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Highlights
� CCL24 is a chemokine that regulates inflammatory

and fibrotic activities through its receptor, CCR3.

� Significant expression of CCL24 and CCR3 were
found in liver biopsies and blood samples from
patients with NAFLD/NASH.

� CM-101, a monoclonal antibody that selectively
targets CCL24, significantly attenuates fibrotic and
inflammatory processes.

� Blocking CCL24 may have a potential therapeutic
effect in NASH and liver fibrosis.

Lay summary
CCL24 is a chemokine that regulates inflammation and
fibrosis. It was found to be significantly expressed in
patients with non-alcoholic steatohepatitis, in whom
it regulates profibrotic processes in the liver. Herein,
we show that blockade of CCL24 using a monoclonal
antibody robustly attenuated liver fibrosis and
inflammation in animal models, thus suggesting a
potential therapeutic role for an anti-CCL24 agent.
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Background & Aims: C-C motif chemokine ligand 24 (CCL24) is a chemokine that regulates inflammatory and fibrotic
activities through its receptor, C-C motif chemokine receptor (CCR3). The aim of the study was to evaluate the involvement
of the CCL24-CCR3 axis in liver fibrosis and inflammation and to assess the potential of its blockade, by a monoclonal anti-
CCL24 antibody, as a therapeutic strategy for non-alcoholic steatohepatitis (NASH) and liver fibrosis.
Methods: Expression of CCL24 and CCR3 was evaluated in liver biopsies and blood samples. CCL24 involvement in NAFLD/
NASH pathogenesis was assessed in Ccl24 knockout mouse using the methionine-choline deficient (MCD) diet experimental
model. Antifibrotic and anti-inflammatory effects of CM-101 were tested in the MCD and STAM mouse models and in the
thioacetamide (TAA) model in rats. Liver enzymes, liver morphology, histology and collagen deposition, as well as fibrosis-
and inflammation-related protein expression were assessed. Activation of hepatic stellate cells (HSCs) was evaluated in the
human LX2 cell line.
Results: Patients with NASH and advanced NAFLD exhibited significant expression of both CCL24 and CCR3 in liver and
blood samples. In the experimental MCD-diet model, Ccl24 knockout mice showed an attenuated liver damage response
compared to wild-type mice, exhibiting reduced histological NAFLD activity scores and fibrosis, as well as lower levels of
liver enzymes. Blocking CCL24 using CM-101 robustly reduced liver damage in 3 experimental animal models (MCD, STAM
and TAA), as demonstrated by attenuation of liver fibrosis and NAFLD activity score. Furthermore, blocking CCL24 by CM-101
significantly inhibited CCL24-induced HSC motility, a-SMA expression and pro-collagen I secretion.
Conclusion: Our results reveal that blocking CCL24 significantly attenuates liver fibrosis and inflammation and may have a
potential therapeutic effect in patients with NASH and/or liver fibrosis.
© 2019 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Non-alcoholic fatty liver disease (NAFLD) is the most common
chronic liver disease affecting up to 30% of the adult population
and 70–80% of individuals who are obese and diabetic.1 It is a
heterogeneous disease that may range from a relatively mild
and subtle disease (hepatic steatosis) to a much more active and
progressive disease, designated non-alcoholic steatohepatitis
(NASH). Many individuals with simple steatosis do not progress
to a more severe disease, however, NASH can progress to both
cirrhosis and end-stage liver disease. Currently, there are no
medications approved by the Food and Drug Administration or
European Medicines Agency for the treatment of NAFLD or
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NASH,2,3 and treatment guidelines focus on lifestyle
interventions.1

Liver fibrosis, a major marker of the progression from NAFLD
to NASH and of disease severity, is the process of excessive
accumulation of extracellular matrix proteins, predominantly
collagen, which occurs as results of liver injury. In cases of an
acute temporary insult, these changes are transient and liver
fibrosis may resolve. In chronic liver damage, the injury is sus-
tained, chronic inflammation and accumulation of the extra-
cellular matrix persists, eventually leading to cirrhosis.4–7 In
NASH, liver fibrosis is closely related to disease progression and
mortality.6,8–11

Hepatic stellate cells (HSCs) are liver-specific mesenchymal
cells that have a key role in the development of hepatic fibrosis.
In response to viral, chemical or immune insults to the liver,
the normally quiescent vitamin A storing HSCs undergo a dra-
matic phenotypic transformation termed “activation” or
“trans-differentiation”.5,12 When activated this population is
responsible for the deposition of the majority of excess
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extracellular matrix components that form scar tissue in the
fibrotic liver.13–15

The inflammatory response during chronic liver injury is a
dynamic process with intrahepatic accumulation of diverse
immune cells.16 Recruitment / infiltration of these cells to the
liver and their localization is mainly determined by chemo-
kines and cytokines that are produced by hepatocytes, im-
mune cells, biliary epithelial cells and endothelial cells.17

Notably, activated HSCs secrete various chemokines, thereby
contributing to the ongoing immune response during fibrotic
liver diseases.15,18 Indeed, the expression of several chemo-
kines and chemokine receptors was shown to be upregulated
in the livers of obese patients with severe steatosis and
NASH.19

C-C motif chemokine ligand 24 (CCL24 or eotaxin-2) is a
chemokine that promotes cell trafficking and regulates inflam-
matory and fibrotic activities mainly through the C-C motif
chemokine receptor 3 (CCR3) complex. The chemokine is
known to be expressed by activated T cells, monocytes,
epithelial and endothelial cells as well as by activated fibro-
blasts.20–22 CCL24 induces chemotaxis and activation of CCR3-
expressing cells, including immune cells23,24 and fibroblasts.25

CCL24 was shown to stimulate human lung fibroblast prolifer-
ation and collagen synthesis26 and was found to be associated
with the progression of idiopathic pulmonary fibrosis.27,28 In
Ccl24 knockout mice, inflammatory cell infiltration into bron-
choalveolar lavage fluid was significantly reduced in a model of
pulmonary inflammation.29 We recently reported that in the
skin and serum of patients with systemic sclerosis both CCL24
and its receptor CCR3 are elevated. Furthermore, we demon-
strated that treatment with an anti-CCL24 monoclonal antibody
reduced both the inflammatory and fibrotic pathways in pre-
clinical models of systemic sclerosis. This anti-inflammatory
activity of CCL24 blocking monoclonal antibody was also
shown in multiple inflammatory preclinical models, including
models of atherosclerosis,30 rheumatoid arthritis31 and
encephalomyelitis.32

In the current study, we assessed the potential involvement
of the CCL24-CCR3 axis in liver inflammation and fibrosis
associated with NAFLD/NASH. We also assessed whether CCL24
blockade could attenuate these processes in the liver.
Materials and methods
Immunohistological evaluation of CCL24 and CCR3
expression in liver biopsies from patients with NASH
Paraffin-embedded liver sections from patients with NASH and
healthy controls were obtained from the Royal Free London
histopathology archive (REC 07/Q0705) and used for CCL24
detection. The cohort of patients with NASH included 10 bi-
opsies with fibrosis stages of 1 (1 biopsy), 2 (3 biopsies) and 3 (6
biopsies). NAFLD activity scores (NASs) ranged from 4 to 7. The
healthy population included livers biopsies from patients that at
a clinical review, carried out at the initiation of the study, had no
known etiology of liver disease; these biopsies showed normal
liver histology. Co-staining of CCL24 with CD68 and of CCR3
with a-SMA [Acta2] was carried out using immunofluorescence
on commercially available TMA.NASH (Lot #1910017 and
#1810052, Sekisui XenoTech) that included both NASH and
normal liver biopsies.

Antibodies used for staining included: (i) ChemomAb’s pro-
prietary mouse-anti-human CCL24 (CM-101-D8), (ii) CCR3 mAb
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(IgG2a mab155 #61828, R&D systems), (iii) a-SMA (Abcam
#5694), (iv) CD68 (Abcam #213363).

Measurement of CCL24 levels in serum
Serum CCL24 levels of 20 healthy controls and 51 patients with
NAFLD were measured by a commercial ELISA kit for human
CCL24 (AB100509, Abcam). Patients with NAFLD were selected
from inpatient clinics at the Gastroenterology Department,
Kaplan Medical Center, Israel. Patients with NAFLD were iden-
tified on the basis of a questionnaire, laboratory investigations,
clinical findings and/or ultrasound scan imaging. All regular
alcohol consumers were excluded from this study. A complete
clinical history, including anthropometric measurements of the
participants was obtained. Anthropometric evaluation included
measures of body weight, height, and body mass index.

Disorders such as drug-induced liver disease, alcohol-related
liver disease, viral hepatitis, Schistosomiasis, autoimmune
hepatitis, primary biliary cirrhosis, sclerosing cholangitis, a1-
antitrypsin deficiency, hemochromatosis, Wilson disease and
biliary obstruction were excluded. Other exclusion criteria were
recent gastrointestinal surgery, pregnancy or suffering from
malignancy. Informed consent was obtained from all partici-
pants. The group of patients with NAFLD was sub-divided ac-
cording to the Fibrosis 4 (FIB-4) score, a noninvasive estimate of
liver fibrosis with a cut-off of 1.45 (n = 23; FIB-4 >−1.45, n = 28;
FIB-4 <−1.45).

Individuals who had visited the internal medicine depart-
ment at Kaplan Medical Center for routine health check-ups
without any specific problem and with no abnormality in the
clinical and laboratory findings were considered ‘normal con-
trols’. Twenty healthy individuals served as controls. None of
them had any evidence of fatty liver or previous liver disease.

The ELISA procedure was performed according to manufac-
turer’s instructions. Briefly: serum samples were diluted 1:4 and
incubated for 2.5 h at room temperature with gentle shaking.
Biotinylated detection antibody was added and incubated for
1 h, then washed. Horseradish peroxidase-streptavidin solution
was added for 45 min. ELISA was developed by the addition of
3,30,5,50-Tetramethylbenzidine substrate for 30 min followed by
stop solution. All assays were performed in duplicates and the
absorbancewas determined using amicroplate reader at 450 nm.

The study protocol was approved by National Ethics Com-
mittee according to ethics guidelines of the 1975 Declaration of
Helsinki, and all patients gave their written informed consent to
the study. Helsinki Approval number 0165-15-KMC.

CCR3 expression in peripheral blood mononuclear cells from
patients with NAFLD and healthy donors
Peripheral blood mononuclear cells from 35 patients with
NAFLD and 22 healthy controls (same cohort used for serum
collection, during their annual follow-up visit) were isolated by
Ficoll gradient (lymphoprepTM - Axis-Shield # 1114544) and
stained for extracellular expression of CCR3 using anti-Human
CCR3 PE-conjugated antibody (clone 61828, FAB155P, R&D
Systems). CCR3 expression was analyzed using FACS (FACSCali-
bur BD).

Anti-CCL24 antibody (CM-101)
CM-101 is a proprietary antibody that binds human CCL24 with
high affinity. It is a humanized IgG1, kappa light chain mono-
clonal antibody, manufactured in Chinese hamster ovary cells.
The antibody was generated from a parental hybridoma (CM-
2vol. 2 j 100064



101-D8) that contains a murine backbone and cross-reacts with
murine CCL24 with high affinity and was used in preclinical
models in mice. The humanized CM-101 antibody was used in
the rat model.

In vivo animal models
All animal experiments are reported in accordance with the
ARRIVE guidance. Studies involving methionine-choline defi-
cient (MCD) diet models were approved by the National Board
of Animal Studies in the Ministry of Health by the Kaplan
Medical Center. STAM model, study number SLMN081-1704-2
SMC Laboratories, Inc. Japan. The thioacetamide (TAA) model
experiments in rats were performed under ethical approval of
the “Israel Board for Animal Experiments”, approval number IL-
17-09-18. Further details regarding the in vivo animal models
used are provided in the supplementary information.

Ccl24 knockout mice
Ccl24 knockout mice were generated using CRISPR/Cas9-
mediated genome engineering by injecting mouse Ccl24-
gRNA2 (VB150827-10036) targeted to exon 2 of the Ccl24 gene
into fertilized eggs (Cyagen Biosciences Inc). The positive
founders (F0) created different chimera mice that were bred to
the next generations (with wild-type [WT] C57BL/6) to generate
F1 founders. All F1 founder mice were genotyped by PCR and
DNA sequencing analysis. Six F1 mice were obtained, 2 with an
8 base pair deletion and 4 with an 11 base pair deletion, both
types of deletions creating nonsense mutations in exon 2. F1
mice were then bred to each other to create Ccl24 knockout
mice. Five potential off-target sites have been identified by PCR;
DNA sequencing of those PCR amplicons revealed no mutations
were found in tested mice.

Analysis of serum biochemistry
For serum biochemistry, blood samples were left at room tem-
perature for 30 min and then centrifuged at 3,500 × g for 10 min
at 4�C. The supernatant was collected and stored at −80�C until
use. Serum levels of liver enzymes were measured for all animal
models using Cobas6000.

Histopathological analyses and immunohistochemistry
Liver tissues were trimmed, fixed in 4% neutral buffered
formalin, embedded in paraffin and sectioned at 4 lm thickness.
Sections were stained with H&E for histopathological analyses.
Steatosis (scale of 0-3), lobular inflammation (scale of 0-3), and
ballooning (scale of 0-2); were evaluated for the calculation of
NAFLD activity score (NAS) as previously described.33

Pictures for CCL24 were taken using Zeiss axioskop 40 with
attached ICc5 camera (Royal free hospital). TMA slides of CCR3
and a-SMA staining were scanned using Pannoramic SCAN (3D
Histech). Images were created using CaseViewer software (3D
Histech). To assess liver collagen deposition, fixed liver sections
were stained using picro-Sirius red solution (Waldeck, Ger-
many). In TAA model, blinded quantification was done for
randomly chosen 4 field/section, using Olympus BX-60, DP-73
camera in ×4 magnification (Patho-logica, Israel). Fibrosis area
was quantified using digital quantitative morphometry. In STAM
model (SMC laboratories Inc., Japan) 5 field/sections were
captured around the central vein using a digital camera
(DFC295; Leica, Germany) at 200-fold magnification, and the
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positive areas in 5 fields/section were measured using ImageJ
software (National Institute of Health, USA).

Sircol assessment of liver collagen content
Liver soluble collagen was quantified using the SircolTM soluble
collagen assay (Biocolor, Belfast, UK). The samples were
extracted into acid–pepsin solution. The samples were analyzed
for collagen content according to the manufacturer’s protocol.
Briefly, 100 ll of sample was added to 1 ml of the colorimetric
reagent (the dye Sirius red in picric acid) and agitated for 30 min
followed by centrifugation at 10,000 g for 10 min. The Sirius red
dye was released from the pellet with alkali reagent (1 N NaOH)
and spectrophotometric readings were taken at 555 nm on a
microplate reader. Collagen liver content was calculated as a
proportion of total liver weight.

ELISA for CCL24, IL-6 and MMP-9 in liver lysates
Quantification of rat or mouse CCL24, interleukin-6 (IL-6) and
matrix metallopeptidase 9 (MMP-9) in liver homogenates was
performed using the Duoset® ELISA kit (DY528, DY406, DY506,
and DY8174-05, R&D Systems, Minneapolis, MN). Briefly, liver
samples were homogenized using 500 ll extraction buffer for
every 0.05 g of liver tissue (extraction buffer -50 mM Tris-HCl
7.6, 150 mM NaCl and protease inhibitor cocktail (Sigma)). To-
tal protein concentration was quantified using the PierceTM BCA
Protein Assay kit (Thermo Scientific) and 300–500 lg total liver
protein from each sample was taken to measure CCL24, IL-6 and
MMP-9 using ELISA reader (TECAN). Results were analyzed with
the Magellan v2.22 software.

Fibrotic gene expression by real-time PCR
Gene expression of Col1a1, Col3a1, Acta2, Timp1 and Tgf-b were
tested against GAPDH normalization by Real-time PCR
using TaqMan probes (Applied Biosystems #Rn00587558_m1,
Rn01775763_g1, Rn01463848_m1, Rn01437681_m1, Rn0175
9928_g1, Rn00572010_m1). Whole livers were used for RNA
isolation (RNeasy® plus Mini kit (Applied Biosystems #74136), 1
lg was taken for cDNA synthesis (Applied Biosystems, high
capacity cDNA reverse transcriptase #4368814). cDNA was
diluted 1:5 for real-time reaction with the aforementioned
probes using QuantStudioTM 1 system for plate reading and
QuantStudioTM Design & Analysis software for results analysis.

Assessment of HSC activation
Detection of a-SMA staining and pro-collagen I
LX-2 cells (#SCC064, Millipore) were seeded at a concentration
of 1×105 cells/ml in growth medium and placed in 6-well plates.
Growth medium was replaced by starvation medium (DMEM,
0.5% FCS) after 24 h incubation at 37�C. The following day, CCL24
(100 ng/ml) with or without CM-101 (5, 10 or 15 lg/ml pre-
incubated for 1 h) was added to the plates and incubated for
an additional 48 h. Cells were harvested and the medium was
collected and tested for human pro-collagen I using a com-
mercial ELISA kit (DY6220-05 DuoSet®, R&D systems) according
to manufacturer’s instructions. Cell pellets were resuspended
and a-SMA expression, indicative of cell activation, was assessed
in the LX-2 treated cells. Cells were permeabilized and fixed
before being stained with anti a-SMA PE-conjugated antibody
(IC1420P, R&D systems). Staining was analyzed using FACS
(CytoFlex, BECKMAN COULTER).
3vol. 2 j 100064
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Scratch motility assay with LX-2
LX-2 cells (105cells/ml) were seeded in a 12-well plate for 24 h
followed by change to starvation medium (DMEM+ 0.5% FCS) for
an additional 24 h. Next, cells were scratched using a 200 ll
pipette-tip, and changed to treatment medium with CCL24 (25
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ng/ml) pre-incubated for 30 min, with or without CM-101 (5 lg/
ml). The scratch was documented at time 0, 24 h and 48 h. The
unoccupied area between the 2 scratch edges was assessed and
the % of closure was calculated (each treatment was assessed in
triplicates).
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Statistical tests
Student’s t test was used for comparison between 2 groups. p
<0.05 was considered statistically significant. Results were
expressed as mean ± SE.
Results
Expression of CCL24 and its receptor in the liver and serum of
patients with NASH/NAFLD
The expression profile and cellular localization of CCL24 in the
liver was assessed by immunohistochemistry and immunoflu-
orescent staining on liver biopsies from NASH patients and
healthy individuals. Overall, CCL24 positive staining was
observed in immune cells, endothelial cells, hepatocytes and
cholangiocytes (Fig. 1A). Co-staining of CCL24 together with
CD68 demonstrated that CCL24 co-localizes with liver CD68
positive macrophages (Fig. 1B). In accordance with immuno-
histochemistry, the immunofluorescent staining supported the
observation that CCL24 is expressed in hepatocyte nuclei and
cytoplasm predominantly in the livers of patients with NASH
(Fig. 1B). Moreover, CCL24’s receptor, CCR3, was significantly
expressed in both lobular and portal areas of the liver, and was
specifically seen on endothelial cells, hepatocytes and mesen-
chymal cells (Fig. 1C and 1D). Importantly, we identified sig-
nificant co-localization of CCR3 and a-SMA, which further
supports the expression of CCR3 on activated fibroblasts (Fig. 1C
and 1E) and the relevance of CCR3 to HSC-related activities.

Next, we tested the levels of CCL24 and its receptor in the
circulation of patients with NAFLD compared to healthy vol-
unteers. There were significantly higher serum levels of CCL24
in patients with NAFLD compared to healthy volunteers. This
elevation was even more pronounced when the NAFLD popu-
lation was divided to subgroups according to disease
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progression (FIB-4 score). CCL24 levels were increased by 2-fold
in patients with NAFLD that had FIB-4 scores higher than 1.45,
compared to healthy volunteers (Fig. 1F). Similar to the
increased CCL24 levels, there was also a 4-fold elevation of CCR3
expression in peripheral blood mononuclear cells isolated from
patients with NAFLD compared to healthy volunteers (Fig. 1G).

MCD-diet Induced NASH is attenuated in CCL24 Knockout
Mice
To further support the importance of CCL24 in NASH as a single
target, we used the experimental MCD-induced steatosis and
inflammation model in mice lacking the Ccl24 gene compared to
WT mice. This model is frequently used to study progressive
liver pathologies because of its ability to recapitulate steatosis
with lobular inflammation and to a lesser extent also fibrosis.
Mice lacking the Ccl24 gene showed an attenuated response to
the MCD diet compared to WT mice. Histological assessment
revealed significantly lower NAS in Ccl24 knockout mice than in
WT controls. The histological improvement is attributed to
reduced scoring in all tested parameters including ballooned
hepatocytes, steatosis, and lobular inflammation. Histological
assessment in the liver of these mice also revealed significantly
reduced fibrosis formation in MCD-fed Ccl24 knockout mice
compared to WT mice (Fig. 2A-C). Serum alanine aminotrans-
ferase (ALT) and aspartate aminotransferase (AST), indicative of
liver damage, which are elevated in WT mice in response to the
MCD diet, were significantly lower in the Ccl24 knockout ani-
mals (Fig. 2 D-F). Another feature seen frequently in MCD diet-
fed animals is weight loss. Indeed, both WT and Ccl24 knockout
mice fed with MCD diet exhibited significant weight lost
compared to normal chow-fed animals. Nevertheless, Ccl24
knockout mice demonstrated attenuated weight loss compared
to WT mice fed with the MCD diet (Fig. 2G).
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Blockade of CCL24 using monoclonal antibody inhibits
NASH-related pathologies in the MCD-diet mice model
To further elucidate the involvement of CCL24 in the MCD
model, we employed this model on WT mice treated with a
monoclonal antibody that blocks CCL24 activity. We compared
WT mice fed with normal chow diet or MCD diet and either
treated with 5 mg/kg CM-101 (D8) or vehicle control (Fig. 3).
While the MCD diet induced NASH-related histological features
(steatosis, inflammation and hepatocyte ballooning) in un-
treated mice, treatment of MCD-fed mice with 5 mg/kg CM-101
(D8) from day 10 significantly improved the histological scoring
by 34% (Fig. 3A-B). Furthermore, elevated levels of AST, ALT and
bilirubin observed in the MCD-diet fed group were significantly
reduced in MCD mice treated with CM-101 (D8) (Fig. 3C-E).
Moreover, MCD-fed mice had significantly higher CCL24 levels
in the liver with a 40% elevation compared to mice fed with
normal chow diet (3.87 ± 0.17 compared to 2.74 ± 0.13 ng/mg
total protein). CCL24 level was normalized following CM-101
(D8) treatment (2.73 ± 0.13 ng/mg total protein). These results
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Fig. 3. Anti-CCL24 antibody (CM-101 (D8)) reduced NASH-related pathol-
ogies in the MCD-diet mouse model (treatment mode). (A) Representative
H&E stained histological liver samples. Healthy liver from chow diet-fed mice
(upper panels), MCD-fed WT mice (middle panels) and MCD + 5 mg/kg CM-
101 (D8) treated group (bottom panels). (B) Histological scoring, compari-
sons of the 2 groups fed with the MCD diet (MCD diet and MCD diet + 5 mg/kg
CM-101 (D8), n = 8). (C-E) AST, ALT and bilirubin levels in the MCD-induced
NASH model compared to MCD + 5 mg/kg CM-101 (D8) treated group. (F)
CCL24 levels in the liver measured by ELISA using total protein liver lysates
from chow diet-fed mice, MCD-fed WT mice and MCD + 5 mg/kg CM-101 (D8)
treated mice. Results are presented as average ±SE; Student’s t test; *p <−0.05,
**p <−0.01, ***p <−0.001. ALT, alanine aminotransferase; AST, aspartate amino-
transferase; MCD, methionine-choline deficient; NAS, non-alcoholic fatty liver
disease activity score; WT, wild-type.
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provide further evidence of the connection between liver pa-
thology and CCL24 expression/regulation.
CM-101 (D8) improves parameters of liver damage in
experimental murine STAM model
To substantiate the role of CCL24 in NASH pathogenesis and the
ability of CM-101 to interfere with induced liver damage, we
utilized the well-established commercial murine STAM model
(Fig. 4).34 As previously reported, STAM mice exhibited many
NASH-related features including: micro- and macrovesicular fat
deposition, hepatocellular ballooning and inflammatory cell
infiltration.35 STAM mice treated with 5 mg/kg CM-101 (D8),
exhibited a significant 30% decrease in NAS, mostly attributed to
reduced inflammation and steatosis (p <0.05 vs. controls, Fig. 4A-
4D). Moreover, in accordance with reduced fibrosis in MCDmice,
CM-101 (D8) significantly reduced pericentral collagen deposi-
tion and fibrosis in STAM mice, indicated by a 50% decrease in
Sirius red staining compared to control mice (Fig. 4E and 4F).

To explore the reduced inflammatory-fibrotic phenotype
seen in CM-101 (D8)-treated STAM mice, we evaluated IL-6
levels in the liver of both control and CM-101 (D8) treated an-
imals. Along with reduced inflammation and fibrosis, a signifi-
cant (62%) reduction of liver IL-6 levels was observed in CM-101
(D8)-treated animals compared to controls (Fig. 4G).
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CCL24 blockade robustly attenuates liver fibrosis in the TAA
rat model
Both MCD and STAM models represent mainly the steatosis-
inflammatory arms of NASH pathology and induced only limited
fibrotic scarring. To further elucidate the role of CCL24 in the
establishment of fibrosis and assess the ability of CM-101 to
interfere with liver fibrosis by blocking CCL24, we employed the
widely used TAA model of fibrosis in rats. Similar to previous
publications, we found that livers from rats treatedwith TAA for 8
weeks exhibit extensive fibrosis visible upon gross examination,
marked elevations of liver enzymes and elevated collagen con-
tent.35 The CM-101-treated group exhibited a dramatic decrease
in liver fibrosis compared to the vehicle-treated group (Fig. 5).
CM-101-treated rats demonstrated almost no visible features of
fibrosis macroscopically (Fig. 5A) and exhibited significantly
lower liver enzyme levels (Fig. 5B). Histological evaluation
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showed significantly reduced fibrosis in the livers of rats treated
with CM-101 (Fig. 5C), indicated by an 80% reduction in Sirius red
collagen staining compared to the vehicle-treated group, as well
as a reduction of liver collagenmeasuredby sircol (Fig. 5D and5E).

In addition, we measured the effect of CM-101 on 2 factors
involved in liver fibrosis, MMP-9 and IL-6. MMP-9 is known to
activate HSCs and induce their trans-differentiation by acti-
vating TGF-b,36,37 while IL-6 is a central inflammatory cytokine
in the liver that can also activate HSCs and was found to
correlate with increased fibrosis.38 TAA induced a significant
upregulation of both MMP-9 and IL-6 in the livers of treated rats
compared to untreated controls. Treatment with CM-101
normalized protein levels of MMP-9 and IL-6 to the levels
seen in healthy rats (Fig. 5F and 5G).

To support the histological evidence of fibrosis, mRNA levels
of profibrotic genes were measured in the liver of treated and
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control animals. Col1a1, Col3a1, Acta2, Timp1 and Tgf-b genes
that represent the severe fibrotic damage seen in this model,
were all markedly increased in TAA-treated animals. In CM-101-
treated rats all 5 fibrotic genes, in accordance with histological
assessment, were either significantly reduced or completely
normalized to basal levels quantified in the healthy animals.
Col1a1 increased most robustly by 21.7 ± 3.13 after TAA treat-
ment. CM-101 reduced this elevation by 70% to 6.6 ± 2.78.
Col3a1 was increased by 5.8 ± 1.29 and reduced following
CM-101 treatment by 60% to 2.3 ± 0.76. Acta2, a well-known
marker of fibroblast activation, was increased by 3.9 ± 0.58-
fold, while CM-101 reduced its levels by 65% to 1.4 ± 0.55.
Timp1 was increased by 6 ± 0.34-fold after TAA and reduced to
2.7 ± 0.47 following CM-101 treatment. Finally, Tgf-b was also
increased by 1.4 ± 0.1 following TAA and normalized back to 1.1
± 0.11 in the TAA CM-101 treated animals (Fig. 5H).

Profibrogenic effects of human HSCs induced by CCL24 are
attenuated by CM-101 in vitro
HSCs are the main contributors to liver fibrosis producing most
of the extracellular matrix deposition which forms the fibrotic
scar. To evaluate whether the CM-101-mediated antifibrotic
effect observed in the animal models was the result of a direct
effect on HSCs, we used the human HSC cell line, LX-2.39 HSC
motility is a well-known indicator of activation40 and therefore
we tested the ability of CCL24 to induce HSC motility using a
scratch assay. LX-2 cell motility was induced following treat-
ment with CCL24 (25 ng/ml) at both 24 h and 48 h after scratch.
This enhancement in motility was completely reversed by pre-
incubation of CCL24 with 5 lg/ml CM-101 (Fig. 6A).

In addition, treating LX-2 cells with CCL24 robustly and
significantly increased a-SMA expression as well as pro-collagen
I secretion compared to untreated cells. Pre-incubation of CCL24
(100 ng/ml) with 5-15 lg/ml CM-101 robustly attenuated HSC
activation, as indicated by normalization of a-SMA to levels seen
in cells not treated with CCL24, and reduced pro-collagen I
secretion (Fig. 6B and 6C).
Discussion
Chemokines are traditionally described as proinflammatory
regulators due to their ability to induce chemotaxis of immune
cells into diseased organs. Over the past decade, the role of
chemokines in different cellular pathologies was further eluci-
dated, demonstrating that chemokines play an important role in
additional cellular processes including fibrosis.14,17

Chemokines were found to correlate with disease pathology
in several systems and their association with the severity of
disease made them desirable drug targets and possible
biomarkers.

CCL24 is a chemokine that was mainly investigated in the
past for its ability to promote allergic responses, due to the
prominent expression of its receptor CCR3 on eosinophils.23,29

Interestingly, it was also found that CCL24 plays a significant
role in promoting skin and lung fibrotic processes by directly
effecting fibroblast activation and being involved in an inflam-
matory response that supports fibrosis.25,26,41,42

In the present study we show for the first time that CCL24
plays a central role in the development of intrahepatic fibrosis
and liver damage. CCL24, as well as its receptor CCR3, were
found to be significantly expressed in the liver and peripheral
blood cells of patients with NAFLD and NASH. Both CCL24 and
JHEP Reports 2020
CCR3 are broadly expressed in both parenchymal and non-
parenchymal cells in the livers of patients with NASH and are
not exclusively expressed by immune cells.

Using the experimental MCD-induced NASH model in Ccl24
knockout mice, we further validated the role of CCL24 as a
single target in NASH development. The robust attenuation of
disease parameters in the absence of CCL24 compared with WT
controls suggests that the CCL24-CCR3 axis might have an
important role in regulating the inflammatory fibrotic axis
involved in liver damage.

In accordance with the co-localization of CCR3 and a-SMA on
hepatic fibroblast, the human LX2 cells express CCR3, thus
enabling these cells to sense and respond to CCL24. Indeed, we
found that CCL24 induces activation of these cells and that the
CCL24 blocking antibody CM-101 blocked CCL24-induced acti-
vation by reducing motility, a-SMA expression and pro-collagen
1 secretion. These results suggest that CM-101 treatment can
mitigate HSC activation, thereby potentially alleviating the
fibrotic injury seen in experimental models and ultimately in
patients.

The anti-inflammatory and antifibrotic properties of blocking
CCL24 in models of atherosclerosis, systemic sclerosis and
idiopathic pulmonary fibrosis were previously shown.30–32,42 In
this publication we demonstrate that CCL24 also plays a sig-
nificant role in liver fibrosis primarily by influencing fibroblasts.
These results imply that CCL24 influences fibroblast activation
in a dual pathway, primarily by acting directly on fibroblast
activation through the CCR3 receptor, but also via an augmented
inflammatory response. Moreover, it is well known that acti-
vated HSCs can also secret inflammatory mediators that
8vol. 2 j 100064



enhance tissue damage resulting in sustained and chronic in-
flammatory fibrotic injury.12,13,40 Targeting CCL24 in chronic
uncontrolled fibrotic processes can therefore be highly effective
by influencing several cell compartments. In this study, we
show that even under sever fibrotic insult in the TAA rat model,
treatment with CM-101 led to robust reduction in liver injury
and fibrosis. Interestingly, and consistent with the putative
mechanism of action of CM-101, hepatic levels of MMP-9 and IL-
6, that are known to be upregulated in this model, involved in
both the inflammatory and fibrotic processes, were significantly
attenuated following treatment with CM-101. It is conceivable
that a positive feedback loop consisting of proinflammatory and
profibrotic cytokine/chemokine bursts occurs locally in NASH
livers, perpetuating HSC activation and driving fibrosis. CM-101
appears to interfere significantly with this ‘vicious’ cycle by
attenuating both the proinflammatory and profibrotic signals.

Additionally, CCL24 staining in human liver biopsies
revealed a novel finding, showing its expression in human
hepatocytes. This is supported by real-time PCR data from
human hepatocytes (ChemomAb, unpublished data).
JHEP Reports 2020
Furthermore, using both MCD and STAM experimental NASH
models we showed that inhibition of CCL24 by CM-101 (D8)
profoundly attenuated hepatocyte damage. Treatment with
CM-101 (D8) decreased steatosis, microvesicular steatosis and
hepatocyte ballooning, leading to a vast improvement in liver
injury parameters. This hepatocyte-related effect was shown to
be relevant for other chemokines and chemokine receptors. For
example, Kim et al. recently reported that CCR5 is expressed on
hepatocytes and is involved in their ability to accumulate fat
and promote steatosis and that CCL5 is secreted by hepatocytes
during steatosis.43–45 Our data suggest that there might be a
direct effect of CCL24 on hepatocytes, although an indirect ef-
fect could not be completely ruled out. This effect, either direct
or indirect, is novel and highly interesting and needs to be
further elucidated in upcoming research on CCL24.

Taken together, the preclinical data presented in this publi-
cation suggest that while CCL24 is significantly involved in
promoting processes that induce liver fibrosis and inflamma-
tion, its blockade using a monoclonal antibody can potentially
be utilized as an antifibrotic agent in liver diseases.
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