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Abstract
Ancient whole-genome duplications (WGDs)— polyploidy events—arepaleo
key to solving Darwin’s ‘abominable mystery’ of how flowering plants evolved
and radiated into a rich variety of species. The vertebrates also emerged from
their invertebrate ancestors via two WGDs, and genomes of diverse
gymnosperm trees, unicellular eukaryotes, invertebrates, fishes, amphibians
and even a rodent carry evidence of lineage-specific WGDs. Modern polyploidy
is common in eukaryotes, and it can be induced, enabling mechanisms and
short-term cost-benefit assessments of polyploidy to be studied experimentally.
However, the ancient WGDs can be reconstructed only by comparative
genomics: these studies are difficult because the DNA duplicates have been
through tens or hundreds of millions of years of gene losses, mutations, and
chromosomal rearrangements that culminate in resolution of the polyploid
genomes back into diploid ones (rediploidisation). Intriguing asymmetries in
patterns of post-WGD gene loss and retention between duplicated sets of
chromosomes have been discovered recently, and elaborations of signal

systems are lasting legacies from several WGDs. The data implytransduction 
that simpler signalling pathways in the pre-WGD ancestors were converted via
WGDs into multi-stranded parallelised networks. Genetic and biochemical
studies in plants, yeasts and vertebrates suggest a paradigm in which different
combinations of sister paralogues in the post-WGD regulatory networks are
co-regulated under different conditions. In principle, such networks can
respond to a wide array of environmental, sensory and hormonal stimuli and
integrate them to generate phenotypic variety in cell types and behaviours.
Patterns are also being discerned in how the post-WGD signalling networks are
reconfigured in human cancers and neurological conditions. It is fascinating to
unpick how ancient genomic events impact on complexity, variety and disease
in modern life.
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            Amendments from Version 1

This version 2 deletes five redundant words 'are thought to have 
been', from the “Most, though not all, well-characterised WGDs 
were allopolyploidy events” bullet point on page 5. 

See referee reports

REVISED

Comparative plant genomics help solve Darwin’s 
abominable mystery
Darwin was vexed. While natural selection could explain gradual 
evolutionary transitions, the apparent sudden appearance of diverse 
flowering plants in the Cretaceous fossil record of approximately 
130 million years ago (Mya) was his ‘abominable mystery’1. 
Fast-forward to today’s exciting era of high-throughput genome 
sequencing, and phylogenomic maps assembled from multiple 
whole-genome sequences tell the evolutionary story with revised 
timelines:

From the Carboniferous to early Cretaceous periods (approximately 
360 to 130 Mya), the land was dominated by gymnosperms (liter-
ally ‘naked seeds’) including the cycads, Ginkgo, and conifers that 
still flourish in subarctic forests2. The nuclear genomes of several 
gymnosperms have been sequenced recently, a heroic undertaking, 
given their exceptional size (10 to 40 gigabases) and high density of 
long terminal repeat (LTR)-retrotransposon repeats3–5. Within these 
genomes many non-overlapping duplicated chromosomal regions 
were identified that display gene synteny, meaning that their gene 
contents are similar to those of other chromosomal blocks within 
the same genome and across gymnosperm genomes. These gene 
synteny patterns and complementary transcriptome data support 
the hypothesis that the gymnosperms emerged from their common  
ancestor via a WGD named ζ that occurred an estimated  
390 Mya during the Devonian period6–9. Tell-tale traces of further 
lineage-specific WGDs have also been discovered in the genomes 
of Norway spruce, Sequoia and Ginkgo, and in the unusual  
two-leaved Namibian Welwitschia, suggesting that multiple  
WGDs contributed to the diversity of these gymnosperms, which 
include the longest-living and largest organisms on Earth3–5,7.

Flowering plants (angiosperms, ‘seed born in a vessel’) are the most 
abundant plant group today, having a rich diversity of some 400,000 
species from bananas to water lilies, grasses to beech trees10. 
Many angiosperm genomes have been selected for sequencing to  
discover genes for special agronomic traits. The resulting genome  
assemblies have been used collectively to extrapolate back in 
time, tracking the genome evolution of the monocot and eudicot 
angiosperms, as well as more primitive flowering plants, and con-
verging on a reconstructed genome of the most recent common 
ancestor of all angiosperms6. These new phylogenomic maps solve 
part of Darwin’s dilemma by confirming that the first flowering 
plants evolved between 140 and 250 Mya after an unknown  
gymnosperm went through a WGD (named the ε event) an esti-
mated 300 Mya during the Carboniferous period6,8,9. The clearest 
support for the ε WGD comes from multiple gene synteny blocks 
in the genome of the primitive angiosperm Amborella trichopoda, 
whose ancestral lineage diverged early on from other flowering 
plants, experiencing no further post-ε WGDs11.

The antiquity of the ε WGD means that angiosperms had the 
entire Triassic and Jurassic periods to evolve and diversify into the  
species richness reflected in the fossils of approximately 130 Mya 
that were known to Darwin. Aligning with the recalibrated timelines, 
older angiosperm microfossils have been discovered, though claims 
that the earliest ones date to the Triassic are controversial12,13. In  
any case, angiosperm evolution was not as sudden an explosion as 
Darwin thought, and now a comprehensive phylogenomic frame-
work exists to mine for answers about how angiosperm complexity 
and variety evolved after the ε WGD.

Contributions of whole-genome duplications to the 
origin and diversity of flowers
In the 1970s, Susumo Ohno had the prescience to propose that evo-
lutionary leaps could occur by WGDs because one of each gene 
pair may continue to do what it was doing before, giving freedom 
for the other to either be lost from the genome or to evolve new 
characteristics (neofunctionalise)14. Members of gene families gen-
erated via WGDs are named ohnologues in his honour15. Another 
scenario is for the duplicates to each retain subsets of the functions  
of the ancestral gene (subfunctionalisation)16. Moreover, the  
en masse diversification of many gene duplicates after a WGD 
would be expected to create selective pressures between gene  
families and opportunities for new interactions among them, so that 
large duplicated gene and protein sets co-evolve as complex systems.

Floral organs provide a canonical example of how interacting 
sets of diversified ohnologues can make variant structures. While 
many gene pairs lost one duplicate after the ε WGD, the retained 
ohnologue pairs include MADS-box transcription factors. Some 
of these were characterised more than 20 years ago for their abil-
ity to interact with each other in different combinations to specify 
the floral organs of Antirrhinum (snapdragon) and Arabidopsis. 
In these seminal studies, homeotic floral mutants were used to 
deduce an elegant ‘ABC model’, later elaborated into an ‘ABCDE 
model’ that explains how the four concentric whorls of sepals, pet-
als, male stamens and female carpels develop in these flowers17–19.  
A-function genes specify sepals; A, B and E are needed to make 
petals; B, C and E male stamens; C female carpels; and D for  
ovules. In homeotic mutants lacking B-function, for example, sepals 
replace petals and carpels replace stamens18. Most of the A, B, C, 
D and E functions are performed by combinations of MADS-box 
transcription factors that operate as homodimers and heterodimers 
and tetramers with different selectivities for binding to variants of 
a common motif in the promoters of target genes19,20. Hence, they 
target overlapping but distinct sets of floral identity genes many of 
which are themselves ohnologues21.

The recent genome comparisons indicate that male ‘BC’ and female 
‘C’ systems already existed to specify reproductive cells in gymno-
sperm cones, and they were duplicated via the ε WGD, after which 
the C duplicates diversified into angiosperm C and D genes. An 
A/E gymnosperm pro-orthologue gave rise to angiosperm A and E 
genes, and further duplicated A genes were also retained after the 
ε WGD19,21–24. These duplicated and diversified gene sets organised 
to generate the first now-extinct flowers, and recent reconstruc-
tions suggest that these were bisexual with petal-like tepals and  
pollen-bearing stamens arranged in multiple concentric whorls, and 
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female carpels in a central spiral25. Among living angiosperms, the 
Amborella lineage evolved a ‘fading borders’ programme, such that 
the whole flower is a spiral that gradually transitions from bracts to 
outer then inner tepals (specified by ABc combinations), from inner 
tepals to stamens (aBC) then carpels (abC), in which upper case 
indicates functions of greatest influence in the respective organs26. 
Only in later-evolving flowers such as Arabidopsis and Antirrhinum 
did the tepals subdivide into sepals and petals, by restricting the 
boundaries of expression of floral identity genes. For example, the 
transcription of A and C genes became mutually exclusive26. Fur-
ther evolutionary diversity in flower form occurred by mechanisms 
that include shifts in the spatial expression of ABC functions across 
flowers, and by further WGDs that elaborated and extended the 
ABC regulatory network27. For example, in stylised orchid flowers, 
subfunctionalisation of duplicated B genes underpins the develop-
ment of three types of petals: three outer tepals, two inner tepals and 
a modified lip28. Recent case studies implicate additional ancient 
WGDs – including one at the base of the eudicots, the γ genome 
triplication in the Pentapetalae (five-parted, the largest flower 
clade), and ρ, σ and τ polyploidisations for monocots – in evolution 
of the phenomenal variety of architectural form and size in pollen, 
fruits and seeds, in diversification of plant defence metabolites, and 
in the co-evolution of angiosperms with pollinators and symbiotic 
bacteria6,29–34.

Mechanisms and cost-benefit analyses in recent 
natural and experimental polyploidies
Evolutionarily recent polyploidy events are also prevalent in flower-
ing plants. Many crops including coffee, bananas, peanuts, tobacco, 
kiwifruit and strawberries were unwittingly selected as polyploids 
for their exaggerated traits such as large fruits, seeds and leaves35. 
For example, the durum wheat used to make pasta is a tetraploid 
resulting from hybrid doubling of the genomes of two diploid 
wild-grass ancestors approximately 0.5 Mya, and was selected 
for domestication much later by Neolithic farmers, during which  
time hexaploid bread wheat emerged by hybridisation of the 
tetraploid with a diploid followed by another WGD35. Like  
wheat, many well-characterised crop polyploids are allopolyploid36, 
which means that the genome became polyploid after a hybrid was 
formed between species, in which case the WGD resolved prob-
lems with meiotic pairing by providing each chromosome with a 
homeologous partner37,38. However, autopolyploidy events, self-
duplication within a species, are suspected in the ancestry of pota-
toes, bananas, poplar and soybean39.

Recent statistical comparisons suggest that an individual  
polyploid plant has a higher risk of extinction than its still-diploid 
relatives40–43. It makes sense that the odds are stacked against a 
newly tetraploid plant. Breeding with still-diploid relatives results 
in triploid progeny that cannot separate evenly into two gametes 
during meiosis, most often resulting in sterile offspring, and unless 
self-pollination can occur, chances may be low of finding compat-
ible polyploid mates. Farmers get around such problems by clon-
ing: grafting apple trees or propagating potato tubers instead of 
seeds, whilst sterility (for example in seedless bananas) is some-
times even preferred44. However, the resulting monocultures may be  
susceptible to pathogens, as when the Fusarium oxysporum fungal 

pandemic brought the popular triploid Gros Michel banana to the 
brink of extinction in the 1960s45.

Nevertheless, their prevalence suggests that once polyploids have 
beaten the early survival odds, with or without human intervention, 
their polyploid traits such as larger organs, stress tolerance and 
altered flowering time may improve fitness or allow them to adapt 
to new ecological niches46. Experimental polyploidies show that 
having extra DNA can produce an immediate phenotypic change, 
attributable to gene dosage effects. For example, dwarfism in apple 
plants with colchicine-induced autotetraploidy correlates with 
increased expression of a microRNA that acts via a gene regulatory 
network to downregulate synthesis of auxin and brassinosteroid 
growth regulators47. More generally, polyploid plants are notable 
for their increased cell and organ size, which is more than a passive 
consequence of increased nuclear DNA content: in experiments 
with Arabidopsis, increases in cell volume upon tetraploidisation 
were found to vary in different mutants and according to cell type, 
indicating a genetic contribution48.

For allopolyploids, the relative contributions of the species hybridi-
sations and the WGDs to subsequent evolution are interwoven. In 
a recent molecular dissection of the circadian clock in allotetra-
ploids formed between diploids Arabidopsis thaliana (At) and  
Arabidopsis arenosa (Aa), biases in heterologous combinations 
of components were discovered: the Aa-derived CCA1 hiking  
expedition (CHE) transcription factor preferentially binds to the 
promoter of the At circadian clock associated 1 (CCA1) gene, 
elevating its expression over that of the AaCCA1. Such biased 
patterns of expression, and of protein–protein and protein–DNA  
interactions in the circadian regulatory network make the rhythm of 
the allotetraploid distinct from that of either parent49.

Common themes from recent reconstructions 
of ancient whole-genome duplications in plants, 
animals and fungi
Successful polyploidy is said to be less common in animals than in 
plants. Based on incidences of chromosomal anomalies in embryos 
that fail to develop, it appears that when two sperm fertilise one 
egg or when meiotic cell division fails the result is usually lethal 
in humans and birds50,51. However, polyploidy is relatively com-
mon in ectothermic vertebrates. Also, synthetic fish and shellfish  
polyploids, generally sterile, have been created to increase food  
production52. Moreover, helped by technical advances in deep 
sequencing, genome assembly and pattern-matching software, 
ancient WGDs have been identified in invertebrate and verte-
brate animal lineages, including mammals. The most recent  
discovery was that the house spider Parasteatoda tepidariorum and 
bark scorpion Centruroides sculpturatus are common descendants 
of a WGD that occurred over 450 Mya, and was distinct from an  
ancestral WGD of horseshoe crabs53,54.

Although few ancient WGDs have been identified thus far in 
unicellular eukaryotes, the diploid baker’s yeast Saccharomyces 
cerevisiae and five other fungal genera all stem from the same  
well-characterised ancestral allopolyploid WGD approximately 
100 Mya55, and further fungal WGDs have been identified 
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recently. For example, the opportunistic honeybee fungal pathogen  
Nosema ceranae, which is spreading to beehives worldwide, is a 
suspected tetraploid56.

In summary, ancient WGDs that were successful in leaving mod-
ern descendants have occurred in diverse eukaryotes across eons of 
time, in terrestrial and aquatic environments. Remarkably, despite 
their radically different contexts and a sparsity of data on ancient 
WGDs outside of laboratory models and domesticated species57, 
common principles are emerging that tie disparate WGD events 
together:

•  �Successive WGDs have occurred in multiple lineages: As  
indicated, angiosperms have experienced multiple WGDs, and 
recursive WGDs among the Brassica crops that include cau-
liflower, broccoli and cabbages have been precisely mapped  
recently58. The vertebrate animals emerged from the inverte-
brates approximately 500 Mya via two sequential rounds of 
WGD (2R-WGD)59. In fish there was a further teleost-specific 
WGD (TSGD, 3R) approximately 300 Mya, followed by a  
salmonid-specific WGD (Ss4R) approximately 95 Mya; and  
certain Xenopus frog species and the red viscacha rat 
Tympanoctomys barrerae also result from lineage-specific 
WGDs60–64. The unicellular ciliate Paramecium tetraurelia has  
a history of three successive WGDs65, and WGDs may have 
contributed to the record number of chromosomes (2n=1260)  
in the fern-like genus Ophioglossum66.

•  �Most, though not all, well-characterised WGDs were allopoly-
ploidy events: In common with most polyploid plants, the tetra-
ploid frog Xenopus laevis and diploid yeast S. cerevisiae were 
recently identified to be descendants of allopolyploidies67,68. 
In contrast, high similarity between homeologous regions in  
salmonid genomes indicate that the TSGD/3R and salmonid 
Ss4R were autopolyploidy events69,70. The mechanisms of 
the 2R-WGD at the origin of the vertebrates 500 Mya are  
unresolved, although early studies argued for two closely spaced 
autotetraploidies71.

•  �Long lag periods may occur between WGDs and subsequent 
species radiations: A WGD generates a new organism that 
is immediately distinct from the parental species, especially  
after inter-species hybridisation allopolyploidies. Intuitively, 
one would expect this new organism to lead to species radia-
tions due to the availability of new genetic material for evolution  
to mould in different ways. In practice however, the mecha-
nistic links between WGDs and species radiations are not so 
clear-cut. In many instances there is a time-lag between WGDs 
and species radiations, formalised as the WGD Radiation Lag-
Time model72. For example, comparisons of post-TSGD fishes,  
including zebrafish and Japanese medaka, show that post-TSGD 
genome changes were biphasic. An initial period of bulk losses 
of chromosomal segments was overlaid by a more extended  
period of gradual gene losses by pseudogenisation and muta-
tion of the retained ohnologues. The latter phase, after the initial 
bulk genome reshaping, correlates with radiation of bony fish  
species62, though how or whether WGD is mechanistically 
linked to fish diversification is still an open question61,73. 
Among the fungi, comparisons of the six genera that share 

the same ancestral WGD as S. cerevisiae suggest that around 
4000 genes still existed in duplicate when these genera were 
diverging from each other, with subsequent losses of different 
paralogues in different lineages, such that, for example, S. cere-
visiae now has 551 pairs of ohnologues and Candida glabrata 
has 404 pairs55,67,74. The next two bulleted points further discuss 
how mechanisms of post-WGD genomic evolution, as well as  
environmental influences, steer the course of speciation and 
phenotypic diversity after a WGD.

•  �Post-WGD chromosomal rearrangements culminate in a return  
to the diploid state (rediploidisation) as well as lineage  
divergence: Allopolyploidy results in immediate rediploidi-
sation (diploid pairing of homeologous chromosomes during  
meiosis/mitosis) if the chromosomes from the two parental  
species are sufficiently distinct that chromosomes do not 
form quadrivalents during cell division. In contrast, auto-
polyploidy leads into a process of gradual rediploidisation37, 
such that descendants of some WGDs that happened just 
tens of Mya are still polyploid, whereas species whose last 
WGD occurred hundreds of Mya (certain angiosperms and 
most vertebrates) have reverted to diploid. The post-Ss4R 
salmonids provide interesting snapshots of genomes in tran-
sition – some chromosomes are still functionally tetraploid  
whereas others have become diploid. Examining these  
genomes in different species reveals that the dynamic interplay 
of rediploidisation, ohnologue divergence, speciation and post-
speciation evolution is complicated75. For example, regions of 
salmonid genomes have been identified for which rediploi-
disation and evolutionary diversification of ohnologues occurs  
after speciation, such that functional divergence of ohnologues 
occurs in lineage-specific ways (Lineage-specific Ohnologue 
Resolution, LORe). LORe may facilitate adaptations of the  
distinct species to different ecological contexts76.

•  �WGDs and species radiations following WGDs have been linked 
with major climate change: Many angiosperm WGDs date to 
the asteroid-triggered Cretaceous-Paleogene boundary events 
approximately 66 Mya, indicating that polyploid establishment 
may be favoured during times of environmental stress77. After 
the Ss4R of approximately 88 Mya, the greatest species radia-
tion occurred in fish that evolved the ability to migrate between 
fresh water and seawater following the climatic cooling of the 
Eocene–Oligocene transition 40 to 50 million years later78. 
Such correlations between polyploidisations and environmental 
changes strengthen the view that the two are linked, perhaps 
due to polyploid organisms being more robust to environmental 
change and stress46.

•  �Knowledge of WGDs informs how laboratory animals are used 
as biomedical models: Zebrafish and polyploid Xenopus frogs 
are valuable models for development and disease. However, 
they have been through lineage-specific WGDs that humans 
have not, which means that phenotypes may differ when 
ohnologues are mutated in zebrafish, polyploid frogs, and  
humans60,79. Moreover, families of sister ohnologues from the 
2R-WGD may subfunctionalise or neofunctionalise in different 
ways along different vertebrate lineages, as has been found for 
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the neurogenin and snail/slug genes80,81. It is therefore impor-
tant to consider the composite functions of all sister ohnologues 
when making cross-species comparisons.

•  �Asymmetries in the fates of DNA duplicates occur at multiple 
levels after ancient allopolyploidies: Patterns of gene loss,  
retention and mutation may differ markedly in the sub-genomes 
derived from each parent of the original hybrid82. A striking 
example is the tetraploid X. laevis in which large- and small-
scale losses of DNA differ to such an extent that chromosomes  
derived from one parental species are markedly shorter than 
chromosomes from the other60. It has been proposed that  
biases in the fates of DNA duplicates may result from ancient 
allopolyploidies, but that more evenly balanced post-WGD  
patterns of gene loss, retention and differentiation may follow 
on from ancient autopolyploidies39. The proposal is that initial 
differences in expression levels and in affinities of interactions 
of ohnologue proteins derived from two parental species49 could 
propagate into further knock-on biases such as preferential  
retention of highly-expressed genes65,66. Another type of post-
WGD bias occurred in the shared ancestry of S. cerevisiae and 
Candida glabrata. Their ancestral WGD occurred approximately  
100 Mya, after one parent from the KLE (Kluyveromyces, 
Lachancea, Eremothecium) clade mated with one of the 
ZT (Zygosaccharomyces, Torulaspora) clade. However, for  
various reasons the mixed parentage of S. cerevisiae was not 
immediately obvious when its genome was sequenced. One 
reason is that the S. cerevisiae genome contains more ZT-than 
KLE-derived sequences, possibly due to biased gene conver-
sion that replaced some KLE-derived sequences with homeolo-
gous ZT-derived ones67,68. Finding that S. cerevisiae results from 
an allopolyploidy, rather than an autopolyploidy as originally  
believed, means that calculations of the relative rates of  
evolution of its ohnologue pairs82 may need revision.

•  �Retained ohnologue gene families are strikingly enriched 
in signalling and regulatory proteins in plants, fungi and  
animals8,82–85: For example, ancestral WGDs that were identified 
recently for the fungi Mucor circinelloides and Phycomyces 
blakesleeanus resulted in increased proportions of genes whose 
transcription is regulated by light86. In humans, while only  
approximately 25% of genes are ohnologues stemming from 
the 2R-WGD, ~66% of protein kinases and nearly 90% of  
well-characterised 14-3-3-binding phosphoproteins are ohno-
logues; and developmental regulators and post-synaptic  
density (PSD) brain proteins are also highly enriched in  
ohnologues87–92. Signalling in biology ranges from simple  
signal-response systems to the complex signalling networks of 
our brains that coordinate complicated actions, create memories 
and find meaning in patterns. How have WGDs shaped these 
networks?

Post-whole-genome duplication evolution of parallel 
processing via duplicated signalling networks, and 
dysregulation in cancers and neurological disorders
Studies in S. cerevisiae, plants and mammals have shown that 
regulatory proteins that form oligomers, that interact transiently 
with multiprotein complexes, and catalyse consecutive steps in 
metabolic and regulatory pathways are enriched among duplicate 
pairs that are retained following a WGD93,94. These findings are 

interpreted by the gene balance hypothesis, which states that copy 
numbers of genes encoding multi-protein structures and pathways 
must be kept in a constant ratio to avoid architectural disruption or  
metabolic imbalances95, although stoichiometry can also be 
achieved by other mechanisms such as differential degradation of 
protein components95.

Interestingly, the architectures of sister ohnologue proteins are  
generally conserved with respect to content and order of their 
domains, at least in vertebrates. Instead, functional divergence 
between sisters occurs via small-scale mutations that lead to  
differences in temporal and spatial patterns of expression, altered 
sites of regulatory post-translational modifications, and changes 
in specificities and affinities of catalytic domains and interaction 
interfaces88,92,96,97.

Examples abound to illustrate how the resulting families of dif-
ferentiated sister ohnologues contribute to phenotypic robustness, 
plasticity and complexity. For instance:

•   �The ‘Gli code’ refers to how different combinations of sister Gli 
transcription factors—Gli1 and Gli2 that activate transcription 
and the repressor Gli3—influence tissue shape and size during 
vertebrate embryonic development. The code can be changed 
via differential regulation of the sister Gli proteins by multiple 
signalling pathways98.

•   �Genetic and biochemical dissections indicate that sets of sister 
ohnologues within the PSD ‘supercomplexes’ of mammalian 
brains can differentially process the signals responsible for 
individual cognitive abilities and emotions99. For example, in 
mammals the discs large MAGUK scaffold protein 4 (Dlg4) has 
evolved a role in simple associative learning, whereas its sisters 
Dlg2 and Dlg3 have distinct and opposing functions in complex 
cognitive processes87.

•   �In S. cerevisiae, differential pathways can be created by co-
ordinated expression of different combinations of ohnologues 
that have been largely partitioned into obligate sub-networks100. 
Switching from one sub-network to another allows the yeast 
to adapt to different stresses, and to reconfigure fluxes through 
metabolism to enable growth on different types and quantities 
of sugars100–104.

•   �The phosphoprotein-binding 14-3-3 proteins interact 
with hundreds of (phosphorylated) ohnologue proteins in 
mammalian cells, suggesting that regulated phosphorylation 
of 14-3-3 docking sites provides a large-scale mechanism 
for switching from one set of sister ohnologues to another.  
Indeed, case studies indicate that one set of ohnologues 
within a cell may be phosphorylated and consequently bind to  
14-3-3s when cells are stimulated by insulin for example, 
while other combinations of sister ohnologues bind to  
14-3-3s in response to phosphorylations that are promoted by 
growth factors, nutrient stress and adrenalin. Partitioning of  
ohnologues into obligate sub-networks does not seem to be so 
clear-cut as in S. cerevisiae however, as mammalian ohnologues 
have been identified that are convergence points for regulated 
interactions with 14-3-3 proteins in response to multiple 
stimuli88,105–106.
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These few examples—and the aforementioned ABCDE model 
of floral development—indicate how the parallelised signalling  
networks of ohnologues generated via WGDs act as multiple-input 
multiple-output systems. Collectively, these systems generate  
different cell phenotypes via differential expression and post- 
translational switching among sets of ohnologues with different 
kinetic and regulatory properties.

Deeper understanding of how post-WGD signalling networks oper-
ate will underpin advances in understanding polygenic disorders. 
For instance, mutations in many ohnologue genes are associated 
with neurological and psychiatric diseases and developmental  
disorders such as RASopathies107,108, and there are many examples 
of heterogeneous patterns of overexpressions and mutations across 
ohnologue gene families in cancers109–111. For example, overex-
pression of insulin receptor substrate 4 (IRS4) drives a subset of 
breast cancers, while IRS1 and IRS2 are not oncogenic in these 
cancers, even though all three IRS proteins activate PI 3-kinase– 
Akt growth signalling. The critical difference is that IRS4 lacks a 
negative feedback mechanism by which its sisters IRS1 and IRS2 
can switch off the pathway via the tyrosine phosphatase SHP2109. 
This example illustrates how the parallel signalling pathways  
generated via WGDs can evolve specific regulatory interconnec-
tions, which in principle enable these systems to integrate inputs  

from multiple sensory stimuli, buffer signal noise via responsive  
feedback loops, and generate a wider repertoire of phenotypic  
outcomes than would be possible with the original simple  
circuit112,113.

Finally, it should be noted that WGDs do not underpin every evolu-
tionary leap: A WGD was hypothesised to explain why cephalopods 
(squids, cuttlefish and octopuses) are behaviourally more sophisti-
cated than other molluscs. However, the octopus genome shows no 
evidence of a WGD. Rather, sensory intelligence in cephalopods is 
likely to be underpinned by the massively expanded gene families 
of C2H2 zinc-finger transcription factors and protocadherins that 
are expressed in their neuronal and sensitive tissues114. It will be  
fascinating to compare the neural network topologies that have  
been built from gene families generated via WGDs versus those made 
of multiple small-scale duplications in humans and octopuses.
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