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Cyclic quantum causal models
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Causal reasoning is essential to science, yet quantum theory challenges it. Quantum corre-

lations violating Bell inequalities defy satisfactory causal explanations within the framework

of classical causal models. What is more, a theory encompassing quantum systems and

gravity is expected to allow causally nonseparable processes featuring operations in indefinite

causal order, defying that events be causally ordered at all. The first challenge has been

addressed through the recent development of intrinsically quantum causal models, allowing

causal explanations of quantum processes – provided they admit a definite causal order, i.e.

have an acyclic causal structure. This work addresses causally nonseparable processes and

offers a causal perspective on them through extending quantum causal models to cyclic

causal structures. Among other applications of the approach, it is shown that all unitarily

extendible bipartite processes are causally separable and that for unitary processes, causal

nonseparability and cyclicity of their causal structure are equivalent.
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There has been growing interest in higher-order quantum
processes in which separate operations do not occur in a
definite causal order (see, e.g., refs. 1–22 for a selection).

This property, called causal nonseparability3,6,7,23 was formalized
within the process matrix framework3, which describes correla-
tions between quantum nodes of intervention without assuming a
predefined order between the nodes. Challenging conventional
notions of causality, causally nonseparable processes have been
shown to allow informational tasks that cannot be achieved with
operations used in a definite order4,5,8,24. Such processes have
been conjectured to be relevant in the context of quantum
gravity1–3,25 and closed time-like curves2,3,11,22,26,27, but some are
also known to admit realizations in standard quantum mechanics
on time-delocalized systems18. A prominent example is the
quantum SWITCH, which has been demonstrated experimen-
tally28–33.

On a separate front, there is the recent development of the
framework of quantum causal models34,35 (see, e.g., refs. 36–46 for
related, previous work) as a fully quantum version of the classical
framework of causal models47,48. It is formulated within the
formalism of process matrices, but contains the classical causal
models as special cases and generalizes many of the fundamental
concepts and core theorems of the latter. Quantum causal models
thus constitute a general framework for reasoning about quantum
systems in causal terms, allowing the rigorous study of the
empirical constraints imposed by quantum causal structures—
however, only as far as causal structures are concerned that are
expressible as directed acyclic graphs (DAGs), i.e., where there is
a well-defined causal order. The central idea behind the approach
in refs. 34,35 is that causal relations between quantum systems, as
encoded in a DAG, correspond to influence through underlying
unitary transformations. This facilitated, in particular, a justifi-
cation of the quantum Markov condition relative to a DAG that
underpins the definition of a quantum causal model—any such
model can be thought of as arising from a unitary circuit frag-
ment with a compatible causal structure by marginalizing over
latent local disturbances35.

It is a natural question whether these hitherto separate lines of
research can be merged to arrive at a causal model perspective on
processes that are not compatible with a fixed order of the
quantum nodes. While this direction of thought has been con-
sidered in earlier work (see, e.g., refs. 45,49,50), it was previously
not clear how to take the idea forward due to various conceptual
and technical obstacles—including, for example, how quantum
nodes and the quantum Markov condition should be defined,
how the notion of the autonomy of causal mechanisms should be
understood49, and how to prevent paradoxes.

This work overcomes these obstacles by generalizing the
approach to quantum causal models of refs. 34,35. A large class
of processes that are not compatible with a fixed order of the
nodes can then be understood to have a causal structure, albeit
one that includes directed cycles. This may appear counter-
intuitive, but the process matrix framework guarantees that it is
free of paradoxes. The motivation for entertaining such a
proposal is twofold. First, in light of the puzzling nature of
causally nonseparable processes and the open question of which
ones are physically possible in nature, a conceptual clarification
of causal structure is an important next step. Second, our
approach yields mathematical tools facilitating new technical
results, including a more fine-grained description of the com-
positional structure of a process that is implied by its causal
properties. One of the implications of the latter derived in this
work is a proof that all bipartite processes that admit a unitary
extension51 are causally separable. We also prove that for
unitary processes, causal nonseparability and cyclicity of their
causal structure are equivalent.

Results
The process formalism, causal order and signalling. Let us start
by setting out some necessary background and essential concepts.
In quantum theory, a system A is associated with a complex
Hilbert space HA, and its state is a density operator ρA 2 LðHAÞ,
where LðHAÞ is the space of linear operators over HA. The most
general evolution of a system, assuming that it is initially
uncorrelated with its environment, is given by a completely
positive trace-preserving (CPTP) map E : LðHAÞ ! LðHBÞ,
where this notation allows the output system to be different from
the input system. The most general operation that an agent can
perform from an input system A to an output system B has a
classical outcome k and specifies the transformation from A to B
conditioned on each value of k being obtained. Mathematically,
the operation corresponds to a quantum instrument, which is a
collection of completely positive (CP) maps fEk : LðHAÞ !
LðHBÞg, such that E ¼PkEk is a trace-preserving CP map.

It is convenient to represent CP maps with operators, via a
variant of the Choi-Jamiołkowski (CJ) isomorphism52,53, which
to a given CP map E : LðHAÞ ! LðHBÞ associates the CJ
operator ρEBjA :¼Pi;j Eð ij iA jh jÞ � ij iA� jh j, where ij iA

� �
is an

orthonormal basis of HA, and ij iA�
� �

the corresponding dual
basis. The CJ operator for a CPTP map E satisfies TrB½ρEBjA� ¼
1A� . This variant of the CJ isomorphism is used in refs. 34,35, and
has the advantage that the CJ operator is both positive semi-
definite and independent of the basis used in its definition.

The idea behind the process formalism3 is that there is a fixed
set of locations Ai, i= 1,⋯, n, which in this work we call
quantum nodes, at each of which an agent can perform an
operation on a quantum system. A quantum node Ai is associated
with two Hilbert spaces, an input Hilbert space HAin

i
and an

output Hilbert space HAout
i

(both here assumed finite-dimen-
sional). The input Hilbert space carries the state of the input
system just before the operation by the agent, and the output
Hilbert space carries the state of the output system just after the
operation. The operation itself corresponds to a quantum
instrument fEkA

A : LðHAinÞ ! LðHAoutÞg. Conceptually, a quan-
tum node is sometimes thought of as representing a small,
localized laboratory in some region of spacetime, but may also be
conceived more abstractly, for example as occupying a particular
position in between the gates of a quantum circuit.

The aim of the process formalism is to describe the correlations
between the outcomes of the operations that are performed at the
separate quantum nodes. Given a set of instruments at the
quantum nodes A1, ..., An, the joint probability for their outcomes
is given by

PðkA1
; ¼ ; kAn

Þ ¼ Tr σA1:::An

O
i

τ
kAi
Ai

 !" #
; ð1Þ

where τkAA :¼ ρE
kA

AoutjAin

� �T
, and σA1:::An

2 LðNiHAin
i
�H�

Aout
i
Þ is

called the process operator, and which we will also sometimes
refer to more simply as the process.

A process operator σA1:::An
, which up to a different convention

of the CJ isomorphism is the same as a process matrix3, obeys
constraints, designed to ensure that valid joint probabilities are
returned by Eq. (1) for any possible choices of the operations
performed by the agents, and that the same holds even when the
agents have pre-shared entanglement. These constraints are3:
σA1:::An

≥ 0 and Tr½σA1:::An
ðτA1

� � � � � τAn
Þ� ¼ 1, for any set of

CPTP maps fτAi
g at the n nodes. Simple-to-check necessary and

sufficient conditions for an operator in LðNiHAin
i
�H�

Aout
i
Þ to be

a valid process operator can be found in refs. 6,7. To avoid clutter
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when tracing over a node A we will write TrA½ � :¼
TrAinðAoutÞ� ½ �.

A question of central interest in the study of the process
formalism has been whether a given process operator is
compatible with the existence of a definite causal order of its
nodes. A closely related question concerns how this relates to the
possibilities for signalling between different nodes. Let us first
make these notions more precise.

Consider the sequence of quantum operations represented in
the form of a circuit in Fig. 1.

The gate in the circuit corresponds to an arbitrary CPTP map
E, and the initial preparation to an arbitrary bipartite state ρ.
Quantum nodes A and B correspond to positions in the circuit in
between gates, at which an agent can choose to perform a
quantum instrument on the system at that position. The nodes
are represented as broken wires, with it understood that the
agent’s instrument mediates the two pieces. The lower piece of the
wire corresponds to the input Hilbert space of the quantum node
and the upper piece of the wire to the output Hilbert space. Any
circuit with some wires broken defines a partial order over the
quantum nodes, with a node N preceding node N 0 in the partial
order if and only if there is a path from N to N 0 along the (broken
or unbroken) wires of the circuit. We call this partial order the
causal order. In the example, node A precedes node B in the
causal order. The circuit defines joint probabilities for the
outcomes of any quantum instruments that are performed at
nodes A and B, hence defines a process operator over the nodes A
and B.

An important concept is now that of causal separability, first
introduced in ref. 3 for the bipartite case. A bipartite process σAB
is called causally separable iff it can be seen to arise as a convex
mixture of processes with a fixed causal order between A and B,
i.e., σAB ¼ p σA 6�B

AB þ ð1� pÞ σB 6�A
AB , with 0 ≤ p ≤ 1, where σB 6�A

AB is a
process that can arise from a sequence of operations of the form
of Fig. 1, and σA 6�B

AB is a process that can arise from a different
sequence of operations, of the same form except that B precedes
A. Otherwise σAB is causally nonseparable. The idea is that a
causally separable process can be thought to describe a situation
in which a well-defined, though possibly unknown, causal order
of the nodes exists, whereas a causally nonseparable process is not
compatible with such an interpretation.

The connection with signalling between the nodes is as follows.
Given a bipartite process σAB, we say that there is no signalling
from quantum node B to quantum node A if and only if for all
quantum instruments τkAA at A and all deterministic quantum

instruments τB at B, the probability distribution PðkAÞ ¼
Tr½σABðτkAA � τBÞ� is independent of τB. This condition is
equivalent to σAB ¼ σABin � 1ðBoutÞ�3. The connection between
signalling and causal order is that in any sequence of operations
of the form of Fig. 1, there is no signalling from B to A. Moreover,
every bipartite process operator with no-signalling from B to A is

known to have a realisation as the process operator arising from a
circuit of the form of Fig. 154.

The formal definition of the multipartite generalization of
causal separability is more intricate than in the bipartite case:
beyond just convex mixtures of fixed causal orders, the definition
allows for a dynamical causal order in which the causal order at
later quantum nodes can depend on the events taking place at
earlier quantum nodes. This definition is postponed to a later
section dedicated to causal separability. See also refs. 7,23 for a
detailed discussion. A discussion of signalling in a multipartite
process is also more involved, since whether a subset of quantum
nodes can signal to another subset of quantum nodes depends on
the interventions performed at other quantum nodes not in the
two subsets.

Causal influence vs signalling. This work is concerned with a
notion of causal structure, which is distinct from the causal order
defined by a circuit, and which also needs to be carefully dis-
tinguished from the possibilities for signalling afforded by a
general process operator. In order to motivate the idea, consider a
circuit of the form of Fig. 1, with each wire representing a qubit,
with ρ ¼ ρAin � 0j iA0 0h j, and with the channel E being a quantum
Controlled-NOT gate with the control on the output wire of the A
node. This circuit defines a process operator σ0AB on the A and B
nodes, which may easily be computed, and it can be verified that
σ0AB allows signalling from A to B. Similarly, in the same circuit
except with ρ ¼ ρAin � 1j iA0 1h j, the process operator σ1AB is easily
computed, and it can be verified that signalling is possible from A
to B.

Now consider the same experiment, except with the prepara-
tion of the A0 system given by flipping a fair coin, and preparing
0j iA0 0h j on heads and 1j iA0 1h j on tails. If the outcome of the coin
flip is unknown, then the state of the A0 system is the mixed state
1=2, and the corresponding process operator over A and B is

σmix
AB ¼ 1ðBoutÞ� � ð1=2Þ1Bin � 1ðAoutÞ� � ρAin : ð2Þ

In the process σmix
AB , there is no signalling from A to B. Indeed

the very same process operator could arise from a situation in
which A and B are independent and spacelike separated.

In the experiment with the coin flip, it is clear that A has a
causal influence on B, since agents who know the value of the
coin flip would be able to send signals from A to B. From the
perspective of agents who do not know the value of the coin flip,
however, signalling is washed out by the randomness of the
unobserved system. A similar phenomenon is well understood in
the literature on classical causal modelling. In a canonical
example, A, B, and C are all classical bits, with A and C causes of
B such that B is equal to the parity of A and C. If C is inaccessible,
or hidden, and satisfies P(C= 0)= P(C= 1)= 1/2, then B is
randomly distributed regardless of the value of A. Hence as long
as C remains hidden, signals cannot be sent from A to B. (See
Section 2.4 of ref. 35.)

The conclusion that should be drawn from the example with
process σmix

AB is that causal influence between quantum nodes should
not be defined in terms of the possibilities for signalling afforded by
a process operator, at least not if there is a chance that unobserved
systems (A0 in the example) are interacting with the systems under
study (A and B in the example). Given only a process operator σAB
and no other data, although signalling is sufficient for causal
influence, it can happen that A has a causal influence upon B even
though there is no signalling from A to B in σAB.

Quantum causal models. The framework of quantum causal
models, introduced in refs. 34,35, is based on the idea that in an
example like that just above, statements about causal influence

Fig. 1 Simple circuit with two quantum nodes A and B. For any state ρ and
any CPTP map E this defines a process operator over A and B.
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can be defined in terms of signalling, but only once all relevant
systems are included in the description. At this point, the
description is of a closed system, and at least in standard quan-
tum theory, evolution of a closed system is unitary. Hence
quantum causal models define causal influence in terms of uni-
tary transformations. Reference 35 shows that in the case of
unitary circuits with broken wires representing quantum nodes,
the causal relations between the quantum nodes can be sum-
marized in the form of a DAG, where the DAG imposes con-
straints on the process operator over the quantum nodes.

These leaves open the question of what the pattern of causal
influence might be in causally nonseparable processes described
in the literature. Can it even be well defined or must one conclude
that these processes are not amenable to causal explanation at all,
or that all that can be discussed is signalling between the nodes?
Our idea is that such processes can be understood in causal terms,
if the framework of quantum causal modelling is extended to
allow causal cycles. We will show that the resulting formalism can
be used successfully to describe some of the much-studied
instances of causally nonseparable processes from the literature.
Later, we show the utility of this approach by using it to settle
previously open questions concerning causally nonseparable
processes.

The following definition generalizes that of refs. 34,35, by
allowing cyclic graphs (along with a more minor generalization,
which is that the input and output Hilbert spaces of a quantum
node can here have different dimensions).

Definition 1 (Quantum causal model (QCM)—generalized) A
QCM is given by:

(1) a causal structure represented by a directed graph G with
vertices corresponding to quantum nodes A1, . . . , An,

(2) for each Ai, a quantum channel
ρAijPaðAiÞ 2 LðHAin

i
�H�

PaðAiÞoutÞ, where Pa(Ai) denotes the

set of parents of Ai according to G, such that
½ρAijPaðAiÞ ; ρAjjPaðAjÞ� ¼ 0 for all i, j and such that σA1:::An

¼Q
iρAijPaðAiÞ is a process operator over the quantum nodes

A1, . . . , An.

When writing products of the form
Q

iρAijPaðAiÞ, it is understood
implicitly that each factor is padded with an identity operator in
tensor product for all other spaces. A QCM is called cyclic iff its
causal structure contains directed cycles, and acyclic otherwise.

It is useful to define a term to express the fact that a given
process operator σ has the correct form with respect to a given
causal structure to define a QCM.

Definition 2 (Quantum Markov condition—generalized) A
process σA1:::An

is called Markov for a directed graph G with
quantum nodes A1,…,An as its vertices iff it admits a
factorization into pairwise commuting channels of the form
σA1:::An

¼Qn
i¼1 ρAijPaðAiÞ.

Note that the Markov condition of classical causal models47,48

is a special case of Definition 2, obtained when the graph is
acyclic and σA1:::An

is diagonal in a product basis, and encodes a

classical probability distribution35. The following first sets out
some further terminology and basic properties of Definition 1 and
then turns to motivating and explaining Definition 1, making the
link with unitary transformations, and showing why it is that for a
particular directed graph, condition (2) should hold.

First, observe that not every cyclic graph supports a QCM in an
interesting way. Consider, for example, the two-node cyclic graph
of Fig. 2a. A QCM with such a causal structure would come with
a process operator

σAB ¼ ρAjB ρBjA : ð3Þ
Here and throughout, channels between the nodes on which a
process is defined are written such that anything appearing to the
right of the bar refers to the output Hilbert space of the node, and
anything appearing to the left of the bar refers to the input Hilbert
space of the node. By our conventions ρA∣BρB∣A= ρA∣B� ρB∣A.
However, this is not a valid process operator unless either
ρAjB ¼ ρAin � 1ðBoutÞ� , or ρBjA ¼ ρBin � 1ðAoutÞ� . In other words, at
least one of the channels ρA∣B, ρB∣A carries no information, but
simply ignores its input and prepares a fixed state on the output.
Intuitively speaking, this is because there would otherwise be
logical paradoxes for certain choices of interventions at A and B.

More generally, we will say that a QCM is faithful iff each of
the channels ρAijPaðAiÞ is signalling from Aout

j to Ain
i for every Aj∈

Pa(Ai), i.e.,

ρAijPaðAiÞ≠
1
dj
Tr Aout

jð Þ�ðρAijPaðAiÞÞ � 1 Aout
jð Þ� ; ð4Þ

where dj is the dimension of Aout
j . Our claim concerning the

causal structure of Fig. 2a can be summarized as:
Proposition 1 There is no faithful cyclic quantum causal

model with two nodes.
Proof See Methods.
Now consider the cyclic graph G0 in Fig. 2b A QCM with G0 as

its causal structure comes with the data

σABC ¼ ρAjBC ρBjAC ρC : ð5Þ
Equation (5), compared to Eq. (3), has the key difference that the
commuting operators have non-trivial action on ðCoutÞ�. As a
result, it turns out that faithful cyclic QCMs of this form do exist.
An example is described below.

Note that, given a cyclic graph such as that in Fig. 2b, even
when a faithful QCM exists it is not in general the case that any
set of commuting channels ρAijPaðAiÞ defines a process operator.
(See Methods for an explicit demonstration of this fact.) The
constraint in the definition of a QCM that σA1:::An

¼QiρAijPaðAiÞ
is a valid process operator is essential, and is what guarantees that
grandfather-type paradoxes do not arise3. This is in contrast to
the acyclic case, where, given an acyclic causal structure, it is not
hard to argue that any product of commuting channels of the
form

Q
iρAijPaðAiÞ is a valid process operator35, hence in particular

a faithful QCM with that causal structure can always be found.

Unitarity and causal structure. The definition of a QCM above is
predicated on the idea that causal structure should be represented
by a directed graph. This idea, however, along with the stipulation
that the accompanying process is Markov for the graph, was
presented without much justification or further comment. Why is
causal structure represented by a directed graph, for example, as
opposed to a different mathematical object, such as a partial
order, or a preorder, or some kind of hypergraph? This section
considers a subclass of processes—unitary processes, defined
momentarily—and shows that a unitary process is associated with
a causal structure, which can indeed be represented with a

Fig. 2 Examples of cyclic directed graphs. a A cyclic directed graph that
does not admit a faithful quantum causal model; b A cyclic directed graph
that admits a faithful quantum causal model.
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directed graph, and that the unitary process is Markov for that
graph. In other words, a unitary process, along with its causal
structure, defines a QCM.

In order to define a unitary process, observe that a process
operator σA1:::An

has the mathematical form of the CJ operator for
a channel P : LðNiHAout

i
Þ ! LðNiHAin

i
Þ3. Where it is conve-

nient to emphasise this form, we will sometimes write
σA1:::An

¼ ρPA1:::AnjA1:::An
, where it is understood implicitly that an

Ai to the right of the bar stands for Aout
i , while an Ai to the left of

the bar stands for Ain
i . A unitary process is a process (where some

of the input or output spaces may be trivial, i.e., 1-dimensional)
such that the channel P is a unitary channel.

The first step is to define a notion of causal structure that
pertains to the inputs and outputs of a unitary channel.

Definition 3 (Causal structure of a unitary channel) Given a
unitary channel ρUCDjAB, write A↛D (A does not influence D), iff

TrC½ρUCDjAB� ¼ ρMDjB � 1A� for some marginal channel M. If A can
influence D, i.e. ¬(A↛D), A is a direct cause of D. For any
unitary channel ρUC1:::Cl jB1:::Bk

with k input and l output subsystems
its causal structure is then the set of causal relations between
input and output subsystems and can be represented by a DAG
with vertices B1, ..., Bk and C1, ..., Cl and an arrow Bj→ Ci

whenever Bj is a direct cause of Ci.
This definition (which, given the correspondence between

unitary maps U and unitary channels Uð Þ ¼ Uð ÞUy, we let refer
to either) lifts naturally to the case of a unitary process, in such a
way that causal relationships are defined between the nodes of the
process, rather than between inputs and outputs of a channel.

Definition 4 (Causal structure of a unitary process) Given a
unitary process σA1:::An

¼ ρUA1:::A1jA1:::An
, write Aj↛ Ai (node Aj

does not influence node Ai), iff Aout
j does not influence Ain

i in U . If
node Aj can influence node Ai, then Aj is a direct cause of Ai. The
causal structure of the unitary process is the set of all causal
relations between its quantum nodes, and is representable as the
directed graph with vertices A1, ..., An and an arrow Aj→ Ai,
whenever Aj is a direct cause of Ai.

The fact that any unitary process is Markov for its causal
structure, hence defines a QCM, is then immediate from the
following theorem of refs. 34,35.

Theorem 1 (References 34,35) Given a unitary channel
ρUC1:::Cl jB1:::Bk

, let fPaðCiÞgli¼1 be the parental sets as defined by its
causal structure. Then the CJ operator factorizes as
ρUC1:::Cl jB1:::Bk

¼Ql
i¼1 ρCijPaðCiÞ, where the marginal channels com-

mute pairwise, ½ρCijPaðCiÞ ; ρCjjPaðCjÞ� ¼ 0 for all i, j.
The case of non-unitary processes, and their relationship to

causal structure is presented below. First, we describe a well-
known example of a causally nonseparable process—the quantum
SWITCH2—and show explicitly that it defines a unitary process
operator with cyclic causal structure, hence a cyclic QCM.

Example: the quantum SWITCH. The quantum SWITCH2 was
the first example described of a causally non-separable process.
The SWITCH is standardly defined as a higher-order map2,54,55

that takes as input two CP maps FA : LðHAinÞ ! LðHAoutÞ and
GB : LðHBinÞ ! LðHBoutÞ, where dAin ¼ dAout ¼ dBin ¼ dBout ¼ d,
and gives as an output a CP map
E : LðHQ �HSÞ ! LðHQ0 � HS0 Þ, where dQ ¼ dQ0 ¼ 2 and
dS ¼ dS0 ¼ d. Here, HQ and HQ0 are interpreted as the Hilbert
spaces of a control qubit at some initial and some final time,
respectively, and HS and HS0 as the Hilbert spaces of some target
system at the same two times. Intuitively, the effect of the
quantum SWITCH is to transform the target system from the

initial to the final time by the sequential application of the CP
maps FA and GB, where the order in which the two CP maps are
applied is conditioned coherently on the logical value of the
control qubit.

To formulate this precisely, we will describe the quantum
SWITCH directly as a 4-node process (see Fig. 3), which involves
the nodes A and B, where FA and GB are inserted, a node P with
Pout=QS, where the control qubit and target system at the initial
time are prepared in some state, and node F with Fin ¼ Q0S0,
where the control qubit and the system at the final time are
subject to some measurement. The SWITCH is then a unitary
four-partite process with process operator σSWITCH

ABPF ¼
ρUABFjABP ¼ Wj i Wh j, where

Wj i :¼ 0j iQ� 0j iQ0 ϕþj iS�Ain ϕþj i AoutÞ�ð Bin ϕ
þj iðBoutÞ�S0

þ 1j iQ� 1j iQ0 ϕþj iS�Bin ϕþj iðBoutÞ�Ain ϕþj iðAoutÞ�S0 ;
ð6Þ

with ϕþj iXY :¼Pi ij iX ij iY and the appearance of the dual spaces
due to our convention for the CJ isomorphism. It is straightfor-
ward to verify that the causal structure of σSWITCH

ABPF is the cyclic
directed graph in Fig. 4. From Theorem 1, it follows that

σSWITCH
ABPF ¼ ρFjABP ρAjBP ρBjAP ρP ; ð7Þ

where we have formally added ρP to make the Markovianity of
σSWITCH
ABPF for GSWITCH explicit, but here ρP is just the number 1,

since Pin is trivial. Hence, the graph GSWITCH together with
ρF∣ABP, ρA∣BP, ρB∣AP, ρP, form a faithful cyclic QCM.

Fig. 3 A unitary process with nodes A and B, root node P (in the global
past) and leaf node F (in the global future). Here with Pout=QS and
F in ¼ Q0S0 ; the quantum SWITCH is an example of such a process.

Fig. 4 The causal structure GSWITCH of the quantum SWITCH. Any unitary
process of the form as in Fig. 3 has a causal structure that is a subgraph of
GSWITCH.
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Compatibility vs Markovianity. This section extends the dis-
cussion of causal structure to non-unitary processes. Briefly, in a
QCM involving a non-unitary process σ, the arrows of the graph
are taken to represent facts about the causal structure of some
underlying unitary process, with the property that σ is recovered
from the unitary process when marginalizing over auxiliary sys-
tems. The auxiliary systems take the form of a final system F,
along with uncorrelated local disturbances, where the latter are
inputs to the unitary process in a direct product state, with the
property that each of them is a direct cause of at most one of the
nodes of σ. As we shall show, it then follows that the process σ is
Markov for the graph.

The following was introduced in ref. 51 (there under the name
purifiability), and will help make these ideas precise.

Definition 5 (Unitary extendibility) A process σA1:::An
is called

unitarily extendible iff there exists a unitary process σA1:::AnPF
¼

ρUA1:::AnFjA1:::AnP
on the quantum nodes A1,…, An, plus additional

root node P and leaf node F, such that σA1:::An
¼

TrFP½σA1:::AnPF
τP� for some state τP 2 LðH�

PoutÞ. The process
σA1:::AnPF

is called a unitary extension of σA1:::An
.

It was found in ref. 51 that not all process operators are
unitarily extendible. The reason for this is that, although for any
process σA1:::An

¼ ρPA1:::AnjA1:::An
, corresponding to a channel P, the

channel P admits a dilation to a unitary channel, this unitary
channel does not necessarily correspond to a valid process itself.
Process operators that are not unitarily extendible are those for
which no dilation exists such that the unitary channel
corresponds to a valid process.

Now suppose that a process σA1:::An
does have a unitary

extension σA1:::AnPF
, involving the additional root node P. As per

Def. 4, the unitary extension σA1:::AnPF
has a causal structure given

by some directed graph G with nodes A1, ..., An, P, F. Let G0 be the
subgraph with nodes A1, ... ,An, along with all arrows that connect
only these nodes in G. In general, in the graph G, the node P will
have arrows to several of the Ai, meaning that P is a common
cause for these nodes. There will then, in general, be correlations
in σ that are explained by the common cause P. This means that
the graph G0, which omits P, is at best an incomplete causal
explanation for the correlations in σ, since it does not explain
those correlations due to P. In this case, there is no reason why σ
should be Markov for the graph G0.

Consider now a unitary extension of σA1:::An
with the feature

that the node P can be factored into uncorrelated local
disturbances λi, such that each λi is a direct cause of at most
one of the nodes Ai. In this case, the graph G0, obtained by
omitting all of the λi and leaf node F, can be seen as a causal
explanation for correlations described by the process σA1:::An

,
which omits only local disturbances and the final effect F, and
which does not omit common causes. In this case, we will say that
σ is compatible with the graph G0. In fact, it is more useful to
define this term more broadly: we will say that σ is compatible
with any graph, with nodes A1, ..., An, that contains G0 as a
subgraph. The following definition makes this precise, general-
izing that of ref. 35 to the cyclic case.

Definition 6 (Compatibility with a directed graph) A process
σA1:::An

is compatible with a directed graph G with nodes A1, ...,
An, iff σA1:::An

is extendible to a unitary process σA1:::Anλ1:::λnF
, with

an extra root node λi for i= 1, ..., n and an extra leaf node F, such
that:

(1) there exists a product state τλ1 � � � � � τλn with τλi 2 LðH�
λouti

Þ
such that σA1:::An

¼ Trλ1:::λnF ½ σA1:::Anλ1:::λnF
ðτλ1 � � � � � τλnÞ�,

(2) σA1:::Anλ1:::λnF
satisfies the following no-influence conditions

(with Pa(Ai) referring to G): fAj↛AigAj=2PaðAiÞ
; fλj↛Aigj≠i.

The following then justifies the stipulation, as a part of the
definition of a QCM, that the process accompanying a graph is
Markov for the graph.

Theorem 2 If a process σA1:::An
is compatible with the

directed graph G, then it is also Markov for G.
Proof Similarly to the acyclic case in ref. 35, the theorem follows

essentially from Theorem 1: the unitary extension, asserted to
exist by virtue of the assumed compatibility with G, has
to factorize into pairwise commuting operators of the
form σA1:::Anλ1:::λnF

¼ ρFjA1:::Anλ1:::λn
ðQiρAijPaðAiÞλiÞ. This yields

σA1���An
¼QiTrλi ½ ρAijPaðAiÞλi τλi �, where the factors ρAijPaðAiÞ :¼

Trλi ½ ρAijPaðAiÞλi τλi � are pairwise commuting operators.

Reference 35 also establishes a converse to this result, for the case
that G is acyclic. For a general directed graph G, however, the same
proof does not suffice since, even though a dilation to a unitary
channel with the required causal constraints can always be found35,
it is not immediate whether this channel can be guaranteed to
define a valid process. We pose this as a hypothesis:

Hypothesis 1 If a process σA1:::An
is Markov for a directed

graph G, then it is compatible with G.
The hypothesis is satisfied by all examples that we have

investigated, but we do not have a proof that it is true in general.
Some consequences of the validity or otherwise of this hypothesis
are discussed in the “Conclusions” section.

Example: a process that violates a causal inequality. While the
quantum SWITCH is causally nonseparable, the correlations that
can be established between operations at the nodes of the
quantum SWITCH can always be obtained by a causally separable
process with sufficiently large input and output dimensions at
each node6,7. There are, however, causally nonseparable processes
that can produce correlations violating causal
inequalities3,7,9,12,56–60, which are incompatible with the existence
of a definite order between the nodes irrespectively of the types of
systems or operations performed at those nodes4,7,61. In the lit-
erature such processes are called noncausal7.

An example of a tripartite noncausal process is the one which
was found by Araújo and Feix (AF) and then published and
further studied by Baumeler and Wolf in refs. 12,62. It is
remarkable in that the process is both classical and deterministic
(see below for further discussion of classical processes). Any
classical process can be viewed as a quantum process, diagonal
with respect to a product basis. The AF process, viewed as a
quantum process on nodes A, B and C, each with two-
dimensional input and output Hilbert spaces, is described by
the process operator

σAFABC ¼ ρAjBC ρBjCA ρCjAB; ð8Þ

where

ρAjBC ¼
X

b;c¼0;1

:b ^ cj ih:b ^ cjAin � jb; ci b; ch j BoutCoutð Þ� ; ð9Þ

Fig. 5 The causal structure of the AF process. The fully connected directed
graph with three nodes A, B and C.
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ρBjCA ¼
X

c;a¼0;1

: c ^ aj ih: c ^ ajBin � jc; ai c; ah jðCoutAoutÞ� ; ð10Þ

ρCjAB ¼
X

a;b¼0;1

: a ^ bj ih: a ^ bjCin � ja; bi a; bh jðAoutBoutÞ� : ð11Þ

As is explicit in this description, the AF process together with
the causal structure in Fig. 5 defines a faithful cyclic QCM.

It was shown by Baumeler and Wolf (BW)62 that this process is
unitarily extendible (also see refs. 27,51) with a unitary extension
given by

σBWABCFP ¼ ρUABCFjABCP ; ð12Þ
where the output space of the root node P is a tensor product of
three qubits HPout ¼ HλA

�HλB
�HλC

and the unitary U is
defined by the following bijection of orthonormal bases:

U : a; b; cj iAoutBoutCout � l;m; nj iλAλBλC
7! l � ð:b ^ cÞ;m� ð:c ^ aÞ; n� ð:a ^ bÞj iAinBinCin

� a; b; cj iFin :

ð13Þ

The original AF process is recovered for marginalization over F
and feeding in the product state 0; 0; 0j i for λA, λB and λC.
Formally letting the latter three define distinct root nodes λA, λB
and λC, it is not too hard to show that this BW unitary extension
also satisfies the corresponding causal constraints of Definition 13
to establish σAFABC to be compatible with the graph of Fig. 5– in
keeping with Hypothesis 1.

Cyclicity and extended circuit diagrams. An essential feature of
the Markov condition in Definition 2 is the pairwise commuta-
tion relation of the operators of the form ρAijPaðAiÞ, where the
parental sets in general overlap. That two commuting operators
act non-trivially on the same Hilbert space has consequences for
the algebraic structure of the operators and leads to an intimate
link between causal and compositional structure.

In order to exemplify the fruitfulness of studying this link the
following will revisit the two examples from earlier.

The quantum SWITCH can be considered as a unitary process
over 4 nodes, given by σSWITCH

ABPF ¼ ρUABFjABP ¼ Wj i Wh j, where
Wj i is defined in Eq. (6). The unitary channel U corresponds to a
unitary map U : HAout �HPout �HBout ! HAin �HFin �HBin ,
which is depicted in Fig. 6 together with its causal structure
shown in blue. Observe in particular that in U, Aout does not
influence Ain, and similarly Bout does not influence Bin, as must
be the case for a well-defined process18.

Reference 63 shows that any unitary map U with three in- and
output systems, and the causal constraints of Fig. 6, has a
decomposition of the following form:

U ¼ 1Bin � T � 1Ainð Þ
M
i2I

Vi �Wi

 !
1Aout � S� 1Boutð Þ;

ð14Þ

where S and T are unitaries, and fVigi2I and fWigi2I families of
unitaries of the form

S : HPout !
M
i2I

HPL
i
�HPR

i
; ð15Þ

Vi : HAout �HPL
i
! HBin �HFL

i
; ð16Þ

Wi : HPR
i
�HBout ! HFR

i
�HAin ; ð17Þ

T :
M
i2I

HFL
i
�HFRi

! HFin : ð18Þ

Such a compositional structure with direct sums over tensor
products goes beyond what is expressible with ordinary circuit
diagrams. Reference 63 therefore introduced extended circuit
diagrams to give a graphical representation of such decomposi-
tions. Figure 7 arises from that extended circuit diagram
representation of Eq. (14) by bending the wires corresponding
to Ain and Bin down to re-identify the quantum nodes A and B—
thereby filling the black box of the quantum SWITCH from
Fig. 3. For details on this diagrammatic language, we refer the
reader to ref. 63, but the essential idea is that individual wires with
indices on them, such as those between the circles S and Vi and
Wi, respectively, represent the families of Hilbert spaces fHPL

i
g
i2I

and fHPRi
g
i2I , while the two parallel wires together representL

i2IHPL
i
�HPR

i
. An implicit summation over orthogonal sub-

spaces indexed by i allows the representation of the intermediate
unitary map ⨁iVi⊗Wi from Eq. (14).

It is easy to see what this decomposition is concretely in the
case of the quantum SWITCH: the index i takes two values, 0 and
1, corresponding to the logical values of the control qubit, i.e.,
HP ¼ HQ �HS ffi ðC�HSÞ � ðHS �CÞ and the unitaries Vi

and Wi are either the SWAP transformation on the respective
systems or the identity depending on i. We see that even though
the causal structure of the full process is cyclic, the process splits
into a direct sum of processes in each of which causal influence
and the flow of information follow acyclic paths.

This decomposition of the quantum SWITCH applies more
generally: seeing as any unitary process of the type depicted in
Fig. 3, with a root node P, a leaf node F, and two nodes A and B in
between, satisfies Aout↛ Ain and Bout↛ Bin, it follows that any
such unitary process has a decomposition as in Fig. 7. Note that
the below will furthermore establish (as a direct consequence of

Fig. 6 Unitary map U that defines the quantum SWITCH. The causal
structure of U is indicated in blue.

Fig. 7 Extended circuit diagram decomposition of the quantum SWITCH.
Additionally indicated in grey are the labels of the intermediate families of
Hilbert spaces.
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the proof of Theorem 3) that for each i the summand Vi⊗Wi of
that corresponding decomposition has to have an acyclic causal
structure, that is, any unitary process with nodes A, B, P, F where
P is a root node and F a leaf node, is a direct sum of unitary
processes in which causal influences flow along acyclic paths.

The second example concerns the tripartite AF process and its
BW unitary extension ρUABCFjABCP (see Eqs. (12)–(13)).

The root node P has as output space
HPout ¼ HλA

�HλB
�HλC

, where each λX influences only X and
F for X=A, B, C. The associated unitary map U and its causal
structure are depicted in Fig. 8.

The results from ref. 63 allow again the statement of an
extended circuit decomposition of U, which is implied by its
causal structure and which makes the pathways of causal
influence through U graphically evident (the proof is completely
analogous to that of Theorem 7 in ref. 63).

This decomposition of U is depicted in Fig. 9 and reads:

U ¼ 1CinBinAin �Wð Þ
M
i;j;k

Pij � Qik � Rjk

0
@

1
A

1λC
� S� 1λB

� T � V � 1λA

� �
;

ð19Þ

for (families of) unitary maps

S : HAout !
M
i

HXL
i
�HXR

i
; ð20Þ

T : HBout !
M
j

HYL
j
�HYR

j
; ð21Þ

V : HCout !
M
k

HZL
k
�HZR

k
; ð22Þ

W :
M
i;j;k

H
Gð1Þ
ij
�H

Gð2Þ
ik
�H

Gð3Þ
jk

! HFin ; ð23Þ

Pij : HλC
�HXL

i
�HYL

j
! HCin �H

Gð1Þ
ij
; ð24Þ

Qik : HXR
i
�HλB

�HZL
k
! HBin �H

Gð2Þ
ik
; ð25Þ

Rjk : HYR
j
�HZR

k
�HλA

! HAin �H
Gð3Þ
jk
: ð26Þ

By appropriately bending the wires that correspond to Ain, Bin

and Cin to re-identify the nodes A, B and C (and swapping some
wires for better readability) one obtains Fig. 10, revealing a fine-
grained compositional structure of the BW unitary extension.

Note that the stated decomposition is general in the sense that
a decomposition of the form as in Fig. 9 exists for any unitary
with a causal structure as in Fig. 8. However, in the concrete case
of the BW unitary extension one can easily see what the
components in Eq. (19) correspond to through a comparison with
Eq. (13). All three indices i, j and k are binary and, via the

unitaries S, T and V can be seen to correspond to one-
dimensional subspaces of Aout, Bout and Cout. Hence, each
indexed space, i.e., each element of a family of Hilbert spaces
associated with an indexed wire, is a trivial Hilbert space. For any
fixed value (i, j, k), the unitary Pij⊗Qik⊗ Rjk is of the type
HλC

�HλB
�HλA

! HCin �HBin �HAin , where all spaces are
qubits (suppressing all trivial spaces). The unitary Pij : HλC

!
HCin maps λCj i 7! λC � ð: i ^ jÞj i, i.e., Pij is the identity or the
NOT gate depending on the values of i and j. The unitaries Qik

and Rjk can similarly be identified through comparison with Eq.
(13).

One thus finds that the BW unitary extension is a direct sum
over unitary processes each of which has an acyclic causal
structure. Furthermore, it is natural to wonder whether knowing
a decomposition of the form as in Fig. 8 might suggest a way in
which the process could be implemented—a process, which we
recall is one that violates a causal inequality.

How about other unitary processes not of the two presented
types? Reference 63 provides extended circuit decompositions

Fig. 8 The unitary map U from Eq. (13) that defines the BW unitary
extension of the AF process. Also depicted is its causal structure, where
for better visibility, rather than direct cause relations, the no-influence
conditions are shown as red dashed arrows.

Fig. 9 Causally faithful extended circuit decomposition of the unitary U
from Fig. 8. (Up to some swaps for better readability).

Fig. 10 Extended circuit diagram decomposition of the BW unitary
extension of the AF process. Compared to Fig. 9 the wires for Ain, Bin and
Cin are bent around (as well as some swaps inserted for better visibility).
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for many classes of unitary transformations, where the decom-
positions are causally faithful, meaning that if A is an input to the
unitary U and B an output, then there is a path from A to B in the
extended circuit iff A can influence B through U (note this is
distinct from the notion of faithfulness of a QCM). Consider now
a unitary map U that corresponds to a unitary process, in the
sense that the output Hilbert spaces of the nodes correspond
to the inputs to U, and the input Hilbert spaces of the nodes
correspond to the outputs of U. If U has a causally faithful
extended circuit decomposition, then by appropriately bending
the wires, as in the above examples, one can always obtain a fine-
grained compositional structure of the corresponding unitary
process. Reference 63 states the hypothesis that all finite-
dimensional unitary transformations (over-specified tensor
products of input Hilbert spaces and output Hilbert spaces)
have a causally faithful extended circuit decomposition. This
would mean that all unitary processes, by bending the wires,
would admit causally faithful decompositions in a similar
manner. At the time of writing, however, the hypothesis remains
unproven.

The bipartite unitarily extendible processes. Understanding
which processes have a physical realization is a central open
question in the field of indefinite causal order18,51. While causally
nonseparable processes may have a realization in exotic scenarios
involving both quantum systems and gravity, it seems clear that
any present-day laboratory experiment admits a description in
terms of a straightforward, definite, causal ordering of suitably
defined parts of the experiment. Nevertheless, various experi-
ments have been performed that are claimed as realizations of
nonseparable processes such as the quantum SWITCH28–32,64.
This has caused some debate18,49,65.

Behind much of this debate, however, lies merely a question
of how the abstract mathematical description is assumed to
map to physical phenomena. Each of the implementations
claimed so far is of a process that involves coherent control over
the time-ordering of nodes in a similar manner to the SWITCH,
and which cannot therefore violate causal inequalities. Refer-
ence 18 shows that any such implementation can be seen as a
valid implementation of a nonseparable process, if the process
is understood as being defined over time-delocalized systems,
where the input and output Hilbert spaces of the nodes of the
process correspond to subsystems of tensor products of Hilbert
spaces of systems associated with different times. This raises the
question: which processes in general admit a laboratory
implementation, at least in terms of time-delocalized systems?
In particular, can a process violating causal inequalities be
implemented?

There was some hope that a process violating causal inequal-
ities could be implemented, because ref. 18 also shows that every
unitary extension of a bipartite process has a realization in terms
of time-delocalized systems. Hence if there were a unitarily
extendible bipartite process violating causal inequalities, then it
could be implemented, at least via time-delocalized systems. The
following theorem, however, shows that there is no such
possibility. Any bipartite unitarily extendible process is causally
separable, hence, in particular, cannot violate causal inequalities,
as conjectured in ref. 51; furthermore, all unitary extensions of
bipartite processes are variations of the quantum SWITCH,
realizable by coherent control of the times of the operations of A
and B. The argument uses the existence of a faithful extended
circuit decomposition of the form as in Eq. (14) that is implied by
the causal constraints of Fig. 6.

Theorem 3 All unitarily extendible bipartite processes are
causally separable. Given a bipartite process, if it is unitarily

extendible, then the unitary extension has a realization in terms of
coherent control of the order of the node operations.

Proof See Methods.
As one can see, e.g., from the AF process, being unitarily

extendible does not imply causal separability in the general
multipartite case. However, the decomposition from Fig. 8 of the
BW unitary extension of the AF process proved insightful with
regards to how the cyclicity of the causal structure comes from
different contributions across the direct sum. More generally,
suppose a causally faithful extended circuit decomposition of the
unitary extension of some multipartite process is known. It is
then natural to ask whether some kind of generalization of the
constraints established as part of the proof of Theorem 3 could be
derived, which in the bipartite case just happen to give causal
separability, while in the general case constrain each summand of
the decomposition. As is the case with the bipartite processes, to
which Theorem 3 applies, one would expect that such constraints
on summands of the unitary extension also manifest themselves
in interesting ways for the non-unitary marginal process. We
leave this question for future investigation.

Causal nonseparability. The definition of causal separability was
given above only for bipartite processes and it was mentioned that
the multipartite case, with more than two nodes, is more intricate.
This section will first give the general definition, following
refs. 7,23, and then present another main result.

Seeing as the idea of causal separability is to capture whether a
process is consistent with our intuitions on causal order, it is
natural to let it incorporate the following two features. First, in
addition to probabilistic mixtures of fixed orders of nodes it
allows for a dynamical causal order of them, that is, the overall
causal order of some nodes need not be fixed, but may depend on
what happens at some earlier nodes. Second, it demands that
causal separability is preserved under extending the process with
an arbitrary ancillary input state shared between the nodes (a
property called extensibility7). A process is thus causally separable
if, upon considering arbitrary shared entanglement between
auxiliary input systems to all nodes, the resulting extended
process can be seen to arise from a probabilistic mixture of
particular processes: for each there is a node P in the past such
that for all possible interventions at P the marginal process has a
fixed causal order, or more generally, is itself again causally
separable. Hence, one ends up with an iterative definition of the
concept. This notion was originally called extensible causal
separability in ref. 7 to distinguish it from the analogous concept
without extensibility, but as it is undoubtedly the more natural
concept, we here refer to it simply as causal separability, as in
ref. 23. (Note, there have been two equivalent definitions of that
notion23, which differ by whether extensibility is imposed at the
level of the full process7 or at each level of the iteration23. For the
present purposes, it is convenient to use the latter one.) Finally,
making the concept precise relies on the following notion of no-
signalling in a process, which, along with various equivalent
statements, was given in ref. 7.

Definition 7 (No signalling in a process) Given a process
σA1:::An

, we say that there is no signalling from a subset S⊂ {A1,
…, An} of its nodes to the complementary subset

S :¼ fA1; ¼ ;AngnS, iff the probabilities PðkSÞ ¼
Tr σA1:::An

τ
k
S

S
� τS

� �h i
for the outcomes of any operation τ

k
S

S
¼N

A2Sτ
kA
A performed at S are independent of the choice of trace-

preserving operations τS=⨂A∈ SτA performed at S.
Now let τAj

represent a CP map at the node Aj, which is not
necessarily trace-preserving. If there is no signalling to a node Aj
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from {A1,…, An}⧹{Aj}, then for any τAj
, the object

TrAj
½σA1:::An

τAj
� is proportional to a process operator. In this

case, let σjτAj be the corresponding correctly normalized process

operator. We refer to σjτAj as a conditional process. We can now

state the formal definition of causal separability.
Definition 8 (Causal separability23) Every single-node process is

causally separable. For n ≥ 2, a process σ on n quantum nodes A1,
…, An is said to be causally separable, iff, for any extension of each
node Aj with an additional input system HðA0

jÞin to a new node ~Aj,

defined by H~A
in
j
:¼ HAin

j
�HðA0

jÞin and H~A
out
j

:¼ HAout
j
, and any

auxiliary quantum state ρ 2 LðHðA0
1Þin � ¼ �HðA0

nÞinÞ, the process
σ⊗ ρ on the quantum nodes ~A1, …, ~An decomposes as

σ � ρ ¼
Xn
k¼1

qk σ
ρ
ðkÞ; ð27Þ

with qk≥ 0, ∑kqk= 1, where for each k, σρðkÞ is a process in which

there can be no signalling to ~Ak from the rest of the nodes, and
where for any CP map τ ~Ak

that can take place at the node ~Ak, the

conditional process on the remaining n− 1 nodes, σρðkÞjτ ~Ak , is itself
causally separable.

An important question then concerns the relation between causal
nonseparability and cyclicity of causal structure. For a QCM that
involves a generic (not necessarily unitary) process, the cyclicity of
its directed graph does not in general imply causal nonseparability of
the process, even if the QCM is faithful. Consider, for example, the
quantum SWITCH with process operator σSWITCH

ABFP . Tracing out the
system Fin, we obtain a reduced 3-node process that (relabelling C as
P) is both faithful and Markov for the graph of Fig. 2b, having the
form σABP= ρA∣BPρB∣APρP. This process is causally separable, since it
can be understood as describing a situation in which the order
between A and B depends in an incoherent manner on the logical
value of the control qubit prepared at the initial time. This process
thus forms a faithful cyclic QCM and is a canonical example of a
process with dynamical causal order (here between nodes A and B).

In fact, one and the same cyclic graph may appear in two
distinct faithful QCMs, one involving a causally separable, the
other a nonseparable process. An example of this can again be
given using the quantum SWITCH. The latter is causally
nonseparable and has the graph in Fig. 4 as causal structure,
which however also is the causal structure of the classical
SWITCH2, which in contrast is causally separable (see
subsequent discussion of classical processes). What this points
at is a well-known fact, namely that causal separability cannot
separate the distinction between cyclicity and acyclicity on one
hand, and classical and quantum causal order on the
other hand.

For the case of unitary processes things are, however, much
simpler.

Theorem 4 A unitary process is causally nonseparable iff it has
a cyclic causal structure.

Proof See Methods.
If a unitary process has a causal structure given by an acyclic

graph, then it is a unitary comb54. Hence a unitary process is
either a comb or is causally nonseparable—intermediate possi-
bilities, such as dynamical causal order, cannot arise. Note that
there is no classical analogue of Theorem 4, i.e., a classical
deterministic process is not necessarily causally nonseparable if it
has a cyclic causal structure. The classical SWITCH2 is again an
example that establishes this claim. (See below for an introduction
of classical deterministic processes).

Cyclicity and classical processes. If a process operator is diagonal
in a basis that is a product of local bases for the input and output
Hilbert spaces at each node, it is equivalent to a classical
process3,12,56, where each node X is associated with a pair of
classical variables Xin and Xout. Following ref. 35 we call such
classical nodes classical split nodes. Classical processes are studied
in detail in refs. 12,35,56. (See also refs. 11,22.) This section presents
the main ideas, and defines (possibly cyclic) classical split-node
causal models (CSM). For the most part the definitions are the
obvious classical analogues of those for the quantum case. While
cyclic classical causal models have sometimes been studied (see,
e.g., refs. 66,67), for example to encompass the possibility of
classical feedback loops, they are not of the split-node variety
described here, and are not equivalent.

A classical process, defined over classical split-nodes X1, ..., Xn,
corresponds to a map
κX1:::Xn

: Xin
1 ´Xout

1 ´ � � � ´Xin
n ´Xout

n ! ½0; 1�, such thatP
Xin
1 ;X

out
1 ;:::;Xin

n ;X
out
n

κX1:::Xn

Q
iPðXout

i jXin
i Þ

� �
¼ 1, for any set of

classical channels fPðXout
i jXin

i Þg. A local intervention at a node
X, with outcome kX, corresponds to a classical instrument P(kX,
Xout∣Xin). Given a local intervention at each node, the joint
probability distribution over the outcomes is

PðkX1
; :::; kXn

Þ ¼
X

Xin
1 ;X

out
1 ;:::;Xin

n ;X
out
n

κX1:::Xn

Y
i

PðkXi
Xout
i jXin

i Þ
 !

:

ð28Þ
A special case of a classical process is a deterministic process

κfX1:::Xn
, for which

PðXin
1 ; :::;X

in
n jXout

1 ; :::;Xout
n Þ ¼ δððXin

1 ; :::;X
in
n Þ; f ðXout

1 ; :::;Xout
n ÞÞ,

where f : Xout
1 ´ :::: ´Xout

n ! Xin
1 ´ :::: ´Xin

n is a function. When f
is bijective, we call such a process reversible. It was shown in
ref. 12 that the set of classical processes over nodes X1, ..., Xn forms
a polytope, and that the deterministic polytope, defined as all
convex mixtures of deterministic processes, is in general a strict
subset of it. While all classical processes on two nodes are causally
separable3, on three or more nodes there exist classical processes,
including deterministic classical processes, that are causally
nonseparable—the AF process from ref. 56, described above, is
an example.

Definition 9 (CSM—generalized) A CSM is given by:

(1) a causal structure represented by a directed graph G with
vertices corresponding to classical split-nodes X1, . . . , Xn,

(2) for each Xi, a classical channel PðXin
i jPaðXiÞoutÞ, where Pa

(Xi) denotes the set of parents of Xi according to G, such
that κX1���Xn

¼QiPðXin
i jPaðXiÞoutÞ is a classical process over

X1, . . . , Xn.

This definition generalizes that of ref. 35 to include the case of
cyclic graphs, and classical split nodes where the input and output
variables have different cardinalities. Reference 35 presents
detailed discussion of the relationship between (acyclic) CSMs
and standard classical causal models47,48.

In the classical case, causal structure (defined for unitary
processes in the quantum case) can be defined for deterministic
processes.

Definition 10 (Causal structure of a deterministic classical
process) Given a deterministic process κfX1:::Xn

, the causal
structure of the process is the directed graph with vertices X1,...,
Xn and an arrow Xi→ Xj, whenever Xin

j depends on Xout
i through

the function f.
Definition 11 (Classical Markov condition—generalized) A

process κX1:::Xn
is called Markov for a directed graph G with
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classical split-nodes X1,…, Xn as its vertices iff it admits a
factorization of the form κX1:::Xn

¼Qn
i¼1 PðXin

i jPaðXiÞoutÞ, where
Pa(Xi) denotes the set of parents of Xi according to G.

The following is immediate.
Proposition 2 Every deterministic classical process is Markov

for its causal structure.
In the case of general—i.e., not necessarily deterministic—

classical processes, an account of their relationship to causal
structure can be given that again mirrors the quantum case. Let us
adopt the provisional approach that causal structure always
inheres in deterministic reversible processes (where reversibility
here may not be essential, but is assumed to provide a closer
analogue to the quantum case in which unitarity is assumed).
Then compatibility with a given directed graph can be defined in
terms of extension to a reversible deterministic process with
latent local noise variables.

Definition 12 (Reversible extendibility) A process κX1:::Xn
is

reversibly extendible iff there exists a reversible deterministic
process κfX1���XnFλ

with an additional leaf node F and root node λ,

such that κX1���Xn
¼PFin;λout ½κfX1���XnFλ

PðλoutÞ� for some P(λout).
Definition 13 (Compatibility with a directed graph) A process

κX1���Xn
is compatible with a directed graph G with nodes X1,...,Xn,

iff κX1���Xn
is reversibly extendible to a deterministic process

κfX1���XnFλ1:::λn
, with an additional leaf node F, root nodes λi, and a

product distribution
Q

iPðλouti Þ, such that through f, Xin
i depends

neither on λoutj for j ≠ i nor on Xout
j for Xj∉ Pa(Xi) (with Pa(Xi)

referring to G).
With Proposition 2, the following analogue of Thm. 2 is

straightforward.
Theorem 5 If a classical process κX1���Xn

is compatible with a
directed graph G, then it is also Markov for G.

As in the quantum case, we leave open whether the converse to
Theorem 5 holds.

Hypothesis 2 If a process κX1:::Xn
is Markov for a directed

graph G, then it is compatible with G.
We remark only that Hypothesis 2 is not obviously implied by

its quantum counterpart, Hypothesis 1. First, it is not known
whether reversible extendibility implies unitary extendibility for a
classical process when seen as a special case of a quantum process.
Second, even if this is the case, it is still conceivable that while a
classical process that is Markov for a given graph may admit
unitary extensions with the required no-influence properties
when viewed as a quantum process, no such extension may be
equivalent to a deterministic classical process for the given
preferred basis.

We conclude with the following observation.
Theorem 6 Given a set of classical split nodes X1, ..., Xn, the set

of reversibly extendible classical processes on X1, ..., Xn coincides
with the deterministic polytope.

Proof See Methods.
If Hypothesis 2 holds, then Theorem 6 implies in particular

that the process defined by a CSM must always belong to the
deterministic polytope. An example of a classical process κX1���Xn

outside of the deterministic polytope is described in ref. 12 (and
denoted Êex1 therein). It is not too hard to show that this process
is not Markov for any directed graph, hence cannot be the process
defined by a CSM, in keeping with Hypothesis 2.

Discussion
This work presented an extension of the framework of quantum
causal models from refs. 34,35 to include cyclic causal structures.
We showed that the quantum SWITCH, and a process that

violates causal inequalities, found by Araújo and Feix and
described by Baumeler and Wolf, can be seen as the processes
defined by cyclic quantum causal models. We also gave decom-
positions of any SWITCH-type process and of the unitary
extension of the aforementioned process by Araújo and Feix,
enabling diagrammatic representations that make the internal
causal structures evident. Applications of these results included
proofs that any unitarily extendible bipartite process is causally
separable, and that any unitary process is cyclic if and only if it is
causally nonseparable.

What technically comes as the natural generalization of the
framework of acyclic quantum causal models is conceptually a
substantial step—allowing causal structure to be cyclic. Taking
this extended causal model perspective seriously then offers an
alternative view of certain processes: a process that is incompa-
tible with definite causal order may now also be seen to have a
well-defined cyclic causal structure. This is to say, to admit of a
partial order is not an essential property of being causal anymore.
While processes that violate a causal inequality were previously
referred to as noncausal processes, suggesting they cannot be
understood causally, at least some of them then do admit a causal
understanding.

Note that as far as acyclic causal structures are concerned there
also is the earlier framework of QCMs by Costa and Shrapnel
from ref. 45, which is related to, in fact strictly contained in that of
refs. 34,35, which the current work extends. The Markov condition
of ref. 45 is a special case of Definition 2, restricted to DAGs for
which each node’s output space factorizes into as many sub-
systems as the node has children, with each subsystem only
influencing the corresponding child. With this idea of a system
per arrow, the process operator

Q
iρAijPaðAiÞ becomes a tensor

product. As a consequence—for essentially the same reason as
why Proposition 1 holds—the notion of a QCM from ref. 45 does
not admit a nontrivial extension to cyclic directed graphs. The
extension of faithful QCMs to cyclic graphs relies on the parti-
cular nature of our Markov condition that allows the nontrivial
action of pairwise commuting operators ρAijPaðAiÞ to overlap on
non-factorizing output spaces.

Although we do not provide the details, we note a further
application of the generalized framework: it allows an extended
version of the causal discovery algorithm sketched in ref. 35

(inspired in turn by the first of its kind in ref. 50). While the
version in ref. 35, takes a process operator as input, and outputs
DAGs as candidate causal explanations, where possible at all,
the extended version can discover and output cyclic causal
structures. The basic steps of the algorithm in ref. 35 largely
remain the same, but for instance the algorithm does not halt
anymore when encountering a cyclic graph Gσ that encodes the
direct signalling relations between pairs of nodes of the given
process σ. Instead Markovianity for such cyclic Gσ can still be
checked to establish whether Gσ is a plausible causal
explanation.

One of the main questions left open is the validity of our
hypothesis that Markovianity implies compatibility for cyclic
graphs, which would generalize one of the main results estab-
lished for the acyclic case in ref. 35. The validity of this hypothesis
has consequences, which we spell out as follows.

Reference 51, in motivating the study of unitary extendibility of
processes, includes the suggestion that unitary extendibility
should be regarded as a necessary condition for a process to be
realizable in nature. Here, the meaning of ‘realizable’ is a little
vague, but might be taken, for example, to include exotic sce-
narios involving gravity as well as the time-delocalized sense
discussed above in which some processes have been realized in
the laboratory. (It does not include realization via postselection,

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20456-x ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:885 | https://doi.org/10.1038/s41467-020-20456-x | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


since it is known that all processes can be realized under a sui-
table postselection10,13,27,68.) The suggestion would hold if all
processes, once sufficient systems are included, are unitary at the
most fundamental level.

Alternatively, under the assumption that the process
operator framework provides the most general description of
the possible correlation between quantum systems, in non-
postselected scenarios, one may speculate that a necessary
condition for a process to be realizable in nature is that it
can arise from a QCM. Here, ‘arise’ means that there is a QCM
with process σ 0 such that σ can be obtained from σ 0 by inserting
channels at some of the nodes of σ 0 and marginalizing
over them. The idea is that any correlations described by such
a process admit a causal explanation, albeit one that may
involve cycles. On the other hand, any process that cannot arise
from a QCM in this manner describes correlations that are not
amenable to an understanding in causal terms.

The connection with unitary extendibility is that any process
that is unitarily extendible has the property that it can arise from
a QCM. Furthermore, if Hypothesis 1 holds, then any process
that is not unitarily extendible cannot arise from a QCM. Hence if
Hypothesis 1 holds, the speculation above coincides with the
suggestion of ref. 51.

If Hypothesis 1 fails, there is a peculiar class of cyclic
quantum causal models, in which the process is Markov for the
graph but not compatible with the graph. There then are two
logically conceivable options: one may insist on the notion of
compatibility as the essential concept for giving causal expla-
nations, turning the Markov condition into a necessary but
insufficient condition; alternatively, one could insist on the
Markov condition as the essential concept for giving causal
explanations, turning the current notion of compatibility into a
sufficient but not necessary condition. We leave open the
question whether any meaning can be given to the arrows of the
graph in this case, given that there is no suitable unitary
extension to define causal relations, and whether such processes
might be realizable or not.

Beyond establishing the hypothesis, future work might study
the extent to which other core results of the framework of
quantum causal models in the acyclic case, such as the d-
separation theorem35, can be generalized in an appropriate way to
the cyclic case, as has been done for the classical framework (see,
e.g., ref. 67).

Finally, one of the most promising avenues for future work is
the general idea behind the above causal decompositions of
our example processes together with Theorem 3: to derive
further causal decompositions of unitary transformations U, as
started in ref. 63, and then study the interplay between the
discovered algebraic structure and the condition that U
defines a valid unitary process when identifying in- and output
spaces of U as the out- and input spaces of quantum nodes. We
expect this mathematical tool to lead to insights into which
unitarily extendible processes are causally nonseparable and
how the cyclicity is distributed, mathematically speaking,
across the process—with possible hints for the process’ phy-
sical realizability.

Methods
Characterisation of process operators. In order to state necessary and sufficient
conditions for an operator to be a valid process operator, the following will be

useful. Let fηlXg
d2X�1
l¼0 denote a Hilbert-Schmidt (HS) basis for LðHXÞ, i.e., a set of

operators such that they are orthonormal with respect to the HS inner product and,
in addition, traceless for all l ¼ 1; :::; d2X � 1, while η0X ¼ ð1=dXÞ1X . Any σ 2
LðHAin �HAout �HBin �HBout Þ can be expanded in a HS basis as

σ ¼Pl1 ;l2 ;l3 ;l4
αl1 l2 l3 l4 η

l1
Ain � ηl2Aout � ηl3

Bin � ηl4Bout . A term of type Ain in the expansion

is a summand with non-trivial action only on Ain, i.e., l1 ≠ 0 and l2= l3= l4= 0.
Similarly for types AinBout etc.

It was shown in ref. 3 that σ being a bipartite process operator is equivalent to
σ ≥ 0, Tr½σ� ¼ dAoutdBout and that in a HS basis expansion, in addition to a term,
which is proportional to the identity operator on all four spaces, only the
coefficients of terms of the types Ain, Bin, AinBin, AinBout, AoutBin, AinAoutBin and
AinBinBout, may be non-vanishing. These conditions were generalized to n numbers
of nodes in ref. 7 and can easily be stated as (1) σ ≥ 0, (2) Tr½σ� ¼Qn

i¼1 dAout
i

and (3)
that in a HS basis expansion the only non-vanishing terms, apart from an overall
identity operator, are of a type such that there must be at least one node, say Ai, on
whose out-space, Aout

i , the action is trivial, but on whose in-space, Ain
i , the action is

non-trivial. Equivalent conditions were presented in ref. 6 where the projector onto
the linear subspace of process operators was defined explicitly, giving a basis-
independent characterization.

Proof of Proposition 1 Suppose a bipartite cyclic QCM is given by the (unique)
cyclic graph G with two nodes A and B from Fig. 2a and a process σAB= ρA∣BρB∣A,
Markov for G. It follows that σAB= ρB∣A⊗ ρA∣B, as both factors act on distinct
Hilbert spaces. Now suppose that this is a faithful QCM, i.e., both channels ρA∣B
and ρB∣A are signalling channels. One way to see that this contradicts the
assumption that σAB is a valid process is by analyzing the non-vanishing types of
terms in an expansion of σAB relative to a HS product basis (see above). If signalling
from Bout to Ain is possible in ρA∣B, then an expansion of just ρA∣B has to contain a
non-vanishing term of type AinBout. Similarly, if signalling from Aout to Bin is
possible in ρB∣A, then an expansion of ρB∣A has to contain a non-vanishing term of
type BinAout. Consequently, σAB has to contain a non-vanishing term of type
AinBoutBinAout, which is forbidden for a process operator3.

Product of commuting operators not necessarily a process operator. As
established by Proposition 1, not all cyclic graphs support a faithful cyclic QCM.
Here we show that, given a cyclic graph G that does support a faithful cyclic QCM,
it is not true that any product of commuting operators

Q
iρAi jPaðAiÞ, with parental

sets as in G, constitutes a process operator. Consider for instance the graph G in
Fig. 2b (and see the discussion below Definition 8 for an example of a faithful cyclic
QCM over G). Letting the three nodes A, B and C be classical split nodes, with
classical bits Ain, Aout, Bin, Bout, Cin and Cout, define classical channels as in Eqs.
(29)–(30). It is easy to see that the signalling relations through the channels P
(Ain∣Bout, Cout) and P(Bin∣Aout, Cout) are indeed as in Fig. 2b. At the same time, for
any choice of probability distribution P(Cin), the product P(Ain∣Bout, Cout)P
(Bin∣Aout, Cout)P(Cin) cannot be a classical process: consider an intervention at C
which fixes Cout to be 0, then P(Ain∣Bout, 0)P(Bin∣Aout, 0) is still a product of two
signalling classical channels, which (seeing them as special cases of quantum
channels) was already established in the proof of Proposition 1 to be in contra-
diction with being a process. This establishes the claim.

PðAinjBout;CoutÞ :¼ Pð0j0; 0Þ ¼ 0:4; Pð0j0; 1Þ ¼ 0:3; Pð0j1; 0Þ ¼ 0:8; Pð0j1; 1Þ ¼ 0:3;

Pð1j0; 0Þ ¼ 0:6; Pð1j0; 1Þ ¼ 0:7; Pð1j1; 0Þ ¼ 0:2; Pð1j1; 1Þ ¼ 0:7:

�
ð29Þ

PðBinjAout;CoutÞ :¼ Pð0j0; 0Þ ¼ 0:5; Pð0j0; 1Þ ¼ 0:3; Pð0j1; 0Þ ¼ 0:25; Pð0j1; 1Þ ¼ 0:1;

Pð1j0; 0Þ ¼ 0:5; Pð1j0; 1Þ ¼ 0:7; Pð1j1; 0Þ ¼ 0:75; Pð1j1; 1Þ ¼ 0:9:

�
ð30Þ

Proof of Theorem 3. Suppose the bipartite quantum process operator σAB is
unitarily extendible. Consider an arbitrary unitary extension of it,
σABFP ¼ ρUABFjABP . From Eq. (14) it follows that the reduced process obtained by

tracing out Fin has the form

σABP ¼ TrFin ½ρUABFjABP � ¼
X
i2I

ρAjBPLi � ρBjPR
i A

; ð31Þ

for the decomposition HPout ¼
L

i2IHPL
i
�HPR

i
, identified by S, where ρAjBPL

i
¼

TrFLi ½ρ
Vi

AFL
i jBPLi

� and ρBjPR
i A

¼ TrFRi ½ρ
Wi

FRi BjPR
i A
� and, where ρAjBPL

i
� ρBjPRi A is taken as an

operator on the whole space, acting as zero map on all but the ith subspace. Note
that from σABP being a process operator it follows that feeding in any τP 2 LðH�

Pout Þ
gives a quantum process operator on the nodes A and B. Let i∈ I be some fixed
index and suppose through the channel ρAjBPLi system Bout can signal to Ain and

similarly, through the channel ρBjAPRi system Aout can signal to Bin. Then there

exists an appropriate state τP, which has only support on the ith subspace, and
which is of a product form γPL

i
� ϕPR

i
, such that in

TrðPLi Þ
� ½ρAjBPL

i
γPLi � � TrðPRi Þ

� ½ρBjAPRi ϕPRi � ; ð32Þ
both, the marginal channel on the left is signalling from Bout to Ain and the one on
the right from Aout to Bin. Since the expression in Eq. (32) has to give a process
operator over A and B, this yields a contradiction due to Prop. 1. Hence, for each i
at most one of the channels ρAjBPLi and ρBjAPRi allow signalling from Bout to Ain or

from Aout to Bin, respectively. By assumption there exists an appropriate τP 2
LðH�

Pout Þ such that

σAB ¼
X
i

TrðPoutÞ� ðρAjBPLi � ρBjPR
i A
Þ τP

h i
: ð33Þ
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By the above analysis, it also follows that each summand in Eq. (33) has to be a
process operator up to normalization. Since they sum up to a process operator, the
inverses of the normalization constants have to form a probability distribution and

one can therefore write σAB ¼Pipi σ
ðiÞ
AB , where each σðiÞAB is a process operator with

at most A signalling to B or vice versa. This is the form of a bipartite causally
separable process operator.

Note further that if ρAjBPLi is non-signalling from Bout to Ain, then in Vi there is

no influence from Bout to Ain, and similarly, if ρBjPR
i A

is non-signalling from Aout to

Bin, then in Wi there is no influence from Aout to Bin. Therefore, the above
constraints mean that each term Vi⊗Wi in Eq. (14) corresponds to a process over
nodes including A and B that allows signalling in at most one direction between A
and B. The latter always admits an implementation as a unitary circuit fragment
with nodes A and B in a fixed order54. Since the full unitary U of the unitary
extension is a direct sum of such fixed-order unitary processes taking place in the
different orthogonal subspaces, and every operation at the nodes A and B can be
dilated to a unitary, the full unitary process σABFP ¼ ρUABFjABP can be realized by

coherently conditioning which of the corresponding fixed-order unitary circuits
takes place on the logical value of some control n-level quantum system, where n is
the number of different subspaces. Note that since the systems involved in the
fixed-order circuits may have different dimensions, this implementation in practice
may require bringing in different systems depending on the control variable i, but
this can always be seen as part of a process on a larger system of a fixed dimension.
Moreover, the fixed-order processes in the different orthogonal subspaces can be
grouped into two sets: one in which A is before B and another one in which B is
before A. This allows embedding the process into another one where one of two
possible circuits (in which A and B occur in different orders) is applied in a
coherently controlled fashion based on the logical value of a control qubit, similarly
to the quantum SWITCH. This yields another possible unitary extension σAB~F~P of

the original bipartite process, where ~F
in
and ~P

out
would contain Fin and Pout,

respectively, as subspaces. The originally assumed unitary extension σABFP can then
be seen to take place effectively as part of σAB~F~P .

Proof of Theorem 4. The below proof of Theorem 4 will use the following two
concepts. First, generalizing the notion of a process being unitary, a process is
called isometric if its induced channel from the output systems of all nodes to the
input systems of all nodes arises from an isometry. Second, a quantum comb, as
defined in ref. 54 (provided first input and last output system are trivial), is a special
kind of quantum process: a process σA1 ¼An

over n quantum nodes for the given
total order of its nodes A1,…, An is a quantum comb (an (n+ 1)-comb) iff

8l ¼ 1; ¼ ; n� 1 TrAlþ1 ¼An
½σA1 ¼An

� ¼
1

dAout
l

TrðAout
l Þ� TrAlþ1 ¼An

½σA1 ¼An
�

h i
� 1ðAout

l Þ�
ð34Þ

^ σA1 ¼An
¼ 1

dAout
n

TrðAout
n Þ� ½σA1 ¼An

� � 1ðAout
n Þ� : ð35Þ

Proof of Theorem 4 Let σA1 ¼An
be a unitary process. The following will establish,

what is equivalent to Theorem 4, namely that acyclicity of its causal structure is
equivalent to σA1 ¼An

being causally separable.
First, suppose σA1 ¼An

has an acyclic causal structure. There then exists a total
order of the quantum nodes A1,…, An (appropriately relabelled) such that Aj↛
Ai ∀ j ≥ i (see Def. 4). This implies that the conditions in Eqs. (34)–(35) are satisfied
(note that dAout

n
¼ 1 ¼ dAin

1
). Hence, σA1 ¼An

is a quantum comb54. Such a process
is a special case of a causally separable process since in a quantum comb there can
be no signalling from {Aj+1,⋯ , An} to {A1,⋯ , Aj} for any j= 1,⋯ , n− 1, and this
remains true under extending the process with arbitrary shared input ancillary
states.

For the converse direction, suppose the unitary process σA1 ¼An
is causally

separable. In order to show that it then has an acyclic causal structure we will prove
that it is a quantum comb. In fact we will prove the following more general
statement concerning isometric processes, which gives the claim as a special case.

Lemma 1 Every causally separable isometric process is a quantum comb.
Proof of Lemma 1 The main idea of the following proof is the observation that

the process operator of an isometric process is proportional to a rank-1 projector
and hence cannot be written as a nontrivial convex mixture of different positive
semi-definite operators. The proof proceeds by induction.

An isometric process over one single node is a 2-comb. Assume that all causally
separable isometric processes on n nodes are quantum combs. Let σA1 ¼Anþ1

be an
isometric process over n+ 1 nodes, which is causally separable. Let us extend it by
adding auxiliary input systems for all n+ 1 nodes with the following pure state
shared among them:

Ψj i ¼
Oi¼n;j¼nþ1

i¼1;j¼2;i < j

ϕþj iij ; ð36Þ

where each ϕþj iij ¼ 1ffiffiffi
n!

p
Pn!

l¼1 lj i lj i is a maximally entangled state, shared between

node Ai and node Aj. Thus, Ψj i is a tensor product of 1
2 nðnþ 1Þ maximally

entangled bipartite states, such that every pair of nodes indexed by (i, j) shares
one such state of Schmidt rank n!. Using the notation of Definition 8, ~σ :¼
σ � Ψj i Ψh j is an extended process over the extended nodes ~A1; ¼ ; ~Anþ1, with
Ψj i 2Nnþ1

i¼1 HðA0
iÞin , where each HðA0

iÞin is an n-fold tensor product of (n!)-

dimensional systems.
By assumption, ~σ is causally separable, too, while it also is proportional to a

rank-1 projector. In the decomposition as in Eq. (27), implied by causal
separability, there therefore is only one summand. Hence, there exists one node,
let this be ~A1 (for an appropriate relabelling), such that ~A2; ¼ ; ~Anþ1 cannot
signal to ~A1 and for all CP maps τ~A1

at that node the conditional process ~σjτ ~A1 is

causally separable. Now consider a CP map such that τ ~A1
¼ τj i τh j~A1

itself is a
rank-1 projector. The process operator ~σjτ~A1 then still is proportional to a rank-1

projector and, hence, representing an isometric process on the remaining n
nodes ~A2; ¼ ; ~Anþ1. As argued above it also is causally separable. By assumption
then such an isometric, causally separable process ~σjτ ~A1 on n nodes is a

quantum comb.
Notice first that if there is no signalling to ~A1 from all other nodes in the

extended process ~σ, then there is no signalling to A1 from all other nodes in the
original process σ. Consider τ ~A1

¼ τj i τh jA1
� ϕj i ϕh j, where ϕj i ϕh j is some fixed

projector on the ancillary input system ðA0
1Þin and τA1

¼ τj i τh jA1
has rank-1. Since

projecting the ancillary systems via ϕj i ϕh j leaves the ancillary systems on the
remaining nodes in some pure state Φj i Φh j, the conditional process on the
remaining nodes has the form σjτA1 � Φj i Φh j. Since the latter is a quantum comb

for every τj i τh jA1
, so must be σjτA1 .

There are n! different possible total orders of the nodes, given by Aπ(2),…, Aπ

(n+1) for π being one of the n! different permutations of 2, . . . , n+ 1. We will now
show (by proof of contradiction) that there exists a reordering Aπ(2),…, Aπ(n+1)

with which the quantum comb σjτA1 is compatible for any choice of τj i τh jA1
.

Suppose there does not exist one such appropriate total order. Then for every
permutation π, there exists τπA1

:¼ τπj i τπh jA1
, such that the corresponding

quantum comb σjτπA1 is incompatible with the total order of the remaining nodes

defined by π. Let Cπl ðσÞ ¼ 0 for l= 1, . . . , n be the linear constraint corresponding
to the lth condition in Eqs. (34)–(35) for a process operator σ over n nodes to be a
valid quantum comb for the total order π.

Consider a process operator �σ :¼Pn!
π¼1 qπ σjτπA1 , where qπ ≥ 0, ∀ π, and ∑πqπ=

1 (letting π, both, be a permutation as well as an index enumerating those
permutations). By construction, for every π at least one of the conditions in
fCπl ðσjτπA1 Þ ¼ 0gn

l¼1
fails. Therefore, one can then choose the weights qπ such that

for every π the process operator �σ violates at least one of these constraints
fCπl ð�σÞ ¼ 0gnl¼1, establishing that �σ is not a quantum comb for any possible order
of the n nodes. More precisely, the condition that �σ respects the constraints
fCπl ð�σÞ ¼ 0gnl¼1, for a given π can be written as

Pn!
α¼1 qα Cπl ðσjταA1 Þ ¼ 0 for l= 1,

…, n, which implies that (q1,…, qn!), viewed as a point in an (n!)-dimensional
Euclidean space, must belong to a specific hyperplane in that space. Our
assumption that at least one of Cπl ðσjτπA1 Þ must be nonzero, makes it a proper

hyperplane. Then, in order for �σ to be compatible with the quantum-comb
conditions for at least one π, the point (q1,…, qn!) must belong to the union of
the hyperplanes corresponding to the different values of π. Since this is a finite
set of hyperplanes, it is possible to find (a continuum of) points in the positive
orthant that are outside of this union. Since rescaling (q1,…, qn!) by a
constant factor, which amounts to rescaling �σ by a constant factor, does not
change the fact of whether any of the above constraints is violated or not, there
exists a (q1,…, qn!) with the required properties, such that �σ is not a quantum comb
for any total order π.

We will now use this fact to construct the contradiction with the assumption
that there is no single order π with which all isometric quantum combs σjτA1 are

compatible. To this end, we will first show that, starting from our extended process
~σ ¼ σ � Ψj i Ψh j, for any j∈ {2, . . . , n+ 1} it is possible to apply a suitable CP map
τj i τh j~A1

such that this yields a conditional process of the form

~σjτ~A1 ¼ j�σ jih�σ jj � jΦi Φh jrest0in , where j�σ ji ¼
Pn!

π¼1
ffiffiffiffiffi
qπ

p
πj iaj jστπA1 i with, recalling

Eq. (36), Haj
the factor of HðA0

jÞin sharing the state ϕþj i1j with Ha1
of the node A1

and jστπA1 ihστπA1 j :¼ σjτπA1 , the conditional process on the remaining n of the original

n+ 1 nodes, and where Φj i Φh jrest0in is some pure state on the remaining auxiliary

input systems (i.e. Φj irest0in is in
N

i≠1HðA0
iÞin excluding the subfactor Haj

).

To see this, let j ≠ 1. If we apply a CP map of the form
τj i τh j~A1

¼ χj ihχja1A1
� jϕi ϕh jrest~A1 , where χj i ¼Pn!

π¼1
ffiffiffiffiffi
ϵπ

p
πj ia1 τπj iA1

, and

ϕj i ϕh jrest~A1 is some projector on the remaining ancillary input systems in ðA0
1Þin,

then we will obtain a conditional process of the form ~σjτ~A1 ¼ jσ jihσ jj � jΦihΦjrest0in ,
with jσ ji ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn!

π¼1
ϵπγπ

q Pn!
π¼1

ffiffiffiffiffiffiffiffiffi
ϵπγπ

p
πj iaj jστπA1 i, where γπ :¼ Tr½ð τπj i τπh jA1

Þσ�.
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Therefore, by choosing ϵπ= qπ/(cγπ), for some large enough constant c to ensure
that τj i τh j~A1

is appropriately normalised to represent a CP map, we can make
jσ ji ¼ j�σ ji as desired. (Note that ∀ π, γπ ≠ 0 since TrA1

½ð τπj i τπh jA1
Þσ� is

proportional to a process operator on the remaining n nodes, the trace over which
gives

Qnþ1
i¼2 dAout

i
.)

By our main assumption, the n-node process ~σjτ ~A1 ¼ j�σ jih�σ jj � jΦihΦjrest0in
must be a quantum comb, and since Φj i Φh jrest0in is just a state on some input

systems, j�σ jih�σ jj must also be a quantum comb (on the nodes Ai ≠ A1, i ≠ j, and the
node Aj extended via the ancillary input system aj). But tracing out the system aj
from the latter quantum comb must also yield a quantum comb on the nodes Ai ≠
A1, which can easily be seen from the quantum-comb conditions. However, by
construction, Traj j�σ jih�σ jj ¼ �σ, where �σ is not supposed to be a quantum comb,

which is a contradiction.
Therefore, there must exist a total order �π, such that σjτA1 is a quantum comb

compatible with �π for every rank-1 τA1
. By the convexity of the set of n-node

operators that are quantum combs compatible with �π, this automatically extends to
all CP maps τA1

.
So far we have shown that the process σ is such that there is a node A1 to which

the rest of the nodes cannot signal, and the remaining nodes can be put in a total
order A2,…, An+1, such that for every CP map τA1

, the conditional process σjτA1 is

a quantum comb compatible with that order. Now observe that this implies that the
full process σ is a quantum comb compatible with the total order A1, A2,…, An+1.
Since for all possible CP maps τA1

it holds that ClðσjτA1 Þ ¼ 0 for l= 2, ..., n+ 1, it

follows from the linearity of these constraints, that the corresponding quantum
comb conditions hold for σ, i.e., ClðσÞ ¼ 0 for l= 2, ..., n+ 1. Finally, that C1ðσÞ ¼
0 holds follows from just σ being a process, since it is equivalent to that if in σ we
trace out all of the nodes A2,…, An+1, we should be left with, up to normalization,
a valid single-node process on A1

3. Therefore, the isometric process σ on n+ 1
nodes is a quantum comb, too, which completes the proof of Lemma 1 and thereby
also that of Theorem 4.

Proof of Theorem 6 First, suppose κX1 :::Xn
is a reversibly extendible process, that

is, there exists a reversible deterministic process κgX1 :::XnλF
for some bijection

g : Xout
1 ´ ::: ´Xout

n ´ λout ! X in
1 ´ ::: ´X in

n ´ Fin, such that

κX1 :::Xn
¼
X
λout ;Fin

κgX1 :::XnλF
PðλoutÞ ð37Þ

for some probability distribution P(λout). It follows from the fact that κgX1 :::XnλF
is

a classical process that marginalization as in Eq. (37) has to yield a classical
process over nodes X1, ..., Xn for arbitrary distributions P(λout), in particular for
every point-distribution. Hence, for every value λ0 of λout, the induced function
gλ0 ð Þ :¼ gð ; λ0Þ has to define a deterministic process for n+ 1 nodes and
furthermore, also once marginalizing over F it still has to be a deterministic
process for the n nodes X1,…, Xn. Hence, Eq. (37) can be read as establishing
that the given κX1 :::Xn

is a convex mixture of deterministic processes over the
nodes X1, ..., Xn, i.e., κX1 :::Xn

lies in the deterministic polytope.
Conversely, suppose κX1 :::Xn

lies inside the deterministic polytope, that is,

there exists a family of deterministic processes fκf iX1 :::Xn
gm
i¼1

, defined by the

functions f i : X
out
1 ´ ::: ´Xout

n ! X in
1 ´ ::: ´Xin

n such that κX1 :::Xn
¼Pm

i¼1 qi κ
f i
X1 :::Xn

for some probability distribution {qi}. The proof will proceed by first observing
that such a process can be seen to arise from one single deterministic process on
n+ 2 nodes. Together with the fact that every deterministic process is reversibly
extendible, proven in ref. 11, this establishes the claim. In order to see that
indeed an appropriate deterministic process on n+ 2 nodes exists, let λout and
Fin be variables with cardinality m and define the function

f : Xout ´ λout ! Xin ´ Fin ð38Þ

ðx; iÞ 7! ðf iðxÞ; iÞ ; ð39Þ
where Xout ¼ Xout

1 ´ ::: ´Xout
n (similarly for Xin) and x= (x1, ..., xn). Together

with setting P(λout= i)≔ qi, f defines a deterministic classical process over the
nodes X1,...,Xn, λ and F, which gives back κX1 :::Xn

upon marginalization over λ
and F. That f indeed defines a process follows from the fact that arbitrary
variation of the distribution P(λout) corresponds to an arbitrary weighting {qi}
in the originally given mixture, each case of which has to be a classical process.
This concludes the proof.
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