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Abstract: Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end-stage
renal disease. The natural history of DKD includes glomerular hyperfiltration, progressive albu-
minuria, declining estimated glomerular filtration rate, and, ultimately, kidney failure. It is known
that DKD is associated with metabolic changes caused by hyperglycemia, resulting in glomerular
hypertrophy, glomerulosclerosis, and tubulointerstitial inflammation and fibrosis. Hyperglycemia
is also known to cause programmed epigenetic modification. However, the detailed mechanisms
involved in the onset and progression of DKD remain elusive. In this review, we discuss recent
advances regarding the pathogenic mechanisms involved in DKD.
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1. Diabetes Mellitus and Diabetic Kidney Disease

Currently, more than 400 million people live with diabetes mellitus (DM) globally.
This number is expected to increase to 600 million by 2035 [1]. DM affects people of all
ages, irrespective of sex, ethnicity, education level, or financial status [2]. Among DM
patients, 20% may progress to diabetic kidney disease (DKD) [3], which is known to be
influenced by both genetic and environmental factors and induced by microvascular and
macrovascular changes, including accumulation of extracellular matrix and hypertrophy
and fibrosis of the kidney glomeruli and interstitium [4,5]. At onset, DKD patients typ-
ically show microalbuminuria symptoms, with 30 to 300 mg of albumin excreted per
day; this gradually develops into macroalbuminuria, with more than 300 mg of albumin
excreted per day at later disease stages [6]. The hazard ratio for all-cause mortality in
DKD patients with macroalbuminuria is reported to be 1.83, compared to 1.46 for patients
with normoalbuminuria [7]. Overall, a complex interplay between metabolic processes,
epigenetic and nonepigenetic mechanisms, and transcriptional regulation is involved in
the development and progression of DKD, and only in the last few years have potential
drugs been identified, such as sodium-glucose cotransporter 2 (SGLT2) inhibitors that
can act effectively against hypoglycemia and improve kidney outcomes [8,9]. In addition,
endothelin-1 (ET-1) has been associated with vasoconstriction, kidney injury, mesangial
hyperplasia, glomerulosclerosis, fibrosis, and inflammation, and thus endothelin receptor
antagonists have been proposed as potential treatments for DKD [10].
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2. Influence of Hyperglycemia on Diabetes-Mediated Cellular Alterations

Due to unregulated expression of glucose transporters, high levels of extracellular
glucose will ultimately increase intracellular glucose concentration [11], resulting in the
shunting of glucose to the fructose 6-phosphate and hexosamine metabolic pathways [12].
Therefore, hyperglycemia often increases the production of advanced glycation end prod-
ucts (AGEs) and reactive oxygen species (ROS), which are closely associated with the
development of DKD. AGEs are formed by nonenzymatic glycation reactions between re-
ducing sugars and amino acids, lipids, or DNA, and are associated with high levels of ROS
production [13]. ROS are produced during mitochondrial oxidative metabolism and after
exposure to xenobiotics and cytokines, through reactions catalyzed by NADPH oxidase,
nitric oxide synthase, and xanthine oxidase [14], and excessive ROS will cause oxidative
stress and cell damage. Earlier studies have demonstrated that limiting the production of
AGEs and ROS effectively slows the progression of DKD [15]. In addition, ROS are known
to activate the Janus kinase signal transducers and activators of transcription (JAK-STAT)
pathway, and experiments in a mouse diabetes model showed that the selective expression
of JAK2 in glomerular podocytes increased the functional and pathological characteristics
of DKD [16]. Moreover, in the kidney tissues of DKD patients, significantly increased
expression levels of multiple JAK-STAT family members have been observed [17].

Under high-glucose conditions, ROS are produced at high levels, and this can cause
diabetic complications [18,19]. The excessive production of ROS is primarily attributed to
the activation of electron transport chains and the electron leakage of NADH dehydroge-
nase in mitochondria [20]. Loss of mitochondrial control impacts renal health since the
mitochondria are the major source for ROS formation, apoptosis, and metabolism. Such
excess ROS production is known to cause DNA damage [21], and this in turn induces
poly-ADP ribose polymerase-1 (PARP-1) activation to inhibit glyceraldehyde 3-phosphate
dehydrogenase (G3PDH) function [22,23], which results in the accumulation of glycolytic
metabolites. This subsequently stimulates the synthesis of polyol, hexosamine, and diacyl-
glycerol (DAG), the activation of the protein kinase C (PKC) pathway, and the production
of AGEs [24]. The interaction between AGEs and their RAGE receptors further promotes
the overproduction of ROS and the activation of NF-κB, which then upregulates the ex-
pression of inflammation-related genes, leading to increased levels of interleukin (IL)-6,
tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) [25–27].
Coupled with the oxidative stress, endoplasmic reticulum (ER) stress, and inflammatory
processes induced by high glucose levels, the availability of nitric oxide (NO) is reduced
and angiogenesis is impaired, which can lead to endothelial dysfunction in the kidneys [28].

Activation of the hexosamine pathway by high glucose levels can influence signal
transduction, gene transcription, cell survival, and proteasome-mediated degradation,
and promote hyperglycemia-induced vascular damage [29]. It is known that high blood
glucose promotes the accumulation of extracellular matrix (ECM) [30] and upregulates
the expression of DKK1, the Kremen-2 receptor, transforming growth factor-beta (TGF-β),
and fibrotic factors in mesangial cells [31], which ultimately escalates to damage to the
glomerular filtration barrier to cause DKD.

DKD and DM patients are known to have an enhanced susceptibility to adverse cardio-
vascular outcomes, partly due to activation of the renin–angiotensin–aldosterone system
(RAAS). RAAS regulates blood pressure, salt balance, and fluid homeostasis [32], and RAAS
blockade with ACE inhibitors (ACEI) or angiotensin receptor blockers (ARB) is often used to
modify hyperfiltration states and delay progression of renal disease [33]. Drugs that control
hypertension (lisinopril) and hyperglycemia (empagliflozin) were also shown to improve
the physiological and histopathological features of kidney disease in a mouse model of
hypertension-accelerated progressive DKD [34]. Moreover, treatment with N-acetyl-seryl-
aspartyl-proline (Ac-SDKP), a naturally occurring immunomodulatory and angiogenic
peptide mainly produced through enzymatic hydrolysis involving meprin-α and prolyl
oligopeptidase, has been shown to partially improve end-organ damage by reducing inflam-
mation and fibrosis, and promoting angiogenesis [35]. The beneficial effects of the selective
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mineralocorticoid receptor antagonist (MRA) eplerenone on renal outcome parameters
such as proteinuria have been noted for some time, and efforts are being made to develop
MRAs as adjunctive therapies to reduce the risk of DKD [36,37]. Dipeptidyl peptidase-4
(DPP-4) inhibitors commonly used for the treatment of type 2 diabetes have also been
shown to prevent diabetic renal injury via various mechanisms; for example, inhibition of
DPP-4 by linagliptin reduced obesity-related insulin resistance and inflammation through
the regulation of M1/M2 macrophage status, and was further able to alleviate oxidative
stress and diabetic renal injury [38].

Glycosuria induces osmotic diuresis, and commonly occurs in DM patients when
the amount of filtered glucose exceeds the capacity of renal tubular reabsorption. SGLT2
inhibitors are a class of medications that alter the essential physiology of the nephron, and
can lower blood sugar by inducing the kidneys to remove sugar from the body through
the urine. SGLT2 inhibitors can also help to restore function to SIRT3, a mitochondrial
NAD+-dependent deacetylase that can inhibit epithelial–mesenchymal transition (EMT)
and renal fibrosis [39], and which is suppressed by high glucose levels. Treatment with
inhibitors that block acetylation-mediated STAT3 binding has also been shown to reduce
proteinuria and kidney damage in db/db diabetic mouse models.

3. Genetic Pathways Associated with DKD

Glomeruli are the basic filtering units of the kidney, and consist of capillary blood
vessel structures that can filter plasma and form urine [40]. Each glomerulus contains
mesangial cells, podocytes, tubular cells, and the basement membrane, all of which act
together to maintain normal filtration functions (Figure 1). Mesangial cells account for
30–40% of all cells in a glomerulus [41], and are responsible for removing immune com-
plexes and protein aggregates from blood trapped in the basement membrane [42].

Figure 1. Characteristic glomerular changes and mechanisms of proteinuria in diabetic kidney disease. Characteristic
glomerular changes in diabetic kidney disease (DKD) include glomerular basement membrane (GBM) thickening and
mesangial expansion (due to increased mesangial matrix and increased mesangial cell size caused by hypertrophy). These
changes are driven by hyperglycemia, and can ultimately lead to proteinuria if left unaddressed. Dashed arrows indicate
mesangial expansion leading to glomerular hyperfiltration.

Podocytes are highly specialized epithelial cells that cover the outer surface of the base-
ment membrane [43], and in adults, they are terminally differentiated and do not replicate.
Consequently, more than 20% loss of podocytes or impairment of the glomerular filtration
barrier structure can irreversibly damages a glomerulus and lead to proteinuria [44]. It is
known that hyperglycemia can cause apoptosis, detachment of the glomerular basement
membrane, and the loss of glomerular podocytes, mesangial hypertrophy, matrix accu-
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mulation, and basement membrane thickening, all hallmarks of early DKD [45], and can
ultimately progress to glomerular fibrosis and proteinuria [46] (Figure 1).

3.1. The Role of Hyperglycemia in Glomerular Fibrosis

Long-term injury and abnormal wound healing processes, as well as excessive extra-
cellular matrix deposition, constitute the main drivers of renal fibrosis. Myofibroblasts are
thought to be the primary activated fibroblast phenotype in renal fibrosis [47], and there are
several known sources of myofibroblasts that produce matrix, including activated residen-
tial fibroblasts, differentiated pericytes, recruited circulating fibroblasts, and mesenchymal
cells transformed from macrophages, derived from renal tubular epithelial cells through
EMT, or transformed from endothelial cells (EC) through endothelial–mesenchymal transi-
tion (EndMT) [48]. In addition, inflammatory cells and cytokines, as well as the associated
signaling pathways, all play major roles in fibroblast activation [49].

Dense fibrosis of the glomerular microenvironment, particularly mesangial cells, is a
hallmark of DKD, and the fibrosis of mesangial cells is closely associated with activation
of the TGF-β1 signaling pathway, which promotes fibroblast activation and the abnor-
mal synthesis of fibrotic matrix in mesangial cells [50]. In addition, TGF-β1 promotes
renal cell proliferation and differentiation, synthesis of extracellular matrix [51], and renal
tubular epithelial cell EMT, which is essential for the development of tubulointerstitial fibro-
sis [52,53]. It is likely that these adverse changes in mesangial cells, endothelial cells, and
podocytes may be interrelated, and hyperglycemia is also known to disrupt the podocyte–
glucocorticoid receptor signaling pathway to trigger EndMT and cause glomerular fibrosis
in DM.

Glomerular fibrosis is also associated with the activation of Wnt/β-catenin signaling,
which modulates TGF-β1-mediated fibrosis in mesangial cells [54] and can activate glyco-
gen synthase kinase-3β (GSK-3β) signaling [55] and induce the apoptosis of mesangial
cells [56]. An earlier study showed that GSK-3β phosphorylation decreased fibroblast
activation and development of fibrosis in mice, but Wnt/β-catenin signaling acted to
inhibit this [57]. Alternately, the inhibition of Wnt signaling by DKK1 reduced β-catenin
phosphorylation and attenuated TGF-β1 expression to decrease the fibrosis of mesangial
cells [31].

Another factor involved in DKD is the cannabinoid receptor 1 (CB1R) [55], which
activates the expression of the hormone receptor peroxisome proliferator-activated receptor
γ2 (PPARγ2); subsequent binding of adipocyte-specific nuclear hormones to PPARγ2 then
activates the transcription of genes involved in adipogenesis, including aP2, FGF1, FGF21,
and CD36 [56], and promotes insulin sensitization in lipid metabolism [56]. An earlier
study showed that overexpression of PPARs is closely related to metabolic syndrome,
resulting in changes of lipid metabolism and accumulation of body fat, which induce DKD
and increase disease severity [57]. Under hyperglycemic conditions, CB1R is known to
adversely affect metabolism and increase insulin resistance to exacerbate DKD. CB1R also
promotes the expression of proteins that are associated with kidney fibrosis to worsen
DKD, including those that activate Ras and ERK signaling, transcription factor c-Jun,
inflammation regulator SOCS3, and the proinflammatory cytokines IL-1β and fibrotic
matrix fibronectin [58].

3.2. Hyperglycemia-Induced Glomerular Dysfunction and Proteinuria

Proteinuria is a condition of increased protein levels in the urine, and is a sign of
kidney damage. It is known that hyperglycemia-induced mitochondria fission heightens
the production of ROS to cause proteinuria and promote apoptosis in podocytes and
kidney microvascular endothelial cells [59,60]. This process is mediated by dynamin-
related protein-1 (Drp1) [59], and a previous study showed that Drp1 translocation into
the mitochondria is mediated via phosphorylation and recruitment by Rho-associated
coiled-coil containing protein kinase 1 (ROCK1) [59], thus explaining why the expression of
ROCK1 in diabetic mice promotes glomerular apoptosis and mitochondrial ROS production.
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Additionally, hyperglycemia-induced expression of renal hedgehog interacting protein
(Hhip) in glomerular endothelial cells may contribute to the fibrosis and apoptosis of such
cells [61], and Hhip levels are also elevated in early DKD of diabetic mice and humans, even
before the development of microalbuminuria [62]. Besides mitochondrial fission, activation
of the Notch signaling pathway is known to promote the development of glomerular
diseases, including proteinuria. A study showed that the intracellular domain of Notch1
activates vascular endothelial growth factor (VEGF) to induce podocyte apoptosis and
cause proteinuria [63]. A previous study also showed that inhibition of this pathway
protects rats with proteinuria [64].

Other signaling pathways associated with proteinuria include the Wnt/β-catenin
pathway; elevated expression of Wnt/β-catenin transcripts and proteins has been observed
in the podocytes of DKD patients and DKD mouse models, while stable expression of
Wnt/β-catenin genes in the podocytes of transgenic mice was shown to induce albumin-
uria [65]. In addition, hyperactivation of mTOR is known to induce podocyte hypertrophy
and apoptosis of podocytes, which aggravates glomerular disease and proteinuria [66,67].
It is also known that reduced nephrin expression is involved in hyperglycemia-induced
albuminuria [68,69]. Nephrin is a transmembrane protein with extracellular domains that
connect the foot processes of podocytes, and is essential for the proper functioning of
the renal filtration barrier. Podocytes are known to have a complex actin cytoskeleton
architecture, and redistribution of the actin cytoskeleton and disruption of this architecture
is known to decrease nephrin expression [70]; for example, Rac1 and Cdc42 are known
to regulate the dynamics of the actin cytoskeleton [71], and deletion of their genes was
observed to reduce nephrin expression and induce albuminuria in mice [72].

3.3. Hyperglycemia and Albuminuria in Renal Tubular Cell Fibrosis

DKD is closely associated with the fibrosis of renal tubular epithelial cells [73], which
are epithelial cells located at the outer layer of the renal tubule that act to reabsorb glucose,
amino acids, and other substances in the urine [74]. An earlier study showed that exposure
to high glucose or albumin levels can induce renal tubular epithelial cell fibrosis, and this
was closely associated with the increased expression of MCP-1, PAI-1, and TGF-β1 as
a result of hyperglycemia-induced ROS production [75]; renal fibrosis can be prevented
if these profibrosis genes are suppressed [76]. In addition, the fibrosis of renal tubular
epithelial cells is closely related to albuminuria, which in turn activates the unfolded protein
response [77] to induce apoptosis [78]. The inhibition of apoptosis may increase autophagy
in tubular epithelial cells [79], leading to worsened inflammation and fibrosis [80,81].
Hyperglycemia can also cause renal tubular epithelial cells to lose their polarity and acquire
migration and invasive properties [82], leading to increased expression of fibronectin and
α-smooth muscle actin (α-SMA) and decreased expression of E-cadherin to cause fibrosis.

3.4. Endothelial Cell Dysfunction in Diabetes-Related Renal Fibrosis

Fibrosis is characteristic of progressive chronic kidney diseases of any etiology, and
eventually leads to kidney failure (Figure 2). Recently, several new signaling molecules
that regulate renal fibrosis have been reported. Glucocorticoid receptor (GR) is a nuclear
hormone receptor that mediates steroid hormones and is commonly expressed in most cell
types, including the kidney. The role of glucocorticoids in cardiovascular and renal diseases
is complex. Endothelial GR is a negative regulator of vascular inflammation in models of
sepsis and atherosclerosis [83,84]. Loss of endothelial GR can induce upregulation of the
Wnt signaling pathway, which in turn promotes renal fibrosis [85]. Thus, endothelial GR is
an essential antifibrotic molecule in diabetes.
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Figure 2. Endothelial cell dysfunction in renal fibrosis. AcSDKP: N-acetyl-seryl-aspartyl-proline;
ECM: extracellular matrix; EndMT: endothelial-to-mesenchymal transition; FGFR: fibroblast growth
factor receptor; GR: glucocorticoid receptor; GRE: glucocorticoid response element; TGF-β: transform-
ing growth factor-β; MAP4K4: mitogen-activated protein kinase kinase kinase kinase 4. Red SIRT3
indicates deficiency and black SIRT3 indicates sufficiency. ↑: Increase in the expression level; ↓:
Decrease in the expression level.

Transgenic mice with reduced STAT3 activation ability show less proteinuria, mesan-
gial expansion, cell proliferation, macrophage infiltration, inflammation, and abnormal
matrix synthesis when treated with streptozotocin for diabetes [86]. Mitochondrial SIRT3
is a NAD+-dependent deacetylase, which mainly exerts antioxidant activity to prevent
aging-related diseases [87]. SIRT3 deficiency can lead to impaired insulin secretion, renal
fibrosis, increased mitochondrial protein acetylation, and increased mitochondrial oxida-
tive stress [88]. SIRT1 uses cellular NAD+ to deacetylate a variety of proteins involved in
mitochondrial biogenesis, oxidative stress, inflammatory apoptosis, and autophagy. Inhibi-
tion of acetylation-NF-κB via activation of SIRT1 improves kidney inflammation in diabetic
mice [89]. Under hyperglycemic conditions, the downregulation of AMPK/SIRT1/PGC-1α
induces hypertrophy, ROS, and mitochondrial and autophagy dysfunction, all of which
promote the development of DKD. AMPK upregulates SIRT1 by increasing cellular NAD+

levels [90], and both AMPK and SIRT1 have been identified as intracellular energy sensors,
which, respectively, detect and respond to AMP/ATP and NAD+/NADH ratios, and are
activated under energy expenditure conditions and inactivated in DM [91].

It is also known that FGF (fibroblast growth factor) signaling maintains endothe-
lial barrier function and endothelial cell survival via binding with related FGFR [92].
The AcSDKP–FGFR1–MAP4K4 axis has an important role in combating EndMT-associated
fibrotic disorders [93] and, as the target of AcSDKP, endothelial FGFR1 is essential as an
antifibrotic core molecule [94].

4. Abnormal Transcriptional Regulation Leads to DKD

Transcriptional regulation is critical to the maintenance cellular homeostasis. However,
hyperglycemia is known to transcriptionally induce the expression of specific genes, which
become constitutively expressed even after hyperglycemia is controlled, and this can con-
tribute to kidney damage in DKD patients [95]. This section describes how transcriptional
regulation influences DKD.
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4.1. Dysregulation of Transcription Factors and DKD

Transcription factors bind to specific sequences in promoters to regulate transcription,
and, under high-glucose conditions, many signal transduction pathways are activated to
regulate transcription, which in turn can influence the development of DKD. It is well
known that Wnt signaling is critically involved in podocyte fibrosis [96]; for instance,
high glucose is known to activate the Wnt signal transduction pathway, leading to the
phosphorylation of β-catenin. Phosphorylated β-catenin then activates the transcription
of Snail1, MMP-7, and Fsp1, and promotes podocyte dedifferentiation and mesenchymal
transformation to cause podocyte fibrosis [97]. Caudal-type homeobox transcription factor
2 (CDX2) can activate the transcription and expression of cystic fibrosis transmembrane
conductance regulator (CFTR) to suppress Wnt signaling and prevent fibrosis [98], and
an early study showed that expression of CDX2 improved renal tubular lesions in DKD
patients and a mouse DKD model [98].

ROS play an important role in tubulointerstitial fibrosis caused by the activation of
myofibroblasts [99]. An antioxidative transcription factor, NF-E2-related factor 2 (NRF2), is
known to activate the transcription of glutathione peroxidase 2 (GPX2) to increase oxida-
tive stress, inflammation, and apoptosis, leading to permanent injury with renal fibrosis
and DKD [100]. NRF2 is expressed constitutively; however, it is degraded by the NRF2-
Kelch-like ECH associated protein 1 (Keap1) via the ubiquitin–proteasome pathway [101].
As Keap1 contains reactive cysteine residues that can form adducts with oxidants and
electrophiles to sense cellular oxidative stress, NRF2 is stabilized under oxidative stress
conditions. NRF2 plays a central role in protecting renal cells from oxidative injury by acti-
vating the genes encoding glutathione and NADPH to combat oxidative stress [102], and
can further activate the pentose phosphate pathway through the production of NADPH,
which may be associated with renoprotection from oxidative damage [102].

FoxO1 is another transcription factor that is closely associated with DKD. Many genes
regulated by FoxO1 are known to prevent renal tubulointerstitial fibrosis and apoptosis,
both of which play important roles in the pathogenesis of DKD [103]. It is known that high
glucose promotes FoxO1 phosphorylation in kidneys [104] to activate the transcription
of genes involved in gluconeogenesis and glycogenolysis, thereby causing proteinuria
and renal fibrosis [105]. Inhibition of the function of FoxO1 by natural compounds or
synthetic drugs was shown to attenuate renal cell damage in a high-glucose environ-
ment [106]. Dachshund homolog 1 (DACH1) is another transcription factor that is related
to DKD. DACH1 recruits Pax transactivation-domain interacting protein (PTIP) to repress
transcription in podocytes; this requires DACH1 sequence-specific DNA binding and
reduces methylation of histone H3 at K4 to activate the transcription of NELL2 and increase
podocyte injury [107].

4.2. Influence of Genes Regulated by Krϋppel-Like Factors in DKD

Krϋppel-like factors (KLFs) are a group of transcription factors that include at least
27 proteins. Many of these KLF members, including KLF2, KLF4, KLF5, KLF6, and
KLF15, are known to activate genes in glomerular endothelial cells or podocytes to prevent
fibrosis; although KLF 10 appears to have a deleterious effect on the kidney [108–115].
The involvement of KLFs in DKD is detailed in the following subsections.

4.2.1. Renoprotective Effect of KLFs

KLF2 activates a tight junction protein, occludin, to prevent the formation of gaps
between endothelial cells and maintain the integrity of the endothelial barrier [116].
Under high-glucose conditions, the expression of KLF2 is repressed by FoxO1 [117], which
causes glomerular endothelial cell and podocyte damage [113].

KLF4 expression reduces GpC methylation at the nephrin promoter and the promoters
of other epithelial markers [111] to protect the kidneys under normal conditions, but high
glucose levels have been observed to reduce KLF4 messenger RNA levels and increase
the expression of macrophage migration inhibitory factor (MIF) and MCP-1, in a process
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mediated by TGF-β1 and typically suppressed by KLF4 [118]. TGF-β1 is a key driver of
renal fibrosis, and the expression of TGF-β1 promotes the development and progression of
renal disease [119] while also activating the expression of Twist1 or Snail to prolong G2/M
arrest and promote renal fibrosis [120]. KLF-4 acts to suppress the cell proliferation and
differentiation induced by TGF-β1 [121]. In addition, KLF5 significantly attenuates the
expression of Bax, caspase-3, caspase-8, and caspase-9 in podocytes [122] by blocking the
activation of mitogen-activated protein kinase (MAPK) pathways [122,123]. A previous
study confirmed that regulating P38-induced apoptosis [124] and inhibiting apoptosis via
MAPK pathways could be an effective strategy to reduce renal fibrosis [125].

Cytochrome c-oxidase (COX) plays a key role in the regulation of aerobic energy
production via the mitochondrial respiratory chain. In podocytes, KLF6 regulates mito-
chondrial function through the COX assembly gene (SCO2), which modulates the balance
between mitochondrial respiration and glycolytic pathways to prevent mitochondrial
dysfunction and podocyte apoptosis [109]. Additionally, KLF15 inhibits TGF-β1 through
the ERK/MAPK and JNK/MAPK pathways [126], and is a key regulator of podocyte
differentiation and a protector against podocyte damage [127].

4.2.2. KLF10 Causes Kidney Damage in DKD

KLF10 has multiple roles in podocyte dysfunction and injury. TGF-β1, bone mor-
phogenetic protein-2 (BMP-2), and epidermal growth factor (EGF) induction of KLF10
expression play an important role in the transcription of genes such as Smad, which is in-
volved in cell proliferation, apoptosis, and differentiation [128]. KLF10 also inhibits nephrin
expression through interaction with DNA methyltransferase 1 (DNMT1) to methylate the
nephrin promoter [115] (Figure 3). In addition, KLF10 represses the transcription of many
genes specifically expressed in podocytes, including those encoding Wilms’ tumor 1 protein
(WT1), podocin, synaptophysin, and nephrin, ultimately activating the expression of lysine-
specific demethylase (KDM6A), which is essential to the maintenance of kidney function as
a regulator of podocyte differentiation [129], to promote global epigenetic reprogramming
and cause aberrant gene expression [115]. Finally, KLF10-induced expression of KDM6A
induces proteinuria and irreversible kidney damage under diabetic conditions [115].

Figure 3. Hyperglycemia-induced nephrin modification induces glomerulosclerosis. Ac: acetylation;
Dnmt1: DNA methyltransferase 1; EndMT: endothelial-to-mesenchymal transition; HDAC4: histone
deacetylase 4; IL-1β: Interleukin-1β; KDM6A: lysine-specific demethylase; KLF 10: Krϋppel-like
factor 10; Me: methylation; TGF-β: Transforming growth factor β; Ub: ubiquitination; WT1: Wilms’
tumor 1 protein. ↑: Increase in the expression level; ↓: Decrease in the expression level.
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5. Epigenetic Modifications and the Pathogenesis of DKD

Acetylation of histones H3 and H4 is known to reduce the positive charge of chromatin,
making promoters accessible to transcription factors for transcriptional activation [130].
Conversely, deacetylation has a reverse effect that results in transcriptional repression [131].
These processes are respectively catalyzed by histone acetyltransferase (HAT) and histone
deacetylase (HDAC) [132]. Histone methylation and demethylation by methyltransferase
and demethylase of the CpG islands in promoters are also known to respectively repress
and activate gene expression [133].

5.1. DNA Methylation Is Associated with DKD

DNA methylation is a repressive epigenetic modification and has been implicated
in the pathogenesis of DKD. Methylation of cytosine in the CpG islands of promoters
is associated with transcriptional repression [134], and a microarray analysis of cytosine
methylation in human kidney tubules revealed that kidney structural damage changes
cytosine methylation and the degree of kidney fibrosis [135]. Another study also found
that the expression of DNMT1 was elevated in peripheral blood mononuclear cells in DKD
patients; the increase of DMNT1 can activate the mTOR pathway and inflammation [136].

The RASAL1 gene encodes an inhibitor of the Ras protein and hyperglycemia is
known to cause hypermethylation of RASAL1, which is associated with the perpetuation of
fibroblast activation and renal fibrosis [137]. TGF-β1 is known to promote the expression
of DNMT1 and DNMT3 to stimulate hypermethylation and repress the transcription of
RASAL1, resulting in the activation of fibrogenesis [138–140]. Another protein that is
known to be associated with renal fibrogenesis is fibronectin [141]. After renal injury, a
healing process begins, and fibronectin in the ECM is the first protein that is deposited
and accumulated during fibrogenesis [141]. The accumulation of fibronectin is closely
associated with fibrosis [141], and an earlier study showed that methylation levels of the
MMP9 gene promoter in DKD patients were reduced, leading to elevated expression of
fibronectin [142]. Hypomethylation of inhibitors of MMPs (TIMP-2) and AKR1B1 genes,
which encode aldose reductase, are also associated with proteinuria in patients with early
DKD [143].

5.2. DKD Is Associated with Post-Translational Modification of Histones

Histone acetylation is known to relax chromatin structure and facilitate the binding
of transcription factors to promoters to activate transcription. Conversely, methylation of
histones has an opposite effect, repressing transcription. Hyperglycemia often influences
these processes to cause kidney disorders [144].

5.2.1. Histone Acetylation Is Involved in DKD Pathogenesis

Histone acetylation is involved in the progression of DKD [145–147], and an earlier
study showed that acetylation of H3K9 was elevated in the kidneys of DKD patients [145].
Meanwhile, acetylation of histones H3 and H4 is known to activate the transcription of
Cola1, CTGF, PAI-1, P21, Lacm1, FN1, TNF-α, COX-2, and MCP-1 [148], which can promote
DKD development. In addition to histone acetyltransferase, histone deacetylases (HDACs)
regulate gene expression epigenetically by removing acetyl groups from histones to repress
transcription, and this can promote the development of DKD as well. For instance, the
expression of nephrin, which protects podocytes from damage caused by hyperglycemia,
is repressed by HDAC4. An earlier study also showed that the expression of nephrin was
elevated following miR-29a, which is known to reduce the expression of HDAC4 and result
in elevated expression of nephrin [149] (Figure 3).

Myofibroblastic differentiation is a process that produces terminally differentiated
myofibroblasts and is involved in tissue healing [150]. Myofibroblasts accumulate inter-
stitial ECM components such as collagens and fibronectin during wound healing, and
express abundant amounts of smooth muscle α-actin (α-SMA) [151,152]. These cells are
ultimately incorporated into stress fibers [152]. It is well documented that TGF-β1 me-
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diates the turnover of the ECM to promote myofibroblastic differentiation in the kidney.
An earlier study showed that HDAC4 is required for TGF-β1-induced myofibroblastic
differentiation, as inhibiting histone deacetylation by trichostatin A or silencing the expres-
sion of HDCA4 inhibited the transcription of the α-SMA gene [153], revealing a critical role
for histone acetylation in renal fibrosis. Additionally, SIRT3, a histone deacetylase in the
mitochondria, influences glycolysis and fibrosis through the regulation of PKM2 dimer and
HIF1α levels [154], and also mediates STAT3 phosphorylation to affect aberrant glycolysis
in tubules.

5.2.2. Histone Methylation Is Involved in DKD Pathogenesis

Histone methylation has monomethyl, dimethyl, and trimethyl forms, and the extent
of histone methylation is known to modulate gene transcription [148] and influence DKD
pathogenesis [155]. SUV39H1 is a histone methyltransferase that catalyzes methylation of
the K9 residue in H3 with dimethyl or trimethyl groups. Hyperglycemia has been shown
to decrease the expression of SUV39H1 to promote renal fibrosis [156,157]. Earlier studies
demonstrated that the development of DKD is associated with elevated transcription of
pro-inflammatory or profibrotic genes, due to decreased methylation of histone H3 at the
promoters of these genes [147,158,159]. It well known that p21WAF1 is transcribed at
high levels after acute kidney injury [160], and inhibition of methyltransferase SUV39H1
expression has been found to attenuate hyperglycemia-induced fibronectin and p21WAF1
expression, and to accelerate hyperglycemia-induced cell hypertrophy [161]. Attenuation
of SUV39H1 expression in turn suppresses high-glucose-induced expression of fibronectin
and p21WAF1 [161]. The overexpression of SUV39H1 and H3K9 methylation in DKD
patients has been noted to reduce kidney inflammation and cell apoptosis [162].

5.3. Noncoding RNA Is Involved in DKD Pathogenesis

Noncoding RNA is also involved in the progression of DKD inflammation and fibro-
sis [163] (Table 1), and it is known that long noncoding RNAs (lncRNAs) participate in the
initiation and progression of DKD by exerting direct pathogenic effects, or by indirectly
mediating specific renal pathways (such as TGF-β1, NF-κB, STAT3, and GSK-3β signal-
ing) [164]. Thus, lncRNAs may have potential as biomarkers for the early diagnosis or
prognosis tracking of DKD, or as therapeutic targets for slowing the progress or even revers-
ing established DKD. High-glucose conditions have been shown to increase the expression
of miR-34a, which induces mesangial proliferation and glomerular hypertrophy through
the inhibition of growth arrest-specific 1 (GAS1) [165]. GAS1 is involved in glomerular
cell proliferation and activation, and is expressed in the kidney under pathological condi-
tions [166]. Additionally, inhibition of miR-196a expression induces mesangial hypertrophy
by activating the cyclin-dependent kinase inhibitor p27kip1, thereby preventing cell-cycle
arrest in the G1 phase [167]. The expression of miR-93 further increases expression of mito-
gen and stress-activated kinase 2 (Msk2), which in turn mediates chromatin remodeling
and podocyte gene transcription to cause DKD [168].

As discussed previously in this article, CB1R is expressed in the kidney, and activating
of CB1R expression by hyperglycemia is known to cause renal injury and nephropa-
thy [149]. In a transfection system, miR-29a was found to suppress the expression of CB1R
in the mesangial cells of high-glucose-stressed mice, thus blocking the expression of pro-
inflammatory and profibrotic mediators to attenuate renal hypertrophy [169]. Furthermore,
curcumin is known to have beneficial effects on reducing the severity of DKD, as this
natural compound promotes the expression of miR-29a to inhibit CB1R [170]. In contrast,
decreasing the expression of miR-29a attenuates DKK-1/Wnt/β-catenin signaling and
promotes apoptosis and ECM deposition to influence kidney fibrosis [31]. Additionally,
miR-29c is known to activate Rho kinase by targeting Spry-1, which is related to ECM
accumulation. Moreover, podocyte apoptosis is known to be controlled by miR-29c and
miR-21, and when miR-29c expression increases, it promotes fibronectin assembly and
apoptosis [171]. The noncoding RNA miR-let-7 decreases ECM protein expression through
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a mechanism that involves the TGF-β/Smad3 pathway [172], and DPP-4 inhibition and
promotion of peptide AcSDKP expression result in renal protection by regulating crosstalk
between miR-29 and miR-let-7 [173].

Table 1. Some miRNAs involved in diabetes-related renal inflammation and fibrogenesis.

Functions miRNAs Expression Levels Target Genes Mechanisms

Inflammation

miR-21 Upregulation TIMP3 Enhanced the excretion of
pro-inflammatory factors

miR-146a Upregulation IRAK1/TRAF6 Promotes NF-κB mediated upregulation
of pro-inflammatory cytokines

miR-146a Downregulation Nox4 Decreases ROS generation
and inflammation

miR-29c Upregulation Spry-1 Activates Rho kinase by targeting
Spry-1, related to ECM accumulation

Fibrosis

miR-192 Upregulation GLP1R Exerts pro-fibrotic effects

miR-93 Downregulation Orai1 Induces TGF-β1-induced EMT and
renal fibrogenesis

miR-29a Downregulation COL4A1, COL4A2,
HDAC4, LAMC2

Increased the production of collagen IV
protein by directly targeting the 3′UTR

of col4α1 and col4α2

Let-7 Downregulation HMGA2, IGF2BP2,
TGFBR1, JAG1, THBS1

Decreases ECM protein expression
through a mechanism that involves the

TGF-β/Smad3 pathway

Both
inflammation
and fibrosis

miR-29b Downregulation SP1/Smad-3/NF-κB
Inhibition of Sp1 expression,

TGF-β/Smad3-dependent renal fibrosis,
and NF-κB-driven renal inflammation

miR-199a-5p Upregulation Klotho
Activating the TLR4/NF-κB p65/NGAL

signaling pathways and downstream
fibrosis and inflammation

miR-377 Upregulation p21
Indirectly induces fibronectin by
reducing the expression of p21-

activated kinase and ROS

ECM: extracellular matrix; NF-κB: Nuclear factor-κB; ROS: reactive oxygen species; TGF-β: transforming growth factor-beta.

EMT and EndMT processes play vital roles in the development of fibrosis in the
kidney. The noncoding RNA miR-21 is a downstream target of Smad3, which is known to
activate the transcription of miR-21 in the presence of TGF-β [174]; miR-21 also inhibits
pro-apoptotic signals and ameliorates glomerular injury induced by TGF-β and hyper-
glycemia [175]. TGF-β1 is known to induce signal circuit amplification and activation of
a chronic state of profibrosis, and can regulate the expression of miR-192, the miR-200s,
miR-21, and miR-130b in mesangial cells [176–178]. Meanwhile, miR-93 is involved in
TGF-β1-induced EMT and renal fibrogenesis [179], while downregulation of miR-23a in-
hibits high-glucose-induced EMT and renal fibrogenesis [180]. Studies show that miR-192
levels are enhanced in glomeruli isolated from streptozotocin-injected diabetic mice, as
well as diabetic db/db mice [181]. In addition, the miR-200s are enriched in the kidney,
and expression of miR-200s is stimulated by oxidative stress. The miR-200s have been
shown to regulate mesenchymal-to-epithelial transition (MET) through modulation of the
E-cadherin transcriptional repressor zinc finger E-box binding homeobox 1 (ZEB1) [182].
However, the miR-130b-SNAIL axis acts to promote EMT and progression toward increased
tubulointerstitial fibrosis in DKD [183].

High glucose further promotes the expression of TGF-β1 to activate the expression of
miR-377, which suppresses the expression of p21-activated kinase (PAK) and superoxide
dismutase (SOD), thereby enhancing fibronectin protein production [184]. TGF-β1 reduces
the expression of antifibrotic miRNAs (miR-29s and let-7) [185,186], which target different
collagen isoforms in mesangial cells. Other protective miRNAs include miR-26a, which
inhibits TGF-β1-induced ECM protein expression in DKD patients [187], and miR-146a,
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which is upregulated in early DKD to reduce the expression of inflammatory cytokines
such as IL-1β and IL-18 [188].

6. Conclusions

Hyperglycemia is mediated by cytokines, growth factors, and nonepigenetic mecha-
nisms, the latter of which are also some of the key drivers of DKD, involving Wnt/β-catenin
signaling, ER stress, excessive ROS, RAAS activation, albumin overload, and the additional
production of inflammatory elements. However, epigenetic mechanisms such as DNA
methylation, histone post-translational modifications, and noncoding RNAs also play
critical roles in DKD pathogenesis, as do the processes of inflammation and fibrogenesis
(Figure 4). It is well known that early-stage DKD can be improved through multidisci-
plinary treatment, but as the disease progresses, there is no effective treatment available
as yet. The information provided in this review can assist clinicians in detecting DKD at
an earlier stage, where it will be relatively easier to manage or slow the progression of
nephropathy, and hopefully to achieve better outcomes.

Figure 4. Mechanisms driving renal inflammation and fibrosis. ECM: extracellular matrix; EMT: epithelial–mesenchymal
transition; EndoMT: endothelial–mesenchymal transition; IFN-α: interferon alpha; IL-6, interleukin 6; JAK/STAT: Janus
kinase signal transducers and activators of transcription; MAPK: mitogen-activated protein kinase; TGF-β: transforming
growth factor-beta; TNF, tumor necrosis factor.
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