to the KCCQ and can facilitate cost-utility analysis from existing HF trials where only the KCCQ
was administered. Future validation in other HF populations is warranted.
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Heart failure (HF) is a major cardiovascular disorder
with a prevalence of .5 per 1,000 in regions of North
America, Oceania, and Europe,1 and rates of 21 per
1,000 after 65 years of age in the United States.2 In
Japan, approximately 1 to 2 million people have HF,
which is projected to increase due to the aging of the
population and the growing adoption of a Westernized
lifestyle.3,4 In a meta-analysis of 30 studies, 40.2% of HF

patients died during a median follow-up of 2.5 years.5

HF constitutes a high global economic burden estimated
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to cost US$108 billion per annum.6 Individuals with HF
have markedly impaired health-related quality of life
(HRQoL) compared with both the general population
and those with other chronic diseases.7 HF is a clinical
syndrome caused by structural and/or functional cardiac
abnormalities resulting in reduced cardiac output and/or
elevated intracardiac pressures at rest or during stress
and manifests itself to patients as symptoms of fatigue
and breathlessness.8 An important subset of patients with
HF are those with reduced ejection fraction (HFrEF; the
left ventricular ejection fraction [LVEF] \40%),8 which
is important given the demographics, comorbidities,
response to therapies, and outcomes in this population.9

To balance the clinical benefit and costs of treatment,
economic evaluations are commonly conducted by asses-
sing the incremental cost per incremental quality-
adjusted life years (QALYs) gained. The EQ-5D is a vali-
dated generic preference-based questionnaire of HRQoL
used to derive health utilities,10 a measure of preference
ranging from 0 (death) to 1 (full health), which can be
multiplied by observed survival in economic models to
estimate QALYs. The combinations of the EQ-5D health
dimensions and their severity levels represents health
states that have been valued by the strength of preference
to each health state from general population or patient
studies, resulting in numerous country-specific value sets
for the EQ-5D-3L. It is of importance that economic
evaluations are conducted using utilities derived with the
value set developed for that particular country due to
differences in preferences across countries and cultures.11

With the Japanese Ministry of Health, Labour and
Welfare introducing health technology assessment as of
April 2019, where cost-effectiveness is principally
assessed as cost per QALY, these considerations warrant

a mapping algorithm based on the Japanese value set of
the EQ-5D.12,13

It is not uncommon, however, that preference-based
instruments (such as the EQ-5D) are not administered in
clinical trials or observational studies, so as not to over-
burden the patient or because disease-specific instru-
ments, which are more sensitive to capture health status
in a particular disease, are used instead.14 In such circum-
stances, countries, such as the UK National Institute for
Health and Care Excellence (NICE) and Japan, recom-
mend that an algorithm map the disease-specific instru-
ment onto the EQ-5D for generating utility estimates be
used.12,15 A mapping algorithm allows for the disease-
specific instrument to be regressed onto the EQ-5D for
estimating utilities. Mapping algorithms can be classified
into direct methods, where regression models are used to
predict EQ-5D utilities from non-preference-based mea-
sures, and response mapping methods, where categorical
regression models are used to predict response levels for
each of the five EQ-5D domains.16

In cardiovascular disease, there are few algorithms
mapping a disease-specific HRQoL instrument onto a
utility instrument.17 Chen et al. developed mapping algo-
rithms between the MacNew Heart Disease Quality of
Life Questionnaire (MacNew) instrument and six utility
instruments, including the EQ-5D and the Short Form
6D (SF-6D).18 Edlin et al. mapped the Minnesota Living
with Heart Failure Questionnaire to the EQ-5D.17,19 In
HF, the Kansas City Cardiomyopathy Questionnaire
(KCCQ) is a validated instrument that is gaining increas-
ing use as an endpoint in clinical trials and observational
studies,20 but there are no published algorithms mapping
the KCCQ questionnaire to the EQ-5D. To address this
gap in the literature, we sought to develop a mapping
algorithm from the KCCQ to the EQ-5D-3L that can be
used in health technology assessments for HF interven-
tions. Our focus was to develop a mapping algorithm for
the Japanese value set to be used in Japan. We also devel-
oped a mapping algorithm using the UK value set since
this is widely used and could potentially be used in other
countries integrating cost-utility analyses in their evalua-
tions of new therapies.

Methods

EQ-5D-3L

The EQ-5D-3L consists of a five-item instrument that
also includes a visual analogue scale (VAS). The five
items measure patients’ perceptions of their ‘‘mobility,’’
‘‘self-care,’’ ‘‘usual activities,’’ ‘‘pain/discomfort,’’ and
‘‘anxiety/depression.’’10 Each item has three ordinal
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responses (1 = no, 2 = moderate, or 3 = extreme prob-
lems), defining a total of 243 different health states.
Using a scoring algorithm, these health states can be
translated into utility values based on valuations by the
general population of each country. The resulting utili-
ties are on a scale where 1 represents full health, 0 repre-
sents death, and a negative number represents a health
state worse than death. In this study, EQ-5D-3L index
scores were calculated using the Japanese value set, but
coefficients for a mapping algorithm based on the UK
value set are also provided as this is a more widely used
value set. Detailed methods on the development of each
value set, both based on the time tradeoff method, can
be found in Tsuchiya et al21 and Dolan,22 respectively.

KCCQ

The KCCQ is a self-administered, 23-item questionnaire
that quantifies physical limitations, symptom stability,
symptoms, self-efficacy, social interference, and HRQoL
in patients with HF.20 Items are summed within each
domain and scaled to a score ranging from 0 to 100,
where 0 represents the worse symptoms and function
and 100 represents the best. In addition, two summary
scores can be calculated from the six domains. The
Clinical Summary score combines the physical limitation
and symptom domains, similar to the New York Heart
Association (NYHA), while the Overall Summary score
combines the Physical Limitation, Total Symptom,
HRQoL, and Social Limitation scores.

Data

Data collected in the PARADIGM-HF trial (Clinical
Trials.gov Identifier: NCT01035255) were used in this
analysis, details of which have been published else-
where.23 The PARADIGM-HF patient population com-
prised 8,399 adult patients from 47 different countries
with HFrEF, NYHA class II-IV, and either a plasma
brain natriuretic peptide (BNP) .150 pg/mL or N-
terminal pro-brain natriuretic peptide (NT-proBNP)
.600 pg/mL or a hospitalization for heart failure within
the past 12 months. Patients in the trial were recruited
between 2009 and 2012, randomized to receive either
enalapril or sacubitril/valsartan, and followed for a med-
ian of 27 months. Patients initially had to have an LVEF
� 40%, but this was changed to � 35% by a protocol
amendment after approximately 1,285 patients had been
randomized. As a result, there were 7,478 (88.6%)
patients with LVEF � 35% and 963 (11.4%) patients
with LVEF 35% to 40% randomized. KCCQ and

EQ-5D-3L questionnaires were administered at baseline,
4 months, 8 months, 12 months, and annually thereafter
through to the final visit.

This analysis used data on patients who completed
both the KCCQ and the EQ-5D-3L questionnaires at
randomization. Observations with missing values on
KCCQ and EQ-5D-3L or any of the relevant baseline
characteristics were excluded. To ensure similarity be-
tween the estimation sample (PARADIGM-HF) and the
inclusion criteria typically being used in clinical trials
of patients with heart failure with reduced ejection frac-
tion, patients with LVEF between 35% and 40% were
excluded.

From the 8,399 patients included in the primary effi-
cacy population of the PARADIGM-HF trial, 7,623
(91%) completed the KCCQ questionnaire at randomi-
zation.24 Excluding patients with LVEF 35% to 40%
and removing observations with missing EQ-5D-3L data
or missing covariate data reduced the final estimation
sample to 6,357 patients. For the estimation of the map-
ping algorithms, the final estimation sample was ran-
domly split into a derivation (used to develop the
mapping algorithms; ; 70% of total sample; n = 4,465)
and a validation sample (; 30%; n = 1,892). The vali-
dation sample was used to assess how well the estimated
mapping algorithm predicts utility in an independent
sample. Clinical and demographic characteristics of the
derivation and validation samples are summarized in
Table 1.

Model Estimation

A direct mapping method was used, based on regression
models where the independent variables were the KCCQ
scores (summary or individual domains) and the depen-
dent variable the EQ-5D-3L utility score (derived either
from the UK or the Japanese value sets). In the main
analysis, the mapping algorithm was estimated from
KCCQ and EQ-5D-3L data collected at baseline using
ordinary least squares (OLS) regression with robust stan-
dard errors.25 Seven model specifications were fitted for
each type of model (OLS, two-part, Tobit, and general-
ized estimating equations [GEE] models). For some of
these model specifications, we applied variable selection
methods, where, in each step, a variable was considered
for addition to (forward selection) or subtraction from
(backward selection) the set of explanatory variables
based on the Bayesian information criterion (BIC). In
this context, we defined ‘‘statistical relevant’’ variables as
variables that improve model fit based on the BIC:
Model 1 uses the KCCQs overall score. Models 2 to 5 are
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Table 1 Baseline Demographic, Clinical, KCCQ, and EQ-5D-3L Data

Overall (N = 6,357) Derivation (n = 4,465) Validation (n = 1,892)

Age in years
Mean (SD) 63.51 (11.18) 63.46 (11.38) 63.63 (10.69)

BMI (kg/m2)
Mean (SD) 28.34 (5.48) 28.35 (5.55) 28.33 (5.3)

Current smoker
No 5,404 (85%) 3,778 (84.6%) 1,626 (85.9%)
Yes 953 (15%) 687 (15.4%) 266 (14.1%)

Diabetes
No 4,170 (65.6%) 2,923 (65.5%) 1,247 (65.9%)
Yes 2,187 (34.4%) 1,542 (34.5%) 645 (34.1%)

Heart rate
Mean (SD) 72.19 (11.89) 72.15 (11.84) 72.29 (12.01)

Ischemic etiology
No 2,584 (40.6%) 1,810 (40.5%) 774 (40.9%)
Yes 3,773 (59.4%) 2,655 (59.5%) 1,118 (59.1%)

NT-proBNP (pg/mL)
Mean (SD) 341.48 (455.57) 345.91 (468.03) 331.05 (424.64)

NYHA class
I 280 (4.4%) 203 (4.5%) 77 (4.1%)
II 4,442 (69.9%) 3,129 (70.1%) 1,313 (69.4%)
III 1,590 (25%) 1,100 (24.6%) 490 (25.9%)
IV 45 (0.7%) 33 (0.7%) 12 (0.6%)

Previous hospitalization for HF
No 2,323 (36.5%) 1,645 (36.8%) 678 (35.8%)
Yes 4,034 (63.5%) 2,820 (63.2%) 1,214 (64.2%)

Prior stroke
No 5,824 (91.6%) 4,080 (91.4%) 1,744 (92.2%)
Yes 533 (8.4%) 385 (8.6%) 148 (7.8%)

Region
Asia/Pacific and Other 869 (13.7%) 611 (13.7%) 258 (13.6%)
Central Europe 2,234 (35.1%) 1,548 (34.7%) 686 (36.3%)
Latin America 1,082 (17%) 741 (16.6%) 341 (18%)
North America 532 (8.4%) 382 (8.6%) 150 (7.9%)
Western Europe 1,640 (25.8%) 1,183 (26.5%) 457 (24.2%)

Sex
Female 1,326 (20.9%) 922 (20.6%) 404 (21.4%)
Male 5,031 (79.1%) 3,543 (79.4%) 1,488 (78.6%)

Sodium (mmol/L)
Mean (SD) 141.44 (3.08) 141.45 (3.03) 141.42 (3.19)

Years since HF diagnosis
1–5 years 2,411 (37.9%) 1,686 (37.8%) 725 (38.3%)
� 1 year 1,873 (29.5%) 1,304 (29.2%) 569 (30.1%)
.5 years 2,073 (32.6%) 1,475 (33%) 598 (31.6%)

KCCQ Domain scores, mean (SD)
Physical limitations 72.85 (22.49) 72.54 (22.55) 73.57 (22.34)
Symptoms 79.56 (19.44) 79.37 (19.58) 80.01 (19.10)
Symptom stability 63.20 (20.91) 63.19 (21.09) 63.21 (20.50)
Quality of life 67.55 (22.35) 67.29 (22.62) 68.18 (21.70)
Self-efficacy 79.34 (19.77) 79.19 (19.84) 79.69 (19.60)
Social limitations 71.87 (25.32) 71.53 (25.40) 72.68 (25.11)
KCCQ-CS score 76.20 (19.20) 75.95 (19.26) 76.79 (19.06)
KCCQ-OS score 72.96 (19.44) 72.68 (19.58) 73.61 (19.09)

EQ-5D-3L utility score, mean (SD)
Japanese value set 0.772 (0.173) 0.770 (0.173) 0.778 (0.173)
UK value set 0.779 (0.215) 0.776 (0.217) 0.786 (0.210)

BMI, body mass index; HF, heart failure; KCCQ, Kansas City Cardiomyopathy Questionnaire; NT-proBNP, N-terminal pro-brain natriuretic

peptide; NYHA, New York Heart Association; SD, standard deviation; UK, United Kingdom.
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based on KCCQ domain scores: Model 2 includes all
domains regardless of statistical significance. Model 3
includes only statistically relevant KCCQ domain scores;
it excluded variables showing an R2 below 0.05 in a uni-
variate analysis (i.e., an OLS model with only one covari-
ate) or showing a high Pearson correlation of .0.8 with
a more predictive KCCQ domain score; afterwards, a
backward regression analysis was performed which sub-
sequently removed variables that are not statistically rele-
vant based on the BIC. Model 4 includes KCCQ domain
scores and statistically relevant squared terms; it was
obtained by applying a forward variable selection
method to model 2. Model 5 includes statistically rele-
vant KCCQ domain scores plus statistically relevant
demographic and clinical variables (age, sex, region,
NYHA class, heart rate, NT-proBNP, sodium, body
mass index, diabetes, time since HF diagnosis, ischemic
etiology, history of stroke, smoking, and history of hos-
pitalization for HF); it was obtained by applying a for-
ward variable selection method to model 3. Models 6 and
7 are item-level models. Model 6 includes statistically rel-
evant KCCQ item scores and was obtained by applying a
forward variable selection model starting from a model
with intercept only. Model 7 merges item levels for levels
that are shown to be disordered in model 6 (where ‘‘disor-
dered’’ means that regression coefficients do not continu-
ously decrease with increasing limitations).26

To address potential bias caused by the nonnormally
distributed dependent variable, in particular, the bounded
nature of EQ-5D utility scores, resulting in a large spike
at 1, two-part models and Tobit models were also
explored.16,26 The two-part model uses logistic regression
to predict the probability of whether patients are in per-
fect health (i.e., have a utility of 1), and a truncated OLS
regression model to predict utility values for those not in
perfect health (i.e., \1). The results from the two parts of
the model are then combined to an overall utility value
based on the expected value approach.26 The Tobit model
assumes that there is an underlying latent variable which
has a normal distribution and can extend beyond 1.15,16,26

The mean of this latent variable is modelled as a linear
combination of the covariates; the Tobit model assumes
that the distribution is censored at 1, taking into account
that utility predictions cannot exceed 1. Whereas OLS,
two-part, and Tobit models were fitted to cross-sectional
data collected at baseline, a fourth mapping algorithm
was developed using pooled data collected at baseline,
month 4, and month 8. This fourth mapping algorithm
was estimated using GEE to account for potential

within-subject correlation inherent in such a repeated
measurement design.27

For the two-part regression model, variable selection
was performed independently in each submodel (i.e., the
set of variables selected in the logistic regression model to
predict the spike at 1 could be different from the set of
variables selected in the truncated linear regression model
to predict utilities lower than 1). For the GEE models, no
variable selection was performed, but the same variables
as in the OLS model were included.

Model Performance and Predictive Power

In line with recommendations made by ISPOR and
NICE,15,16 measures of model performance were calcu-
lated to compare different model specifications in the
derivation sample, while measures of predictive perfor-
mance were calculated in the validation sample. Model
performance calculated in the derivation dataset included
the Akaike information criterion (AIC), BIC, and the
pseudo-R2. For the GEE, the ‘‘quasi-likelihood under
the Independence Model Criterion’’ (QIC) versions for
AIC and BIC were calculated. The pseudo-R2 was calcu-
lated using the formula suggested by Efron:

R2 = 1�
Pn

i= 1 (yi � byi)
2

Pn
i= 1 (yi � �y)2

where yi is the observed value for observation i, byi is the
value predicted by the model, and �y is the overall mean in
the sample. For OLS regression, the pseudo-R2 is identi-
cal to the traditional R2.

Predictive performance calculated in the validation
sample included mean absolute error (MAE; i.e., mean
absolute difference between estimated and observed utili-
ties) and root mean squared error for each model to com-
pare predicted values with observed values. Mean, standard
error (SE), median, and range of observed and predicted
values in the validation sample were also calculated.

Some mapping algorithms have reported underpredic-
tion of EQ-5D-3L values for mild health states, and over-
prediction for more severe health states.28–30 To assess if
there was a systematic error in the predictions caused by
the severity of the underlying health state, model predic-
tions and observed values are also reported across differ-
ent levels of observed EQ-5D-3L values in the validation
sample, together with MAEs per level (Level 1: \0.25;
level 2: 0-25–0.5; level 3: 0.5–0.75; level 4: 0.75–1; levels
chosen as per NICE guidance31).
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Exploratory and Sensitivity Analyses

To investigate the potential issue of overpredicting low
utilities, additional exploratory analyses using a three-
part model were performed for the selected best-fitting
model. In the three-part model, observations were first
categorized into three different health states: perfect
health (i.e., a utility of 1), severe health (i.e., at least one
level 3 in any of the EQ-5D-3L dimension level scores),
and moderate health (all remaining observations). Then,
a multinomial regression model was fitted to predict
the probability of whether responders were in each of
the three health states. Afterwards, two truncated linear
regression models were applied to predict EQ-5D-3L val-
ues for those that were observed to be in moderate or
severe health. Similar to the two-part model, results
from the three parts of the model were finally combined
to an overall utility value based on the expected value
approach.

As an exploratory analysis, we also fitted a two-part
model where a beta-regression instead of an OLS model
was used for the continuous part of the model.32

As a sensitivity analysis, the selected best-fitting model
was refitted in the subgroup of Asian patients, and in the
larger sample of patients enrolled in PARADIGM-HF irre-
spective of LVEF at baseline (i.e., also including patients
with LVEF between 35% and 40%). The best-fitting model
was also refit applying a 10-fold cross validation where the
full dataset (i.e., combining initial derivation and validation
dataset) was partitioned into 10 equally sized segments.
Subsequently, 10 iterations of derivation and validation
were performed such that within each iteration a different
fold of the data was held-out for validation while the
remaining nine-folds were used for learning.

All analyses were conducted using the statistical soft-
ware SAS 9.4.

Results

Baseline characteristics in the overall, derivation, and
validation sample are shown in Table 1. Distribution of
baseline characteristics was similar as expected given the
random split between estimation and validation sample.

Mean KCCQ scale scores and EQ-5D-3L utility scores
at baseline in the overall, derivation, and validation sam-
ple are shown in Table 1. Mean EQ-5D-3L utility, based
on the Japanese value set, was 0.770 (SD: 0.173) in the
derivation, and 0.778 (SD: 0.173) in the validation, sam-
ples. Mean EQ-5D-3L utility, based on the UK value set,
was 0.776 (SD: 0.217) in the derivation and 0.786 (SD:
0.210) in the validation samples. There was a ceiling

effect for both value sets in that 30.7% of patients at
baseline had a utility value of 1.0 (Figure 1).

Table 2 summarizes measures of predictive power and
model fit for OLS models 1 to 7 using the Japanese value
set. Overall, all OLS models predicted the overall mean
utility in the derivation sample with close precision,
although the item-level models 6 and 7 predicted the
median utility better than the domain score models.
Predicted maximum values ranged from 0.93 for model 1
to 0.98 for model 4, while minimum values ranged from
0.35 for models 2 and 3 to 0.46 for model 4. MAE was
highest (i.e., worst) for model 1 and lowest (i.e., best) for
the two item-level models 6 and 7. Pseudo-R2 and AIC
also favored item-level models 6 and 7. BIC was best for
model 4 and model 7. For all OLS models, MAE was
large for patients in poor health (MAE ranging from 0.42
to 0.49 for patients with an EQ-5D score below 0.25;
MAE ranging from 0.14 to 0.16 for patients with an EQ-
5D score between 0.25 and 0.5). MAE was smaller for
patients with observed EQ-5D scores between 0.5 and 1.0
(MAE ranging from 0.08 to 0.11). No patient was pre-
dicted to have an EQ-5D score below 0.25. Between
0.3% and 1.7% of patients were predicted to have an
EQ-5D score between 0.25 and 0.5; between 34.3% and
41.9% of patients were predicted to have an EQ-5D score
between 0.5 and 0.75; between 57.8% and 64.0% of
patients were predicted to have an EQ-5D score above
0.75. Table A1 in the appendix shows the comparison
between OLS models using the UK value set.

Similarly, item-level models 6 and 7 showed best over-
all model performance in terms of better MAEs and
pseudo-R2 statistics for the two-part, Tobit, and GEE
regression models (data available upon request). Since
model 7 ensures that item-level coefficients are always
ordered, that is, the item coefficient size increases or
decreases by level, model 7 was selected as the best-fitting
model in all tested model classes.

Model 7 performance statistics for all regression speci-
fications (i.e., OLS, two-part, Tobit, and GEE), together
with results for the exploratory three-part and two-part
beta model are presented in Table 3. Overall, there were
minor differences in model performance between the differ-
ent regression models. The comparisons between observed
and predicted values by levels of utility show that utilities
\0.5 were overpredicted, while utilities .0.75 were slightly
underpredicted. This pattern remained, even in the three-
part model and was similar to what was observed for the
other regression types. The range of predicted values esti-
mated by the three-part model was 0.44 to 0.95 while the
observed range was 0.1 to 1 and the range predicted by the
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OLS model was 0.44 to 0.96. Table A2 in the appendix
shows the corresponding results for the UK value set.

Table 4 presents the regression coefficients for the
best-fitting OLS model 7. A plot of observed versus pre-
dicted utility scores in the validation sample (n = 1,892)
for OLS model 7 is shown in Figure 2.

Table 5 presents model performance statistics for the
sensitivity analyses, where OLS model 7 was fitted to the
larger sample including patients with an LVEF between
35% and 40%, and to the subsample of Asian patients,
respectively. Overall, model fit statistics for the first sen-
sitivity analysis were very similar to the main analysis. In
contrast, there were some differences observed in the
Asian patient subgroup analysis. Asian patients had
higher utility on average, with a difference close to being
clinically relevant (.0.06433), and model performance
statistics were less favorable than in the main analysis;
for example, the MAE was slightly larger (0.115 v. 0.1)
and the pseudo-R2 lower (0.38 v. 0.49).

For the UK value set, GEE model 7 was considered
the best-fitting model, as it had a lower MAE than the
other models. The regression coefficients for GEE model
7 using the UK value set are shown in Table A3 in the
appendix. OLS model 7 using the UK value set is shown
in Table A4 in the appendix.

Discussion

To address a common problem in HF studies, where the
disease-specific KCCQ is collected and patients’ utilities
are not, we developed mapping algorithms from the
KCCQ onto the EQ-5D-3L. Using a large contemporary
trial of HFrEF patients, we used Japanese and the UK
value sets to estimate the EQ-5D utilities using a number
of alternative statistical methods. All models performed
well in the prediction of both mean and median utility,
which is what is often the central component of cost-
utility analyses. In general, model performance and pre-
dictive power was better for the item-level models than
for the models including KCCQ domain scores as cov-
ariates, with only small differences between the different
model classes. Model performance was similar for the
UK and Japanese value sets. OLS model 7 was selected
as the best-fitting model for the Japanese and the UK
value set; while for the UK value set GEE model 7 was
similarly good.

To appropriately map disease-specific instruments to
preference-based measures, it is required that the two
instruments are overlapping with regards to the health
domains assessed.34 If the dimensions assessed by the EQ-
5D are not covered by the disease-specific instrument, then

Figure 1 Histogram of EQ-5D utility at baseline.
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the mapping may be compromised. Overall, the dimen-
sions captured by the EQ-5D and the KCCQ were suf-
ficient to enable good estimation for the EQ-5D from
the KCCQ and likely reflects that the KCCQ includes
items on physical limitations, social limitations, and
mental health (for instance the item on enjoyment of
life or ‘‘feeling discouraged or down’’) and that HF is a
dominating condition in many patients’ overall health.
The validity of our model selection process is supported
by the fact that our best-fitting model includes items
covering these three domains; three items from the
physical limitation scale and one each from the symp-
tom, social limitation, quality of life, as well as the
symptom stability item. This is congruent with previous
studies that found the EQ-5D to give most weight to
physical functioning.15,35 Moreover, our mapping mod-
els had an R2 close to 0.5, which is similar to findings
reported in previous studies mapping from disease-
specific questionnaires to the EQ-5D.36,37 Goodness-
of-fit statistics were also similar to those reported for a
published mapping algorithm from the MacNew Heart
Disease Quality of Life Questionnaire to the EQ-5D
(R2: 0.54; MAE: 0.113).18 In a review conducted by
Brazier et al., it was found that R2 statistics for such
models typically range from 0.2 to 0.5.38

We considered any of the KCCQ items as a poten-
tially relevant covariate in our mapping models, includ-
ing the symptom stability item and the self-efficacy scale.
There is some evidence that the self-efficacy domain mea-
sures a different concept than the ways in which HF
affects patients’ health, and this domain has lower inter-
nal consistency than the other KCCQ scales.20,39 The
symptom stability item differs from the other items of
the KCCQ in that it evaluates changes in symptoms over
time rather than assessing patients’ health status in a
cross-sectional way. These two domains are not part of
any of the KCCQ summary scales. However, we decided
to not exclude any of the KCCQ items a priori, and thus
included these items in our mapping models if they
improved model fit. In fact, the symptom stability item
was selected in the final best-fitting model for the Japan
value set, as it improved model fit based on the BIC and
likely reflects that if patients experience a recent improve-
ment or deterioration in their health status, that this
recent change also affects their self-rated utility scores.

Empirical EQ-5D data are known to have several
idiosyncrasies, such as the fact that there is an upper
bound at 1, which may question the assumption of
homoscedastic error terms. Also, these data are often
highly skewed and typically exhibit a pronounced ceiling
effect, with a substantial number of patients having aT
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utility value of 1. Whereas these characteristics may chal-
lenge the use of OLS regression from a conceptual point
of view, our results indicate that OLS regression models
do not perform worse than alternative regression models
that more explicitly address specific characteristics of the
EQ-5D distribution, such as two-part or Tobit models.
This was also observed in other published studies map-
ping disease-specific measures to the EQ-5D. For exam-
ple, in Young et al., the OLS model predicted EQ-5D
utility from the FACT-G questionnaire better than the
Tobit or two-part model.26 In addition, model diagnostic
plots created for the OLS models did not show issues
with homoscedasticity and nonnormally distributed error
terms, in particular for the selected item-level models.
Given that there were only minor differences between
model classes in terms of predictive ability, it was decided
to favor mapping algorithms based on the less complex
OLS model over more complex two-part and Tobit mod-
els. This can not only be justified in terms of model parsi-
mony (in that the two-part model typically has about
twice the number of regression coefficients than the OLS
model) but also regarding future use of the mapping
algorithm for other studies and by other researchers.

Figure 2 Plot of observed versus predicted EQ-5D utility at
baseline in the validation sample (n = 1,892)—Japanese value
set.

Table 5 Summary of Observed and Predicted Values and Model Performance Statics for Model 7 (Sensitivity Analyses; Japanese
Value Set)

Population Including Patients With LVEF 35% to 40% Subsample of Asian Patients

Observed OLS Model 7 Observed OLS Model 7

Mean (SD) 0.774 (0.174) 0.77 (0.118) 0.832 (0.165) 0.814 (0.098)
Median 0.741 0.776 0.785 0.822
Range 0.1–1 0.45–0.96 0.418–1 0.57–0.93
MAE — 0.1 — 0.115
RMSE — 0.125 — 0.135
Pseudo R-sq — 0.484 — 0.379
AIC — 215964 — 21803
BIC — 220844 — 22365

Mean Mean MAE Mean Mean MAE

Level 1: 20.111 to
0.25 (N = 4)

0.15 0.63 0.48

Level 2: 0.2520.5
(N = 56)

0.43 0.59 0.162 Level 2: 0.2520.5
(N = 1)

0.42 0.69 0.268

Level 3: 0.520.75
(N = 1,029)

0.64 0.7 0.08 Level 3: 0.520.75
(N = 89)

0.65 0.74 0.112

Level 4: 0.7521.0
(N = 1,072)

0.92 0.85 0.114 Level 4: 0.7521.0
(N = 166)

0.93 0.86 0.117

AIC, Akaike information criterion; BIC, Bayesian information criterion; LVEF, left ventricular ejection fraction; MAE, mean absolute error;

OLS, ordinary least squares; RMSE, root mean squared error; SD, standard deviation.
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Predicted values from the OLS can easily be obtained as
a linear combination of covariate values and regression
coefficients, whereas more complex calculations would
be needed for predictions based on the two-part and
Tobit models.

The scoring rules for the KCCQ specify that the phys-
ical limitation scale is set to missing if a patient states
that he or she was ‘‘limited for other reasons or did not
do the activity’’ for at least four out of the six items.
Similarly, the social limitation scale is set to missing if a
patient was ‘‘limited for other reasons or did not do the
activity’’ for three out of the four items in this scale. For
the actual single-item score, this response is considered
as a separate category, not as a missing value. As a con-
sequence, these patients would be excluded in a complete
case analysis using KCCQ domain scores, but not in a
complete-case analysis using single-item scores. To
ensure that all mapping models tested were fitted to the
same patient sample, we excluded patients with missing
values in the physical (0.07% of initial sample) or social
(2.7% of initial sample) limitation score. An alternative
would have been to keep them in the dataset, but to add
an additional missing value indicator in the model; this
would have allowed applying a domain score mapping
model even to patients with missing values in the target
sample. Since our best-fitting models are single-item
models (where such missing values do not occur) this
potential limitation is circumvented.

The mapping algorithm predicted low utilities poorly,
which is a common problem with mapping algorithms.
Methods to address underprediction were applied to inves-
tigate whether predictive accuracy could be improved.40,41

Despite applying the three-part model, predictions of low
utility values were similar to all other regression models.
This could possibly be a result of the low frequency of
patients with low utilities in the data. Whereas this means
that our mapping models are appropriate to predict overall
utility in patient populations, similar to the PARADIGM-
HF trial, caution is warranted when computing individual
predictions for patients in severe health states, or group
means for patient populations with substantially more
impairments. Nevertheless, for the intended application of
these techniques to estimate the cost-utility of new treat-
ments using the KCCQ, the mean values are most impor-
tant and the failure to estimate the utilities at the extremes
are less important.

The mapping algorithm used data from the
PARADIGM-HF trial in which patients were enrolled
globally. Guidelines for developing mapping algorithms

recommend that the target population where the map-
ping algorithm is to be used should be similar to the
sample in which the algorithm was developed.16

Sensitivity analysis showed that the best-fitting model in
the Asian subsample had slightly worse predictive prop-
erties than the best-fitting model in the overall popula-
tion. This could be a result of the reduced sample size as
well as the impact of ethnicity. While it is not possible to
directly assess the overall impact of ethnicity, it should
also be noted that any potential impact of ethnicity in
the data used to develop our mapping algorithm cannot
be extended to a Japanese population per se, since
extremely few Japanese patients were enrolled in the
PARADIGM-HF trial.

Strengths of this analysis include the thorough and
systematic testing of different model specifications for
the mapping algorithm and the large sample size enabling
us to develop the mapping algorithm using the derivation
sample, and the use of a validation sample to test the pre-
dictive accuracy. The best-fitting model was refitted using
10-fold cross-validation, and results suggested that the
different splits had little impact on overall predictive abil-
ity of the mapping algorithm. To our knowledge, this is
the first mapping algorithm of the KCCQ to EQ-5D-3L.
Potential weaknesses of this approach include the use of
a clinical trial with explicit inclusion and exclusion cri-
teria and validation in a broader clinical population is
warranted. In order to use the same dataset across all
models fitted, we excluded patients with missing values
on KCCQ and EQ-5D-3L or any of the relevant baseline
characteristics. It is possible that these patients are differ-
ent from the ones included in our final datasets; however,
the comparison of EQ-5D utility and KCCQ subscale
scores between the two groups did not reveal any sys-
tematic difference.

In conclusion, we developed a mapping algorithm of
KCCQ to EQ-5D-3L for HF patients that may be used
when trials have included the KCCQ and there is a need
to derive preference-based utility values. OLS model 7
with individual questions was considered the best-fitting
model for the Japanese value set, and GEE model 7 for
the UK value set. This study facilitates cost-utility analy-
sis of interventions in heart failure in Japan and the UK
and may prove useful in future studies of the cost-
effectiveness of care in patients with HFrEF.
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