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Abstract: The anthocyanin composition and HPLC fingerprints of six small berries endemic 

of the VIII region of Chile were investigated using high resolution mass analysis for the first 

time (HR-ToF-ESI-MS). The antioxidant features of the six endemic species were 

compared, including a variety of blueberries which is one of the most commercially 

significant berry crops in Chile. The anthocyanin fingerprints obtained for the fruits were 

compared and correlated with the antioxidant features measured by the bleaching of the 

DPPH radical, the ferric reducing antioxidant power (FRAP), the superoxide anion 

scavenging activity assay (SA), and total content of phenolics, flavonoids and anthocyanins 

measured by spectroscopic methods. Thirty one anthocyanins were identified, and the major 

ones were quantified by HPLC-DAD, mostly branched 3-O-glycosides of delphinidin, 

cyanidin, petunidin, peonidin and malvidin. Three phenolic acids (feruloylquinic acid, 

chlorogenic acid, and neochlorogenic acid) and five flavonols (hyperoside, isoquercitrin, 

quercetin, rutin, myricetin and isorhamnetin) were also identified. Calafate fruits showed the 
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highest antioxidant activity (2.33 ± 0.21 μg/mL in the DPPH assay), followed by blueberry 

(3.32 ± 0.18 μg/mL), and arrayán (5.88 ± 0.21), respectively.  

Keywords: endemic berries; poliphenolics; quantitation; antioxidants; HPLC-MS; murtilla; 

calafate; chequen; arrayan; meli; luma; blueberry 

 

1. Introduction  

Fruits and vegetables are considered highly protective for human health, particularly against ageing 

and various oxidative-stress related diseases, due to their content of healthy phytochemicals [1]. 

Several epidemiological studies have highlighted the association between the consumption of foods 

with high contents of phytochemicals, mainly flavonols, phenolic acids and anthocyanins, and the 

prevention of degenerative diseases such as cardiovascular diseases, ageing, cancer and other 

degenerative disorders [2,3]. Anthocyanins are a group of red, purple, violet and blue water soluble 

polyphenolic pigments widely distributed in berry fruits which can act as antioxidants or free radical 

scavengers, thus preventing oxidative stress [4]. The term berry fruit generally refers to some small 

fruit that lacks big seeds and can be eaten whole. Berry fruits are often the richest source of antioxidant 

phytochemicals among fruits and vegetables [5], thus the chemical study of native berry fruits is of great 

economic significance since it can support the consumption and commercial activities of gatherers, 

growers, micro-companies and industries associated with the use of native plants. Chilean fruits such as 

arrayán, chequen, calafate, meli, maqui and murta (Figure 1) are small pigmented native berries which 

were collected since pre-Colombian times by South American Amerindians as a food source. At present, 

there is still some regional consumption of the small berries from trees and shrubs belonging to the 

Myrtaceae (Chilean myrtle, murta, arrayán, chequén, luma and meli), Berberidaceae (michay and 

calafate) as well as Eleaocarpaceae (maqui) occuring in southern Chile and Argentina. In Chile, “murta” 

or “murtilla” (Myrtus ugni Molina or Ugni molinae Turczaninov), a wild perennial shrub also commonly 

known as Chilean guava, is the best-known of the native Myrtaceae plants, where the people have long 

appreciated its red edible berries for its unique aroma. Infusions of the leaves of this species are 

anti-inflammatory and analgesic [6] and the fruits contain several volatile compounds responsible for the 

aroma [7].  

Arrayán (Luma apiculata (DC.) Burret is an evergreen Myrtaceae tree occurring in southern Chile 

and Argentina of about 10 m in height with orange-red trunk and edible purple black berries, 1–1.5 cm in 

diameter, that ripen in early autumn and are half the size, with more intense color, but similar aspect and 

consistence as the worldwide commercialized blueberries (Vaccinium corymbosum). Murillo [8] 

describes the medicinal properties of Eugenia apiculata D.C. (a synonym for L. apiculata, also known as 

Myrceugenella apiculata (DC.) Kausel [9]). The traditional use indications include aromatic, slightly 

astringent, balsamic and anti-inflammatory uses. The fruits were used to prepare liquor. This 

information is in agreement with the aromatic flavor that is attractive for local producers of alcoholic 

beverages. The fruits of Luma chequén (Molina) A. Gray, syn: Myrceugenella chequen (Mol.) Kaus are 

edible small berries with similar size than those of arrayán and murta. de Mösbach [10] refers to uses of 

L. chequen in infusions and syrups as an astringent. The traditional use indications in traditional 
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medicine can be related to the tannin content of the plant which is also recommended as a wound wash 

and to treat dysentery. Both L. apiculata and L. chequen fruits were used to prepare “chicha”, a South 

American native fermented beverage [9]. Calafate or Magellan barberry (Berberis microphylla G. Forst, 

sin. Berberis buxifolia, and Berberis heterophylla) is another Patagonian shrub with edible dark small 

berries that can grow in a great variety of areas [11]. The production of calafate is concentrated in small 

gardens in the Regions of Aysén and Magallanes for local production of jams and juices [11]. This fruit 

contains several anthocyanins [12] and high content of cinnamic acids [13]. Maqui (Aristotelia chilensis) 

fruit is now one of the most famous dark colored Chilean berries because of its high content of 

anthocyanins [14]. Calafate, maqui and murta are antioxidant berries considered superfruits due to their 

high content of phenolic compounds, including several anthocyanins [6,12,15]. Several edible 

Myrtaceae fruits known worldwide present free radical scavenging constituents including anthocyanins [16], 

while Chilean Myrtaceae with high anthocyanin contents have been assessed for antioxidant activity and 

showed good antioxidant features [17–19]. Mass spectrometry has undergone tremendous technological 

improvements in the last years, especially with the development of ionization methods such as electrospray 

(ESI), atmospheric pressure chemical ionization (APCI) and high resolution mass detectors such as time 

of flight (TOF). Indeed, several antioxidant phenolics in edible plants [20]; fruits [21–23]; nuts [24] and 

food byproducts [25] were analyzed using HPLC hyphenated with accurate high resolution time of flight 

analyzers (HPLC-PDA-ToF-MS). However, the chemical analysis regarding anthocyanins or 

metabolomics present in wild Chilean berries including arrayán, chequén, murta, and calafate was 

performed using low resolution methods (ESI-ion trap-MS) [12,15,19], while the phenolic constituents 

of A. meli have not beenreported to the best of our knowledge.  

Figure 1. Pictures of (a) chequén, (Luma chequén) (b) murta, (Ugni molinae) (c) arrayán, 

(Luma apiculata), (d) blueberries, (Vaccinium corymbosum) (e) meli, (Amomyrtus meli and 

(f) calafate (Berberis microphylla) growing in the VIII region of Chile. 
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The aim of the present work was the analysis by high resolution mass spectrometry (HR-MS) of some 

important native berries from Chile, and the comparison of the antioxidant properties and total 

phenolics. In the present work the anthocyanin fingerprints and polyphenolic content of six small 

Chilean berries (arrayán, chequén, murta, calafate, meli and Chilean blueberry var. Brigitta, Figure 1) 

from the VIII region of Chile were compared and correlated with the antioxidant capacities measured by 

the DPPH radical bleaching, ferric reducing antioxidant power (FRAP), and the superoxide anion 

scavenging activity (SA) assays. The anthocyanins in berries were identified for the first time with the 

help of PDA analysis and high resolution time of flight mass spectrometry (HPLC-ESI-ToF-MS) plus 

comparison with authentic standards. 

2. Results and Discussion  

2.1. Accurate MS-PDA Identification of Anthocyanins in Six Small Berry Fruits from Southern Chile 

Anthocyanins in berry fruits were accurately detected and identified using HPLC with UV-visible 

detection (PDA, Figure 2, Table 1) and high resolution time of flight mass spectrometry (HR-ToF-MS, 

Table 1). The 31 anthocyanins identified in the six berries (Figure 3) were mainly 3-O-glycoside 

conjugates and their derivatives. 

Figure 2. HPLC-PDA chromatograms of six berries from the VIII region of Chile.  

(a) Vaccinium corymbosum, (b) Berberis microphylla, (c) Ugni molinae, (d) Luma chequén, 

(e) Luma apiculata, and (f) Amomyrtus meli monitored at 520 nm. Peaks numbers refer to 

those indicated in Table 1. 
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Figure 2. Cont. 
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Figure 3. Structures of the anthocyanins identified in six berries from the VIII region of Chile. 

  
* Identified using standard compounds. Gal: Galactose; Glu: Glucose; Ara: Arabinose; Rha: Rhamnose; 
Cou: Coumaric; Succ: Succinic acid; Ac: Acetyl group; Caff: Caffeic acid. 

Twenty three compounds were detected in blueberry (peaks 1–3, 6–15, 17, 19, 20, 22, 25–28, 30 and 31, 

Table 1) fourteen in calafate (peaks 3, 4, 7, 8, 10, 11, 15, 16–18, 21, 24, 28 and 29), nine in arrayán 

(peaks 2, 3, 7, 10, 14, 16, 17, 24 and 29), and six in meli (peaks 3, 6, 7, 10, 11 and 17), chequén (peaks 3, 

5, 6, 7, 10 and 11) and murta (peaks 5, 8, 11, 16, 18 and 23). Figures S2 and S3 (Supplementary 

Material) show as examples full scan ToF-MS spectra of peaks 3, 8, 9, 10, 16, 17, 21, 22 and 28). Peaks 

3, 6, 7, 10, 11, 13, 16 and 17 were identified by spiking experiments with authentic standards as 

delphinidin 3-O-galactoside (HR-MS ion at m/z 465.1043, λmax: 276–523), cyanidin-3-O-galactoside 

(HR-MS ion at m/z 449.1052, λmax: 280–511), cyanidin-3-O-glucoside (HR-MS ion at m/z 449.1099, 

λmax: 280–517), petunidin-3-O-glucoside (HR-MS ion at m/z 479.1233, λmax: 276–526), petunidin-3-O- 

galactoside (HR-MS ion at m/z 479.1233, λmax: 276–523), peonidin-3-O-galactoside (HR-MS ion at m/z 

463.1234, λmax: 279–520), peonidin-3-O-glucoside (HR-MS ion at m/z 463.1258, λmax: 279–523), and 

malvidin-3-O-glucoside (HR-MS ion at m/z 493.1252, λmax: 276–527), (Table 1), respectively.  
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Table 1. Identification of phenolic compounds in chilean berries by LC-PDA-HR-ToF-ESI-MS data.  

Peak 
Number 

Retention 
Time (min) 

Uv max 
HR-M + ion 

(ppm) 
Other ions 

(Aglycon moiety) 
Formula Identification Fruit 

1 4.8 276–523 641.1687 (−4.8) 317.0618 (Petunidin) C28H33O17 Petunidin-3-O-di-hexoside blue 
2 5.9 280–517 611.1614 (0.3) 449.1709 (Cyanidin-3-O-hexoside) C27H31O16 Cyanidin- 3-O-di-hexoside blue, arr 
3 6.3 276–523 465.1040 (1.8) 303.0500 (Delphinidin) C21H21O12 Delphinidin 3-O-galactoside * blue, cal, che, arr, lu 
4 6.8 276–525 465.1038 (1.1) 303.0495(Delphinidin) C21H21O12 Delphinidin 3-O-glucoside * cal 
5 7.1 280–517 595.1478 (−31.0) 449.1089 (Cyanidin-3-O-glucoside) C27H31O15 Cyanidin 3-O-rutinose mu 
6 7.8 280–511 449.1052 (−7.1) 287.0675 (Cyanidin) C21H21O11 Cyanidin-3-O-galactoside * blue, che, lu 
7 9.1 280–517 449.1099 (3.3) 287. 0507 (Cyanidin) C21H21O11 Cyanidin-3-O-glucoside * blue, che, lu 
8 9.8 276–526 625.1789 (3.2) 479.1198 (Petunidin-3-O-glucoside) C28H33O16 Petunidin-3-O-rutinoside blue, cal, mu 
9 10.7 276–527 639.1911 (−2.2) 493.1136 (Malvidin-3-O-glucoside) C29H35O16 Malvidin-3-O-rutinose blue 

10 11.2 276–526 479.1233 (9.0) 317.0672 (Petunidin) C22H23O12 Petunidin-3-O-glucoside * blue, che, arr, lu 
11 11.9 276–523 479.1224 (7.1) 317.0646 (Petunidin) C22H23O12 Petunidin-3-O-galactoside * blue, cal, mu, che, lu 
12 12.5 276–525 609.1825 (0.8) 301.0829 (Peonidin) C28H33O15 Peonidin 3-O-rutinose blue 
13 12.7 279–520 463.1234 (−1.3) 301.0689 (Peonidin) C22H23O11 Peonidin-3-O-galactoside * blue 
14 13.4 276–527 493.1361 (3.0) 331.0832 (Malvidin) C23H25O12 Malvidin-3-O-galactoside * blue, arr 
15 14.0 276–523 435.0936 (2.1) 303.0472 (Delphinidin) C20H19O11 Delphinidin-3-O-arabinoside blue, cal 
16 14.7 276–527 463.1258 (3.9) 301.1257 (Peonidin) C22H23O11 Peonidin-3-O-glucoside cal, mu, arr 
17 15.3 276–527 493.1252 (−19.0) 331.0789 (Malvidin) C23H25O12 Malvidin-3-O-glucoside * blue, cal, arr, lu 
18 15.6 279–527 433.1131 (−0.92) 301.0709 (Peonidin) C21H21O10 Peonidin-3-O-arabinoside cal, mu 
19 16.2 276–526 449.1066 (−4.0) 317.1969 (Petunidin) C21H21O11 Petunidin-3-O-arabinoside blue 
20 16.7 280–517 419.0978 (−1.9) 287. 0696 (Cyanidin) C20H19O10 Cyanidin-3-O-arabinoside * blue 
21 17.3 276–311–527 639.1933 (34.2) 493.1382 (Malvidin-3-O-glucoside) C32H31O14 Malvidin 3-O-(6ꞌꞌ coumaroyl) glucoside cal 
22 17.8 276–527 463.1284 (9.5) 330.1706 (Malvidin) C22H23O11 Malvidin-3-O-arabinose * blue 
23 18.0 280–517 549.1639 (7.1) 449.1082 (Cyanidin-3-O-glucose) C25H25O14 Cyanidin-3-O-(6ꞌꞌ succinoyl)-glucose mu 
24 18.6 279–523 625.1820 (8.2) 463.0905 (Peonidin-3-O- hexoside) C28H33O16 Peonidin 3-O-di hexoside cal 

25 19.4 276–311–523 919.4460 (2.1) 303.0504 (Delphinidin) C42H47O23 
Delphinidin-3-O-rutinose 

(6ꞌꞌ-p-coumaroyl)-2ꞌꞌ-O-glucose 
blue 

26 20.0 276–523 507.1135 (−0.4) 303.0495 (Delphinidin) C23H23O13 Delphinidin 3-O-(6ꞌꞌ acetyl) glucoside blue 
27 20.6 280–517 491.1206 (3.6) 287.1232 (Cyanidin) C23H23O12 Cyanidin 3-O-(6ꞌꞌ acetyl) glucoside blue 
28 21.4 276–526 521.1293 (−0.4) 317.0676 (Petunidin) C24H25O13 Petunidin 3-O-(6ꞌꞌ acetyl) glucoside blue, cal 
29 22.3 276–527 535.1451 (−0.2) 331.0789 (Malvidin) C25H27O13 Malvidin 3-O-(6ꞌꞌ acetyl) galactoside cal, arr 
30 23.2 276–321–523 627.1393 (−6.8) 287.0743 (Cyanidin) C30H27O15 Delphinidin-3-O-(6ꞌꞌcaffeoyl)-glucose blue 
31 24.0 276–527 535.1463 (1.5) 331.0673 (Malvidin) C25H27O13 Malvidin 3-O-(6ꞌꞌ acetyl) glucoside blue 

Abbreviations: blue: Blueberry, cal: Calafate, mu: Murta, che: chequén, arr: Arrayán, me: Meli. * Identified by spiking experiments with authentic compounds. 
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Peaks 4 and 14 were identified as the monoglucosides delphinidin 3-O-glucoside and 

malvidin-3-O-galactoside (HR-MS ions at m/z 493.1361 and 465.1038, respectively [19,26,27]. Peaks 1, 

2 and 24 showing HR-MS molecular ions at m/z 611.1614, 641.1687 and 625.1820 coincident with the 

formulas C27H31O16 (0.3), C28H33O17 (−4.8) and C28H33O16 (8.2) were identified as petunidin (λmax: 

276–523), cyanidin (λmax: 280–517), and peonidin (λmax: 279–523), dihexosides [12,28]. In a similar 

manner, peaks 5 (HR-MS at m/z 595.1478, C27H31O15, −31.0), 8 (HR-MS at m/z 625.1789, C28H33O16, 

3.2), 9 (HR-MS at m/z 639.1911, C29H35O16, −2.2) and 12 (HR-MS at m/z 609.1825, C28H33O15, 0.8) were 

assigned as cyanidin, petunidin, malvidin and peonidin rutinosides [12,26,29,30]. Peaks 15, 18–20 and 22 

(Figure 2) with HR-MS molecular ions at m/z 435.0936 (C20H19O11, 2.1), 433.1131 (C21H21O10, −0.92), 

449.1066 (C21H21O11, −4.0), 419.0978 (C20H19O10, −1.9) and 463.1284 (C22H23O11) were identified as 

delphinidin (λmax: 276–523), peonidin (λmax: 276–527), petunidin (λmax: 276–523), cyanidin (λmax: 

280–517) and malvidin (λmax: 276–527) arabinosides, respectively [26,31], While peaks 21 (HR-MS at 

m/z 639.1933, C32H31O14) and 23 (HR-MS at m/z 549.1639, C25H25O14) were identified as malvidin 

3-O-(6ꞌꞌ coumaroyl) glucoside and cyanidin-3-O-(6ꞌꞌ succinoyl)-glucose [28,30]. Peak 25 with a 

molecular ion at m/z 919.4460 (C42H47O23) present in blueberries was identified as the complex 

anthocyanin: delphinidin-3-O-rutinose (4ꞌꞌꞌ-O-p-coumaroyl)-2ꞌꞌ-O-glucose [27,32]. Peaks 26–28 and 31 with 

HR-MS peaks at m/z 507.1135 (C23H23O13), 491.1206 (C23H23O12), 521.1293 (C24H25O13), and 535.1463 

(C24H25O13), were identified as delphinidin, cyanidin, petunidin, and malvidin 3-O-(6ꞌꞌ acetyl) glucosides as 

reported [27,31], while peak 30 (HR molecular ion at m/z 627.1393 coincident with a formula of 

C30H27O15 (−6.8) was identified as delphinidin-3-O-(6ꞌꞌ caffeoyl)-glucose [29]. An isomer of peak 31 

(peak 29, HR-MS ion at m/z 535.1451 (C25H27O13, −0.2), was identified as malvidin 3-O-(6ꞌꞌ acetyl) 

galactoside [27,31].  

2.2. Identification of Phenolic Acids and Flavonols 

Other minor phenolic compounds [12,15,33] were present in all six blueberries analyzed which were 

accurately identified (Figure 4). The phenolic acids: feruloyl-quinic acid (HR-ToF-MS: 369.1105, MF: 

C17H21O9, −0.3), chlorogenic acid (HR-ToF-MS: 355.1061, MF: C16H19O9, 9.0) and neochlorogenic 

acid (HR-ToF-MS: 355.1038, molecular formula: C16H19O9, 2.5), the flavonols quercetin (HR-ToF-MS: 

303.0489, MF: C15H11O7, error −5.3), myricetin (HR-ToF-MS: 319.0459, molecular formula: C15H11O8, 

−1.6) rutin (HR-ToF-MS: 611.1614, MF: C27H31O16, 0.3) hyperoside (HR-ToF-MS: 465.1043, MF: 

C21H21O12, 2.2) isoquercitrin (HR-ToF-MS: 465.1032, MF: C21H21O12, −0.2) and isorhamnetin 

(HR-ToF-MS: 317.0670, MF: C16H13O7, 2.8; this last flavonoid was only present in chequén fruits). 

2.3. Total Phenolics, Flavonoids and Anthocyanin Contents 

The total phenolic content (TPC) varied from 5.11 ± 0.18 for chequén to 65.53 ± 1.35 µM Trolox 

equivalents/g DW for calafate fruits, and showed linear correlation with the antioxidant assays  

(R2 = 0.8755 and R2 = 0.9143 for TPC/DPPH and TPC/FRAP assays, respectively, Table 2) the TPC 

of our sample of calafate showed values two times higher than a Chilean sample from Mañihuales [11] 

but was close to that reported for a Chilean sample from Faro San Isidro [12]. The total anthocyanin 

content (TAC) ranged from 1.54 ± 0.05 for chequén to 51.62 ± 1.78 mg cyanidin-3-glucoside/g DW for 

calafate and showed strong linear correlation with the antioxidant assays (R2 = 0.7044 and R2 = 0.9914 
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for TAC/DPPH and TAC/FRAP assays, respectively, Table 2). The total flavonoid content (TFC) 

showed similar trend, varying from 2.57 ± 0.11 for L. chequén to 45.72 ± 2.68 mg quercetin/g DW for 

Berberis microphylla. The TFC showed linear correlation with the antioxidant assays (R2 = 0.678 for 

TFC/DPPH and R2 = 0.9856 for TFC/FRAP assays, respectively. The total anthocyanin content for our 

sample of calafate was close to the values reported for Chilean samples collected in La Junta and 

Darwin (16.76 mmol/g fresh weigh) and Faro San Isidro (15.44 mmol/g fresh weigh) taking into 

account conversion factors and 85% water loss (approximately 50.11 and 46.21 mg/g dry weight, 

respectively) [12]. The levels of anthocyanins in the fruits can explain the different intensity in the 

color especially for murta, which is red-rose, in comparison with calafate which is purple and 

blueberry and arrayán which are black (Figure 1). 

Table 2. Scavenging of the 1,1-diphenyl-2-picrylhydrazyl Radical (DPPH), Ferric Reducing 

Antioxidant Power (FRAP), Superoxide Anion scavenging activity (SA), Total Phenolic 

Content (TPC), Total Flavonoid Content (TFC), Total Anthocyanin Content (TAC), and 

Extraction Yields of Six Edible Berry Fruits From the VIII Region of Chile.  

Species DPPH α FRAP β SA ο TPC δ TFC ψ TAC 
χ
 

Extraction 

Yields (%) µ 

Vaccinium 

corymbosum  

3.32 ± 0.18 a 96.15 ± 5.39 df 72.61 ± 1.91 r 45.86 ± 3.46 18.50 ± 3.75 p 21.41 ± 1.65 6.72 

Berberis 

microphylla  

2.33 ± 0.21 ab 124.46 ± 6.54 81.31 ± 2.95 s 65.53 ± 1.35 45.72 ± 2.68 51.62 ± 1.78 4.99 

Luma chequén  12.92 ± 0.30 76.22 ± 3.45 e 43.79 ± 2.91 t 5.11 ± 0.18 k 2.57 ± 0.11 m 1.54 ± 0.05 7.39 

Luma apiculata 5.88 ± 0.21 93.4± 4.68 dg 64.22 ± 3.46 27.61± 1.61 12.80± 2.43 np 15.24 ± 1.49 l 6.34 

Ugni molinae 10.94 ± 0.32 c 81.10 ± 4.58 ehj 52.22 ± 1.81 t 9.24 ± 0.28 k 5.54 ± 0.91 mo 6.85 ± 0.10 5.21 

Amomyrtus meli  7.46 ± 0.10 b 88.29 ± 6.34 fghi 56.44 ± 2.32 17.52 ± 0.66 11.76 ± 2.04 no 13.33 ±2.69 l 4.89 

Gallic acid ϕ 1.36 ± 0.22 

(7.99 ± 1.29 μM) 

148.1 ± 8.35 94.39 ± 1.98 - - - - 

Cyanidin 

3-O-glucoside ϕ 

8.47 ± 1.23 c 

(17.47 ± 2.53 µM)

95.48 ± 6.72 ij 76.85 ± 1.71 rs - - - - 

α Antiradical DPPH activities are expressed as IC50 in µg/mL for extracts and compounds. β Expressed as µM 

trolox equivalents/g dry weight. ο Expressed in percentage scavenging of superoxide anion at 100 µg/mL.  
δ Total phenolic content (TPC) expressed as mg gallic acid/g dry weight. ψ Total flavonoid content (TFC) 

expressed as mg quercetin/g dry weight. χ Total Anthocyanin content (TAC) expressed as mg cyanidin 

3-O-glucoside/g dry weight. µ Extraction yields expressed in percent W/W extraction on the basis of freeze 

dried material. ϕ Used as standard antioxidants. Values in the same column marked with the same letter are 

not significantly different (at p < 0.05). 

2.4. Quantification of Individual Anthocyanins 

The major anthocyanins were quantified in the six edible berries, for some of the species for the first 

time. The order for the sum of the major anthocyanins was: calafate > blueberries > arrayan > meli > 

murtilla > chequen (Table 3) which is coincident with the trend found for the total anthocyanin content 

(TAC) (Table 2) measured by a colorimetric method. The HPLC quantification method showed good 

performance, baseline was good (Figure 2), and the correlation coefficients for the standard curves of the 
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glycosilated standard anthocyanins varied from 0.998 to 0.999. The limits of detection for three 

representative compounds were 0.08 to 0.12 μg/mL and the limits of quantification were 0.24 to 0.35 μg/mL 

(Table 4). Repeatability for retention time and peak area was good, relative standard deviations were 

below 2.00% [34]. As seen in Table 4 all recovery results varied from 97.93 ± 0.33 to 99.72 ± 1.34 and 

were within the usually required recovery range of 100% ± 5% [34]. However, the anthocyanin 

concentration in our Chilean blueberries sample is quite different from those published for blueberries 

from other locations [31,35] being the major anthocyanins found peonidin-3-O-arabinoside and 

delphinidin-3-O-arabinoside (37.43 ± 4.76 and 34.43 ± 3.28 mg/100 g fresh weight, respectively) 

followed by malvidin-3-O-glucoside and petunidin-3-O-rutinoside (Table 3). In the case of calafate 

(Berberis microphylla) the major anthocyanins were delphinidin 3-O-galactoside, petunidin-3-O-glucoside 

and malvidin-3-O-glucoside (60.42 ± 1.28, 51.39 ± 1.65 and 42.94 ± 1.25, mg/100 g fresh weight, 

respectively). We found as the major anthocyanin in this species delphinidin 3-O-galactoside, but Ruiz 

et al [15] reported delphinidin 3-O-glucoside as the major constituent (8.83 ± 1.53 µmol/g fresh weight), 

followed by petunidin-3-glucoside (4.71 ± 1.08 µmol/g fresh weight). For chequén (Luma chequen) the 

main anthocyanins were cyanidin-3-O-galactoside, petunidin-3-O-glucoside and petunidin-3-O-galactoside 

(43.46 ± 1.39, 12.83 ± 1.65 and 9.55 ± 1.02 mg/100 g fresh weight, respectively), and for arrayán 

(Luma apiculata) were petunidin-3-O-glucoside, malvidin-3-O-glucoside, delphinidin 3-O-galactoside 

and cyanidin-3-O-glucoside (48.21 ± 2.2, 44.75 ± 3.31, 34.43 ± 2.12 and 9.45 ± 0.15 mg/100 g fresh 

weight, respectively). Our sample of murtilla (Ugni molinae) showed two main anthocyanins 

(petunidin-3-O-rutinoside and  peonidin-3-O-glucoside, Figure 2, Tables 1 and 3) and meli (Amomyrtus 

meli) showed six main glycosilated anthocyanins including cyanidin-3-O-galactoside and 

petunidin-3-O-galactoside as major ones (Tables 1 and 3). These compounds were quantified in these 

Luma species for the first time. 

2.5. Antioxidant Features  

The order of the antioxidant activity measured by the bleaching of the radical DPPH and the ferric 

reducing antioxidant power (FRAP) showed by the six fruits was calafate > blueberry > arrayán > meli 

> murta > chequén which is also the order found for the sum of the individual major anthocyanins 

measured by HPLC. A similar trend was observed for superoxide anion scavenging activity (Table 2, 

Figure S1, Supplementary Material). Calafate showed the highest antioxidant activity (2.33 ± 0.21 µg/mL 

and 124.46 ± 6.54 µM TE/g dry weight in the DPPH and FRAP assays, respectively, Table 2), followed 

by blueberry (3.32 ± 0.18 µg/mL and 96.15 ± 5.39 µM TE/g DW), and arrayán (5.88 ± 0.21 and  

93.4 ± 4.68 µM TE/g DW, Table 2). The bleaching of the radical DPPH for calafate was close to that 

shown by the standards gallic acid and cyanidin-3-glucoside (1.36 ± 0.22 and 8.47 ± 1.23 µg/mL, 

respectively). The antioxidant activities showed positive correlation with polyphenolic content assays 

(0.67 ≥ R2 ≥ 0.9856). It is reported that fruits antioxidant activities and composition of phenolics  

are dependent of genetic differences among different species and environmental conditions and harvest 

and/or ripeness within the same species [11,36] which can explain the differences in phenolic 

composition and antioxidant capacities found between the species under study and among other  

reports of antioxidant activities and phenolic composition of the same species from other zones of 

Chile [11,12,15].  
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Figure 4. Full scan ToF MS spectra and structures of minor phenolic compounds detected in 

six berries from the VIII region of Chile. (a) Hyperoside, (b) feruloyl-quinic acid, (c) 

chlorogenic acid (d) isoquercitrin (e) quercetin, (f) neochlorogenic acid (g) rutin (h) 

isorhamnetin and (i) myricetin. 
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Table 3. Major anthocyanins quantified by HPLC-DAD in six edible berry fruits from the VIII Region of Chile. 

 Anthocyanin (mg/100 g) a  

Berry Species 2 3 6 7 8 10 11 13 15 16 17 18 20 Total 

Vaccinium corymbosum 19.23 ± 3.18 8.51 ± 3.29 a 21.17 ± 0.32 0.96 ± 0.12 14.29 ± 2.15 9.27 ± 2.22 d 1.78 ± 0.01 14.28 ± 0.98 34.43 ± 3.28 nd 16.42 ± 1.45 nd 37.43 ± 4. 76 177.77 

Berberis microphylla nd 60.42 ± 1.28 nd 21.89 ± 2.74 b nd 51.39 ± 1.65 e 6.45 ± 0.89 nd 9.28 ± 0.01 3.96 ± 0.02 42.94 ± 1.25 f 3.84 ± 0.02 nd 200.17 

Luma chequén nd 3.72 ± 0.02 43.46 ± 1.39 5.29 ± 0.23 nd 12.83 ± 1.65 9.55 ± 1.02 nd nd nd nd nd nd 74.85 

Luma apiculata 2.6 ± 0.01 34.43 ± 2.12 nd 9.45 ± 0.15 nd 48.21 ± 2.2 e nd nd nd nd 44.75 ± 3.31 f nd nd 139.44 

Ugni molinae nd nd nd nd 51.37 ± 0.28 nd 4.87 ± 0.02 nd nd 61.48 ± 2.42 nd 4.43 ± 0.04 nd 122.15 

Amomyrtus meli nd 8.87 ± 1.76a 48.39 ± 2.23 20.43 ± 2.39 b  13.54 ± 2.46 d 27.12 ± 1.25 nd nd nd 8.45 ±1.13 nd nd 126.80 

a Expressed as mg/100 g fresh weight, measurements are expressed as mean ± SD of five parallel determinations. (Values in the same row marked with the same letter are not 

significantly different at p < 0.05). nd: not detected/determined.  

Table 4. Inter-day and Intra-day accuracy and precision (as RSD%), limits of detection (LOD) and quantification (LOQ) and recovery of three 

major anthocyanins (compounds 3, 7 and 10). 

  Inter day   Intra day     

Compound 

Nominal 

concentration 

(μg/mL) 

Observed 

concentration 

(μg/mL) 

Accuracy 

(%) 
RSD% 

Observed 

concentration 

(μg/mL) 

Accuracy (%) RSD% 
LOD-LOQ 

(μg/mL) 

Sample- 

Recovery 

(mean ± RSD% ) 

3 10 10.94 ± 0.05 109.45 0.071 11.83 ± 0.05 118.33 0.04 0.08–0.24 Calafate 97.93 ± 0.33 

3 20 20.91 ± 0.62 104.55 0.80 21.73 ± 0.37 108.66 0.34  Arrayán 98.73 ± 1.50 

3 40 40.49 ± 0.70 101.23 0.69 41.2 ± 0.72 103.00 0.70  Blueberry 98.57 ± 0.33 

7 10 12.0 ± 0.08 120.00 0.08 12.13 ± 0.15 121.33 0.12 0.12–0.35 Calafate 99.72 ± 1.34 

7 20 19.81± 0.27 99.08 0.28 20.36 ± 0.76 101.80 0.75  Arrayán 98.97 ± 1.98 

7 40 40.77 ± 0.37 101.93 0.36 40.46 ± 0.67 101.15 0.66  Chequén 99.84 ± 0.16 

10 10 10.56 ± 0.81 105.66 0.77 9.99 ± 0.12 99.96 0.12 0.09–0.30 Calafate 99.31 ± 0.35 

10 20 20.20 ± 0.59 101.03 0.58 20.61 ± 0.33 103.05 0.32  Arrayán 98.59 ± 0.38 

10 40 41.04 ± 0.41 102.64 0.40 40.8 ± 0.36 40.8 0.79  Chequén 98.19 ± 0.76 
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3. Experimental 

3.1. Chemicals and Plant Material 

Folin–Ciocalteu phenol reagent (2 N), reagent grade Na2CO3, AlCl3, HCl, FeCl3, NaNO2, NaOH, 
quercetin, trichloroacetic acid, sodium acetate, HPLC-grade water, HPLC-grade acetonitrile, reagent 

grade MeOH and formic acid were obtained from Merck (Darmstadt, Germany) Cyanidin, delphinidin 

3-O-galactoside, cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, petunidin-3-O-glucoside, 

petunidin-3-O-galactoside, peonidin-3-O-galactoside, peonidin-3-O-glucoside and malvidin-3-O-glucoside 

(all standards with purity higher than 95% by HPLC) were purchased either from ChromaDex (Santa Ana, 

CA, USA), Extrasynthèse (Genay, France) or Wuxi Apptec Co. Ltd. (Shangai, China). Gallic acid, 

TPTZ (2,4,6- tri(2-pyridyl)-s-triazine), Trolox, tert-butylhydroperoxide, nitro blue tetrazolium, xanthine 

oxidase and DPPH (1,1-diphenyl-2-picrylhydrazyl radical) were purchased from Sigma-Aldrich 

Chemical Co. (St. Louis, MO, USA). All ripe fruits for this study (aprox. 500 g each) were collected at 

Región del Bio-Bio, Chile. Sampling was performed using sterile disposable gloves and rigid plastic 

sample containers and each sample was submitted individually by overnight courier to our laboratory in 

Antofagasta to prevent deterioration. This sampling methodology was previously used for other edible 

fruits [19,23,33]. Random healthy ripe fruits, representative of the lot, were collected from various 

specimens (at least 10 fruits per specimen) and different locations (at least 3) in each growing area.  

Ripe fruits of arrayán (L. apiculata (DC.) burret, chequén (L. chequén (Molina) A. Gray), and murta  

(U. molinae Turcz) were collected in Re-Re, Chile in May 2011. Meli (A. meli (Phil.) D. Legrand & 

Kausel and calafate (B. microphylla G. Forst) were collected in the Andean woods of Santa Bárbara, in 

May 2011. Blueberries (V. corymbosum) variety highbush Brigitta were collected in April 2011 in the 

area of Chillán. Voucher herbarium specimens including samples of fruits were deposited at the 

Laboratorio de Productos Naturales, Universidad de Antofagasta, Antofagasta, Chile, with the numbers 

La-111505-1, Lc-111505-2, Um-111505-1, Am-111805-1, Bm-111805-1 and Vc-110704-1, respectively.  

3.2. Sample Preparation 

Fresh fruits (Figures S4–S9, supplementary material) were carefully washed, separately 

homogenized in a blender and freeze-dried (Labconco Freezone 4.5 L, Kansas, MO, USA). Ten grams of 

each lyophilized fruit was finally pulverized in a mortar, defatted thrice with 100 mL of n-hexane and 

then extracted with 100 mL of 0.1% HCl in MeOH in the dark in an ultrasonic bath for one hour each 

time, The extracts were combined, filtered and evaporated in vacuo in the dark (40 °C). The extracts 

were suspended in 20 mL ultrapure water and loaded onto an XAD-7 (100 g) column. The column was 

rinsed with water (100 mL) and phenolic compounds were eluted with 100 mL of MeOH acidified with 

0.1% HCl. This methodology was previously used for other edible fruits [19,23,33]. The solutions were 

combined and evaporated to dryness under reduced pressure (40 °C) to give 634.20, 739.20, 499.93, 

672.24, 489.93 and 521.38 mg of L. apiculata, L. chequén, B. microphylla, V. corymbosum, A. meli and 

U. molinae fruits, respectively. 
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3.3. Liquid Chromatography Analysis 

A portion of each extract (approximately 2 mg) obtained as explained above was dissolved in 2 mL 

0.1% HCl in MeOH, filtered through a 0.45 µm micropore membrane (PTFE, Waters, Milford, MA, 

USA) before use and was injected into the HPLC-PDA and ESI-ToF-MS equipment. Qualitative 

HPLC-PDA analysis of the extracts was performed using a Waters Alliance 2695 system equipped with 

2695 separation module unit and 2996 PDA detector and a 250 × 4.6 mm, 5 µm, 100 Å, Luna  

C-18 column (Phenomenex, Torrance, CA, USA), with a linear gradient solvent system of 0.1% aqueous 

formic acid (solvent A) and acetonitrile 0.1% formic acid (solvent B) as follows: 90% solvent A until 4 

min, followed by 90%–75% solvent A over 25 min, then 75%–10% A over 35 min, then going back to 

90% solvent A until 45 min. and finally reconditioning the column with 90% solvent A isocratic for 15 

min. The flow rate and the injection volume were 0.5 mL/min and 20 µL, respectively. The compounds 

were monitored using a wavelength range of 210–800 nm. 

3.4. Validation of the HPLC Method 

Quantification was done by external standardization, using the respective standard anthocyanins, at 

the wavelengths of maximum absorption of the compounds. For the validation of the analytical method 

based on HPLC factors, linearity, precision, detection limits and accuracy were evaluated following [34]. 

Stock solutions of all seven standard compounds (3, 4, 6, 7, 10, 11, and 17) were prepared by dissolving 

one milligram of each anthocyanin in methanol-formic acid 1% (1 mg/mL). Several calibration levels 

were prepared by diluting the stock solutions with methanol-formic acid 1% yielding concentrations of 

15.65, 31.25, 62.5, 125, 250 and 500 µg/mL. The calibration curves (R2 > 0.098) were obtained by plotting 

peak areas versus concentrations. Compound 15 was quantified using the calibration curve obtained for 3, 

compounds 15–18 and 20 with the calibration curve of 11 and compound 2 with the calibration curve of 

compound 7. Limits of detection (LOD) and quantitation (LOQ) were measured for three representative 

compouns (3, 7 and 10, Table 4) and are reported as the concentrations that gave signal-to-noise ratios of 

3 and 10, respectively, from three replicate injections. Accuracy was determined by spiking three 

standard anthocyanins (3, 7 and 10, Table 4) at three concentration levels (10: low, 20: medium, and  

40 µg/mL: high spike) in one gram of each fresh fruits, which was then extracted and assayed as 

described before. Mean percentage recovery in relation to the theoretically present amounts  

(% recovery = amount detected × 100/theoretical amount) were used as a measure of accuracy (Table 4). 

The relative standard deviation (RSD%) within the measurements was considered as a measure of 

precision and repeatability. The samples were prepared and analyzed for anthocyanin concentration on 

the same day and on three consecutive days (n = 5) for intra- and interday precision respectively.  

3.5. Mass Spectrometric Conditions  

Hyphenated PDA with high-resolution electrospray ionization-time of flight-mass spectrometry 

(HR-ESI-ToF-MS) analysis was performed using a LCT premier XE ToF mass spectrometer (Waters) 

equipped with an ESI interface and controlled by MassLynx V4.1 software, using the chromatographic 

conditions as stated above. The compounds were monitored using PDA with a wavelength range of 

210–800 nm, while mass spectra were acquired with electrospray ionization and the ToF mass analyzer 
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in both positive and negative modes over the range m/z: 100–1000. The capillary voltages were set at 

3000 V (positive mode) and 2800 V (negative mode), respectively, and the cone voltage was 20 V. 

Nitrogen was used as the nebulizer and desolvation gas. The desolvation and cone gas flow rates were 300 

and 20 L/h, respectively. The desolvation temperature was 400 °C, and the source temperature was 120 °C. 

For the dynamic range enhancement (DRE) lockmass, a solution of leucine enkephalin (Sigma–Aldrich, 

Steinheim, Germany) was infused by a secondary reference probe at 200 pg/mL in CH3CN/water (1:1) 

containing 0.1% formic acid with the help of a second LC pump (Waters 515 HPLC pump). The 

reference mass was scanned once every five scans for each positive and negative data collection. Both 

positive and negative ESI data were collected using a scan time of 0.2 s, with an interscan time of 0.01 s, 

and a polarity switch time of 0.3 s. The full chromatograms were recorded at two different aperture 

voltages. The most intense fragmental ions and molecular ions could be obtained, when the aperture 

voltage were set at 60 V and 0 V, respectively. V-optics mode was used for increased intensity.  

3.6. Antioxidant Assays 

3.6.1. Free Radical Scavenging Capacity 

The free radical scavenging capacity of the extracts was determined by the DPPH. assay as previously 

described [37], with some modifications. DPPH radical absorbs at 517 nm, but upon reduction by an 

antioxidant compound its absorption decreases. Briefly, 50 µL of processed SPE MeOH extract or pure 

compound prepared at different concentrations was added to 2 mL of fresh 0.1 mM solution of DPPH in 

methanol and allowed to react at 37 °C in the dark. After thirty minutes the absorbance was measured at 

517 nm. The DPPH scavenging ability as percentage was calculated as: DPPH scavenging  

ability = (Acontrol − Asample/Acontrol) × 100. Afterwards, a curve of % DPPH bleaching activity versus 

concentration was plotted and IC50 values were calculated. IC50 denotes the concentration of sample 

required to scavenge 50% of DPPH free radicals. The lower the IC50 value the more powerful the 

antioxidant activity. Gallic acid (from 1.0 to 125.0 µg/mL, R2 = 0.991) and cyanidin 3-O-glucoside 

(from 1.0 to 125.0 µg/mL, R2 = 0.997) were used as standard antioxidant compounds. 

3.6.2. Ferric Reducing Antioxidant Power 

The determination of ferric reducing antioxidant power or ferric reducing ability (FRAP assay) of the 

extracts was performed as described by [38] with some modifications. The stock solutions prepared were 

300 mM acetate buffer pH 3.6, 10 mM TPTZ (2,4,6-tri(2-pyridyl)-s-triazine) solution in 40 mM HCl, and 

20 mM FeCl3·6H2O solution. Plant extracts or standard methanolic Trolox solutions (150 µL) were 

incubated at 37 °C with 2 mL of the FRAP solution (prepared by mixing 25 mL acetate buffer, 5 mL TPTZ 

solution, and 10 mL FeCl3·6H2O solution) for 30 min in the dark. Absorbance of the blue ferrous 

tripyridyltriazine complex formed was then read at 593 nm. Quantification was performed using a 

standard calibration curve of the antioxidant Trolox (from 0.2 to 2.5 µmol/mL, R2: 0.995). Samples were 

analyzed in triplicate and results are expressed in µmol TE/gram dry mass.  
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3.6.3. Superoxide Anion Scavenging Activity 

The enzyme xanthine oxidase is able to generate superoxide anion radical (O2
.−) “in vivo” by 

oxidation of reduced products from intracellular ATP metabolism. The superoxide anion generated in 

this reaction sequence reduces the nitro blue tetrazolium dye (NBT), leading to a chromophore with a 

maximum of absorption at 560 nm. Superoxide anion scavengers reduce the speed of generation of the 

chromophore. The superoxide anion scavenging activities of isolated compounds and fractions were 

measured spectrophotometrically in a microplate reader as reported previously [23]. All compounds, 

and berry extracts were evaluated at 100 μg/mL. Values are presented as mean ± standard deviation of 

three determinations.  

3.6.4. Polyphenol, Flavonoids and Anthocyanin Contents 

The total polyphenolic contents (TPC) of Luma fruits and leaves were determined by the  

Folin-Ciocalteau method [19,33,39] with some modifications. An aliquot of each processed SPE extract 

(200 μL, approx. 2 mg/mL) was added to the Folin–Ciocalteau reagent (2 mL, 1:10 v/v in purified water) 

and after 5 min of reaction at room temperature (25 °C), 2 mL of a 100 g/l solution of Na2CO3 was 

added. Sixty minutes later the absorbance was measured at 710 nm. The calibration curve was performed 

with gallic acid (concentrations ranging from 16 to 500 μg/mL, R2 = 0.999) and the results were 

expressed as mg gallic acid equivalents/g dry mass. Determination of total flavonoid content (TFC) of 

the methanolic extracts was performed as reported previously [40] using the AlCl3 colorimetric method. 

Quantification was expressed by reporting the absorbance in the calibration graph of quercetin, which 

was used as a standard (from 0.1 to 65.0 μg/mL, R2 = 0.994). Results are expressed as mg quercetin 

equivalents/g dry weight. The assessment of total anthocyanin content (TAC) was carried out by the pH 

differential method according to AOAC as described by [38,41]. Absorbance was measured at 510 and 

700 nm in buffers at pH 1.0 and 4.5. Pigment concentration is expressed as mg cyanidin 3-glucoside 

equivalents/g dry mass and calculated using the formula: TA(mg/g) 	= A × MW× DF × 10ɛ × 1  

where A = (A510 nm − A700 nm) pH 1.0 − (A510 nm − A700 nm) pH 4.5; MW (molecular weight) = 

449.2 g/mol; DF = dilution factor; 1 = cuvette pathlength in cm; ε = 26,900 L/mol.cm, molar extinction 

coefficient for cyanidin 3-O-β-D-glucoside. 103: factor to convert g to mg. All spectrometric 

measurements were performed using a Unico 2800 UV-Vis spectrophotometer (Unico Instruments Co. 

Ltd., Shanghai, China). 

3.7. Statistical Analysis  

The statistical analysis was carried out using the originPro 9.0 software packages (Originlab 

Corporation, Northampton, MA, USA). The determination was repeated at least three times for each 

sample solution. Analysis of variance was performed using ANOVA. Significant differences between 

means were determined by Tukey comparison test (p values < 0.05 were regarded as significant).  
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4. Conclusions 

Thirty one anthocyanins, three phenolic acids (feruloylquinic acid, chlorogenic and neochlorogenic 

acid) and six flavonols (rutin, quercetin, myricetin, hyperoside, isoquercitrin and isorhamnetin) were 

identified for the first time in six edible berries from the VIII region of Chile using ToF-MS. Among the 

31 anthocyanins identified in the six berries under study, twenty three compounds were detected in 

blueberry, fourteen in calafate, nine in arrayán and six were present in meli, chequén and murta. The 

anthocyanins detected were mainly branched 3-O-glycoconjugates of malvidin, delphinidin, peonidin, 

petunidin and cyanidin. However, significant differences in the amount of anthocyanins, (which were 

measured individually by HPLC for the major ones and by TAC colorimetric method) were found for the 

six berries, which presented also different antioxidant capacities. Blueberry fruits showed the most 

complex anthocyanin profile, while the fruits of chequen and murta showed a simpler pattern with only 

six anthocyanins, whereas arrayán and chequén showed a more complex pattern. However, the fruits of 

calafate (B. microphylla) presented the highest antioxidant features and polyphenolic content followed 

by the fruits of Chilean blueberries (V. corymbosum), arrayán (L. apiculata) and meli (A. meli), which 

makes calafate, arrayán and meli the better candidates for industrial crop production and potential use in 

functional foods and nutraceuticals. 
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