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Cyclophilin D ablation is associated 
with increased end-ischemic 
mitochondrial hexokinase activity
Rianne Nederlof  , Mark A. M. van den Elshout, Anneke Koeman, Laween Uthman, Iris 
Koning, Otto Eerbeek, Nina C. Weber, Markus W. Hollmann & Coert J. Zuurbier

Both the absence of cyclophilin D (CypD) and the presence of mitochondrial bound hexokinase II 
(mtHKII) protect the heart against ischemia/reperfusion (I/R) injury. It is unknown whether CypD 
determines the amount of mtHKII in the heart. We examined whether CypD affects mtHK in normoxic, 
ischemic and preconditioned isolated mouse hearts. Wild type (WT) and CypD−/− mouse hearts were 
perfused with glucose only and subjected to 25 min ischemia and reperfusion. At baseline, cytosolic and 
mtHK was similar between hearts. CypD ablation protected against I/R injury and increased ischemic 
preconditioning (IPC) effects, without affecting end-ischemic mtHK. When hearts were perfused with 
glucose, glutamine, pyruvate and lactate, the preparation was more stable and CypD ablation−resulted 
in more protection that was associated with increased mtHK activity, leaving little room for additional 
protection by IPC. In conclusion, in glucose only-perfused hearts, deletion of CypD is not associated 
with end-ischemic mitochondrial-HK binding. In contrast, in the physiologically more relevant multiple-
substrate perfusion model, deletion of CypD is associated with an increased mtHK activity, possibly 
explaining the increased protection against I/R injury.

Ischemia and reperfusion cause oxidative stress, elevated phosphate concentrations, adenine nucleotide deple-
tion and calcium overload. This leads to opening of the mitochondrial permeability transition pore (MPTP), a 
non-specific pore in the inner mitochondrial membrane, which causes cell death1. Dimerization of F0F1ATPase 
has recently been proposed as the molecular identity of the MPTP with an important regulatory role for cyclophi-
lin D (CypD)2. Inhibiting CypD with cyclosporine A (CsA) or a knock-out in the gene coding for CypD, delays 
opening of the MPTP and commonly reduces ischemia-reperfusion (I/R) injury3–9.

Another important mediator of MPTP opening is the glycolytic enzyme hexokinase II (HKII). HKII can be 
found at two different places in the cell, bound to the mitochondria or free in the cytosol. When bound to the 
mitochondria, HKII protects against reactive oxygen species or calcium induced pore opening10. We have shown 
that mitochondrial HKII (mtHKII) protects against I/R injury in skeletal and cardiac muscle11–14 and that cardi-
oprotective interventions increase mitochondrial hexokinase activity (mtHK) before and after (but not during) 
the prolonged period of ischemia15–17. In addition we have shown that a disruption of the mitochondrial-HK 
binding blocks ischemic preconditioning13. The data indicate that increases in mtHK are necessary for ischemic 
preconditioning to be effective13,18,19.

Previous work has demonstrated that CypD−/− cardiomyocytes and CypD knock-out (KO) mice are protected 
against I/R injury, but could not be further protected by IPC5,7. This raises the question whether CypD and HKII 
interact in I/R injury and protection thereof in the intact heart. Indeed, an interaction between CypD and mtHKII 
has been found in cancer cells, albeit in the opposite direction20. In addition, inhibiting CypD activity reverted 
mitochondrial depolarization and prevented cell death caused by a peptide that detaches HKII from mitochon-
dria in fibroblasts21. This data indicates a functional link between CypD and HK binding to mitochondria22. 
However, to what extent CypD presence and activity affect mitochondrial hexokinase activity in the intact heart 
during baseline conditions or during ischemia with or without preceding IPC remains unknown. Therefore, in 
the present study we examine in the intact mouse heart whether 1) mitochondrial HK association depends on the 
presence of CypD, 2) CypD effects on I/R injury are mirrored by alterations in end-ischemia mtHK, and 3) the 
suggested loss of IPC cardioprotection with CypD ablation prevents end-ischemia mtHK increases.
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Material and Methods
Animals. C57BL/6 J CypD−/− were a generous gift of dr. M. Forte, Oregon Health and Science University, 
Oregon, USA. This mouse was first described by Basso et al.4 and has a deletion in the Ppif gene, coding for 
CypD. A heterozygous CypD+/− mouse was created by crossing CypD−/− males with C57BL/6 J females (Harlan). 
Subsequently a WT and CypD−/− line were created from these CypD+/− animals. Genotyping was performed by 
PCR on DNA isolated from toe biopsies of each animal at the start of breeding and later of one animal per nest. 
Cardiac energetics experiment were performed in 20–25 g male C57BL/6 J mice (Harlan). Mice were housed 
under standard housing conditions (12 h dark/12 h light cycle; water and food given ad libitum). A total of 138 
male mice of 10–18 weeks of age were examined. All experiments were approved by the animal ethics committee 
of the Academic Medical Center, Amsterdam, The Netherlands and performed conform the guidelines from 
Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes.

Heart perfusion. Isolated heart perfusion was performed as described previously with slight modifica-
tions23,24. In brief, mice were heparinized (15 IU) and anaesthetized using pentobarbital (Euthasol 20%, AST 
Farma) (100 mg/kg intra peritoneal). Adequate level of anaesthesia was determined by the lack of toe pinch 
reflexes. Tracheotomy was performed and mice were mechanically ventilated. After thoracotomy hearts were 
cannulated in situ and perfusion was started before excision of the heart. Hearts were Langendorff perfused with 
a constant perfusion flow (initial perfusion pressure of 80 mmHg) at 37 °C with Krebs-Henseleit solution (KHB) 
containing (mmol/L) NaCl 118, KCl 4.7, CaCl2 2.25, MgSO4 1.2, NaHCO3 25, KH2PO4 1.2 and EDTA 0.5 gassed 
with 95% O2/5% CO2. Depending on the study group the following substrates were added to the KHB (mmol/L) 
only glucose 11, or glucose 11, glutamine 0.5, lactate 1.0 and pyruvate 0.1. The perfusate was filtered in-line with 
a 0.45 μm filter. A water-filled polyethylene balloon was inserted in the left ventricular cavity and end diastolic 
pressure (EDP) was set at ~4–8 mmHg. Hearts were continuously submerged in 37 °C KHB. During ischemia 
hearts were submerged in KHB gassed with 95% N2/5% CO2. Developed left ventricular pressure (DLVP) was 
calculated as the systolic pressure minus the EDP. Rate pressure product (RPP) was calculated as DLVP * heart 
rate. Time to onset of contracture (TOC) was determined as the time from which diastolic pressure raised above 
baseline, followed by a consistent increase25.

Protocol. Figure 1 shows a schematic overview of the different perfusion protocols used. Isolated hearts were 
Langendorff perfused for ~20 min to reach stable conditions after which the hearts were exposed to different 
protocols.

Figure 1. Schematic overview of the different protocols. All hearts were exposed to 20 min perfusion with 
either glucose only, or multi-substrate perfusate to stabilize the heart. Hearts of group 1 were then homogenized 
and mitochondria were isolated for determination of mitochondrial hexokinase amount and activity. Hearts of 
group 2 were exposed to 30 min baseline perfusion after which they were frozen and used for cardiac energetics 
and glycogen determination. Hearts of group 3 were exposed to 35 min baseline perfusion with or without 
IPC, followed by 25 min no-flow ischemia. Then hearts were homogenized and mitochondria isolated for 
determination of HKII amount and activity and Akt phosphorylation. Hearts of group 4 were exposed to 35 min 
baseline perfusion with or without IPC, 25 min ischemia and 45 min reperfusion. LDH was sampled at 5, 10, 
15, 30 and 45 min reperfusion to determine cardiac damage. Hearts of group 5 were exposed to 20 min baseline 
perfusion with multi-substrate buffer, followed by 25 min ischemia and 10 min reperfusion. White: baseline 
perfusion with multi-substrate perfusate, white dotted: baseline perfusion with both glucose-only and multi-
substrate perfusate, grey: no-flow ischemia, black: reperfusion.
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 1. Normoxic groups: WT and CypD−/− hearts (n = 6 per group; 2 groups) were perfused with KHB with 
glucose only. After stabilisation hearts were weighed and immediately homogenized. These experiments 
evaluated possible differences in HK between WT and CypD−/− hearts under baseline conditions.

 2. Energetics and glycogen group: C57BL/6 J hearts (n = 6–7 per group; 2 groups) were perfused with the two 
different kinds of KHB. After 30 min basal perfusion hearts were snap frozen in liquid nitrogen, weighed 
and stored at −80 °C until analysis. This series examined the consequences of the different substrate perfu-
sate mixture on cardiac energetics and glycogen under baseline conditions.

 3. End-ischemic groups: WT and CypD−/− hearts (n = 6 per group; 8 groups) were perfused with the two 
different kinds of KHB. Half of the groups were exposed to IPC, consisting of 3 × 5 min global ischemia 
interspersed with 5 min reperfusion, with the last reperfusion period lasting 10 min. Control hearts were 
continuously perfused for 35 min. Thereafter, all hearts were subjected to 25 min ischemia and homog-
enized to isolate mitochondria. This series studied whether ischemia with or without IPC affects mtHK 
differently in WT versus CypD−/− hearts. In hearts perfused with glucose, glutamine, lactate and pyruvate, 
pAkt/Akt was determined in whole homogenate.

 4. I/R groups: WT and CypD−/− hearts (n = 6–13 per group; 8 groups) were perfused with the two different 
kinds of KHB with or without preceding IPC. All hearts were subjected to 25 min ischemia and 45 min 
reperfusion for determination of I/R injury and IPC protective effects. At the end of reperfusion wet weight 
was determined for all hearts. This series answered the question to what extent the ablation of CypD affect-
ed the cardiac response to I/R injury with or without IPC.

Mitochondria isolation. For protocols 1 and 3 mitochondria were isolated according to Pasdois et al.19 with 
a few modifications. All homogenisation steps were performed at 4 °C. Hearts were homogenized 2 min with a 
Potter homogenizer at 1200/min in 1.5 mL homogenisation buffer containing (mmol/L) sucrose 250, HEPES 20, 
KCl 10, MgCl2 1.5, EDTA 1, glucose 5, protease inhibitor (Roche) and phosphatase inhibitors (Roche), pH 7.4. 
Part of the whole homogenate was stored immediately at −80 °C, the rest of the homogenate was centrifuged 
7 min at 7500 g. The resulting supernatant is the cytosolic fraction and was stored at −80 °C. The pellet was resus-
pended in 1.5 mL homogenisation buffer and further homogenized 3 min at 1200/min. The homogenate was cen-
trifuged 10 min at 700 g and the resulting supernatant was centrifuged 10 min at 7000 g. The crude mitochondrial 
pellet was resuspended in homogenisation buffer with 25% (w/v) Percoll (pH 7.1 to 7.2 at 4 °C), homogenized for 
20 s as described above and centrifuged for 10 min at 17 000 g. The pellet was resuspended in 1.5 mL homogeni-
sation buffer and centrifuged 10 min at 7000 g. The pellet contained the purified mitochondria and was stored at 
−80 °C until use.

Western blotting. HKII and Akt were determined using Western blot. HKII in normoxic and end-ischemic 
cytosolic and mitochondrial samples, Akt in end-ischemic whole homogenate. Western blotting was performed 
as described before26–28. In short, equal amounts whole-cell homogenate, cytosol or mitochondrial protein were 
loaded and electrophoresed on a 4–12% gradient gel (Biorad) and transferred to a polyvinylidene membrane. 
The membrane was probed with an antibody for HKII (1:10 000; Cell signalling #2867), phospho-Akt (Ser473) 
(1:500; Cell Signalling #9271), Akt (1:1000; Cell Signalling #9272) and the cytosolic marker alpha-tubulin (1:40 
000; Sigma T9026) or the mitochondrial marker VDAC (1:5000; Calbiochem PC548) or COX IV (1:9000; Cell 
Signalling 4844). To facilitate comparison among the 4 groups within each substrate-specific perfusion series 
samples were analysed within the same blot. Protein concentrations of the fractions were determined by the 
Bradford method.

Enzyme activity assays. Whole-cell homogenate and the mitochondrial fraction were treated with 0.5% 
Triton X-100, sonificated 3 × 5 s and centrifuged 1 min at 10 000 g. Enzyme activity was determined in the super-
natant of these fractions26.

Total lactate dehydrogenase (LDH) activity was determined at 25 °C in whole homogenate of hearts of proto-
col 1 using a spectrophotometric assay measuring NADH oxidation at 340 nm after addition of pyruvate. LDH 
activity was corrected for protein concentration.

In addition, LDH release in effluent was used as an index of cardiac necrosis. Other studies have shown a good 
correlation between LDH release and infarct size determined by TTC staining29–31. LDH activity was determined 
in effluent collected at 5, 10, 15, 30 and 45 min reperfusion. Total LDH release during the 45 min reperfusion was 
calculated and normalized to total LDH content of normoxic hearts.

Hexokinase activity was determined in whole homogenate, isolated mitochondria and cytosol of protocol 1 
and 3. It was measured spectrophotometrically at 25 °C with glucose-6-phosphate dehydrogenase, glucose, ATP 
and NAD+, in the presence of rotenone (1 μM) to inhibit mitochondrial respiration. Hexokinase activity in total 
homogenate and the cytosolic fraction was corrected for protein concentration, and in the mitochondria for 
citrate synthase (CS), a mitochondrial marker. CS was measured at 25 °C using acetyl-CoA, oxaloacetate and 
di-thionitrobenzoic acid, measuring the formation of thionitrobenzoic acid at 412 nm.

Cardiac energetics and glycogen measurements. Hearts from protocol 2 were freeze-dried overnight 
and dry weight was determined. In one part of the heart ATP, phosphocreatine (PCr), creatinine (Cr) and inor-
ganic phosphate (Pi) were measured as described by Fiolet et al.32. The phosphorylation potential (ΔGATP) was 
calculated from these values. In the other part glycogen content was determined using the glycogen colorimetric/
fluorometric assay kit (Biovision) according to manufacturer’s instructions.
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Statistical analysis. Data are presented as mean + SEM, and sample sizes are provided in the legend of 
the figures. For the I/R outcome parameters of LDH release, EDP and RPP recovery a n = 7 was initially chosen 
based on previous studies23; with this n we could detect a difference of 45% among groups with an α = 0.05 and 
a power of 0.8 based on an SD of 13. For the HK and Akt parameters n = 6 for all 4 groups was used to be able to 
make comparisons on one 26 lane gel. Analysis of the important parameters (LDH and HK) was performed blind. 
Testing was performed using SPSS version 21. Mann-Whitney U tests were performed to test for significance 
between 1) control treated WT and CypD−/− animals 2) control and IPC treated animals in WT and 3) CypD−/− 
animals. Glycogen and cardiac energetics data were analysed using an Independent T-test. A p-value < 0.05 was 
considered significant.

Results
Baseline characteristics WT and CypD−/− hearts. Baseline levels of LDH and HK were determined in 
hearts of mice of protocol 1 (Fig. 2a). Hearts of CypD−/− mice contained significantly more LDH compared to 

Figure 2. Baseline characteristics of WT and CypD−/− hearts. (a) Total lactate dehydrogenase (LDH) activity 
of CypD−/− hearts normalized to protein content. (b) Hexokinase activity in whole heart normalized to 
protein content. (c) Mitochondrial citrate synthase (CS) activity normalized to protein content as parameter 
of mitochondrial capacity. (d) Mitochondrial HK activity as ratio to CS activity. (e) Cytosolic HK activity 
normalized to protein content. (f) Representative Western blot images of mitochondrial HKII/VDAC and (g) 
cytosolic HKII/tubulin. (h) The amount of mitochondrial HKII as ratio to VDAC normalized to WT. (i) The 
amount of cytosolic HKII as ratio to tubulin normalized to wt. n = 6 per group. Data are shown as mean + SEM. 
Differences between groups were analysed using Mann-Whiney U test *p < 0.05.
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control (2.0 ± 0.2 vs 1.3 ± 0.07 U/mg protein respectively; p = 0.009). The total amount of HK activity and mito-
chondrial CS activity did not differ between both groups (Fig. 2b and c).

At baseline no differences were observed between WT and CypD−/− hearts on EDP, DLVP, heart rate, RPP 
and flow (Table 1).

CypD ablation does not alter normoxic mtHKII. When examining the mitochondrial and cytosolic 
fraction separately no difference was observed in HK activity between WT and CypD−/− mice (Fig. 2d and e). 
The semi-quantitative amount of HKII in these compartments was determined using Western blot. Remarkably, 
although others have shown that CypD affects HKII binding to mitochondria in non-cardiac cells20,33, we 
observed similar binding of HKII to mitochondria in WT and CypD−/− hearts (Fig. 2f and h). Also no differences 
were observed in the amount of cytosolic HKII (Fig. 2g and i).

CypD ablation does not alter end-ischemic mtHKII and is not associated with loss of IPC in 
glucose-only perfused heart. Twenty-five minutes ischemia plus 45 min reperfusion resulted in 
49 ± 5% cell death (total loss of LDH) and 43 ± 5% RPP recovery with an EDP of 44 ± 5 mmHg and a DLVP 
of 55 ± 5 mmHg in WT hearts (Fig. 3). Deletion of CypD reduced I/R-induced cell death by 42% (p = 0.008) to 
27 ± 3% cell death, but was without effect on cardiac contracture, RPP recovery and DLVP at the end of reperfu-
sion when compared to WT.

IPC was only marginally effective in WT animals, resulting in a significant improvement in RPP recovery 
to 65 ± 6% (p = 0.01) and DLVP to 72 ± 7 mmHg (p = 0.04), but only a non-significant improvement for LDH 
release to 37 ± 5% (p = 0.1) or contracture development to 32 ± 6 mmHg (p = 0.06). Remarkably, in contrast to 
what is reported in literature5,7, IPC was markedly effective in CypD−/− hearts. IPC reduced cardiac injury in 
CypD−/− hearts, as reflected by a decreased LDH release (27 ± 3% to 13 ± 2% of total LDH; p = 0.007), improved 
RPP recovery (44 ± 8% to 79 ± 4%; p = 0.01), diminished cardiac contracture (43 ± 7 to 25 ± 6 mmHg; p = 0.07) 
and improved DLVP (46 ± 5 to 87 ± 5 mmHg; p = 0.001) at the end of reperfusion.

Next, we examined in a different series of experiments whether CypD and IPC effects on cardiac I/R injury 
were mirrored by end-ischemic mtHK (Fig. 4). CypD ablation did not alter end-ischemic mtHK activity (Fig. 4a) 
or mtHKII amount (Fig. 4c) as compared to WT. Similar results were observed for end-ischemic cytosolic HK 
activity or cytosolic HKII presence (Fig. 4b and d, respectively). In contrast, the strong cardioprotective effect 
of IPC in CypD−/− hearts was associated with significant increased mtHK activity, although this increased HK 
activity could not be further allocated to increased mtHKII or decreased cytosolic HKII amount using the WB 
technique. IPC in WT hearts only caused a non-significant increase in mtHK activity from 0.045 ± 0.003 to 
0.052 ± 0.003 (p = 0.09), without any effect on other indices of HK cellular redistribution

These data clearly indicates that CypD ablation effects on cardiac I/R are independent of mtHK alterations in 
glucose-only perfused mouse hearts.

IPC effects on time of contracture depends on substrate availability in isolated mouse 
heart. The protective effect of IPC on I/R injury was only marginally present. Glycogen depletion is one of the 
factors contributing to IPC34,35. Time to onset of contracture (TOC) is a marker of glycogen depletion36 and IPC 
is also commonly associated with an earlier TOC due to glycogen depletion during the short ischemic periods 
of the IPC protocol34. In our glucose-only perfused mouse hearts, however, no smaller TOC was observed after 
IPC (Fig. 5a and b). On the contrary, TOC was significantly smaller in WT control animals compared to WT 
IPC animals (5.9 ± 0.2 vs 7.4 ± 0.3 min; p < 0.001, respectively). This early TOC, indirectly suggesting extensive 
glycogen depletion, might be explained by that 11 mM glucose provides insufficient substrate to prevent glycogen 
depletion under normoxic conditions. Therefore, similar experiments were performed in the presence of not only 
glucose, but also of physiological concentrations of glutamine, lactate and pyruvate, substrates known to be highly 
extracted and used by the heart37. Indeed, in the presence of these substrates TOC increased significantly from 
5.9 ± 0.2 to 10.8 ± 0.7 min (p < 0.001) in WT control animals, indicating sparing of glycogen during normoxic 
perfusion. In addition, in both WT and CypD−/− animals IPC now significantly reduced TOC (from 10.8 ± 0.7 to 
8.5 ± 0.5 min in WT and from 11.5 ± 0.9 to 7.3 ± 0.5 min in CypD−/− animals) (Fig. 5c and d). Furthermore, we 
also noticed that with the additional substrates the isolated mouse heart preparation was more stable in terms of 
constancy of perfusion pressure in this constant flow model (Fig. 4e and f). To verify that glucose only perfusion 
depleted glycogen, glycogen content of the heart was measure after 30 min basal perfusion with both perfusion 
conditions. Indeed, glycogen was 2.6 times higher in hearts perfused with glutamine, lactate and pyruvate in 

Glucose only Glucose, lactate, pyruvate, L-glutamine

Wt con Wt IPC CypD−/− con CypD−/− IPC Wt con Wt IPC CypD−/− con CypD−/− IPC

EDP (mmHg) 3.8 ± 0.4 3.9 ± 0.4 5.0 ± 1.1 7.2 ± 1.4 5.8 ± 1.3 4.7 ± 0.8 5.0 ± 0.5 6.0 ± 0.6

DLVP (mmHg) 115.8 ± 3.4 106.1 ± 4.6 114.7 ± 7.6 103.6 ± 8.4 110.1 ± 8.0 108 ± 3.7 106.1 ± 6.7 100.7 ± 7.2

HR (bpm) 411 ± 14 383 ± 17 425 ± 11 410 ± 11 394 ± 17 387 ± 19 400 ± 20 390 ± 17

RPP (HR*DLVP) 47819 ± 2548 40321 ± 2192 48710 ± 3258 41995 ± 2587 43651 ± 3825 41658 ± 2258 41995 ± 2586 39171 ± 3079

Flow (ml/min/g HW) 12.3 ± 0.6 11.4 ± 0.5 11.6 ± 0.5 15.1 ± 1.8 14.1 ± 2.0 11.6 ± 0.8 11.6 ± 1.1 11.3 ± 1.1

Table 1. Baseline characteristics I/R experiments. EDP: end diastolic pressure; DLVP: Developed left-
ventricular pressure; HR: Heart rate; RPP: Rate pressure product; HW: heart weight. Data are presented as 
mean ± SEM, 6–13 animals per group. Mann-Whitney U test has been performed to test between groups.
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addition to glucose (1.17 ± 0.18 vs 3.08 ± 0.43 µg/mg dry weight; p = 0.003) (Fig. 4g). The different perfusion 
conditions did not show any differences in cardiac energetics. PCr, ATP, PCr/ATP ratio, a clinical indicator for the 
energy state of the heart, Pi, Cr or ΔGATP were comparable between the conditions (Table 2). Even though cardiac 
energetics were not altered, these data still indicate that for the isolated mouse heart generating left ventricular 
pressure of more than 90 mmHg, glucose only perfusions are insufficient.

Next, we examined whether the now observed reduction in TOC with IPC translated in a more prominent 
increase of mitochondrial HK with IPC as compared to no-IPC in both WT and CypD−/− hearts, as has been 
suggested by Pasdois et al.19.

CypD ablation does increase end-ischemic mtHK activity in mixed substrate-perfused 
heart. Cardiac mechanical performance and flow at baseline conditions were similar between WT and 
CypD−/− isolated mouse hearts using the mixed-substrate KHB (Table 1).

Under these perfusion conditions, cell death in WT hearts at the end of reperfusion was 40 ± 10%, with 
a RPP recovery of 62 ± 7%, an EDP of 32 ± 6 mmHg and a DLVP of 69 ± 8 mmHg (Fig. 6). Surprisingly, the 
cardioprotective effects of CypD deletion on I/R injury were increased as compared to glucose-only perfused 
hearts. Deletion of CypD reduced I/R-induced cell death by 79%, as reflected by the lower LDH release (8.1 ± 4%; 
p = 0.002), and now significantly improved recovery of cardiac function, shown by less cardiac contracture devel-
opment (EDP: 14 ± 6 mmHg; p = 0.04) (Fig. 6). LDH content remaining in heart, provided similar (reciprocal) 
results as the LDH measurement in effluent, suggesting that LDH release is a proper measure of irreversible IR 
damage in our isolated mouse model (data not shown).

Despite the observation that IPC in the mixed substrate-perfused hearts now induced a shorter TOC, indi-
cating less glycogen breakdown during ischemia in IPC-treated heart, overall IPC protective effects were actually 
diminished. IPC reduced cardiac contracture in WT animals from 32 ± 6 to 17 ± 2 mmHg (p = 0.1), but was 
without effect on RPP recovery and LDH activity. In contrast to what we observed when hearts were perfused 
with glucose only, IPC was now without effects on LDH release (8.1 ± 3.6 vs 11.5 ± 3.8%; p = 0.2), RPP recovery 

Figure 3. CypD ablation decreases I/R injury and CypD−/− hearts are protected by IPC in hearts perfused 
with glucose only. (a) Lactate dehydrogenase (LDH) release during reperfusion as a percentage of total LDH in 
the heart. (b) Rate pressure product (RPP) at the end of reperfusion as percentage of baseline values. (c) End-
diastolic pressure (EDP) at the end of reperfusion. (d) Developed left ventricular pressure (DLVP) at the end of 
reperfusion. N = 7–13 per group. Data are shown as mean + SEM. Mann-Whitney U tests were performed to 
test for significance between 1) control treated WT and CypD−/− animals 2) control and IPC treated animals in 
WT and 3) CypD−/− animals. *p < 0.05.
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(73.1 ± 3.5 vs 70.0 ± 4.4%; p = 0.5) and cardiac contracture (14.3 ± 5.7 vs 10.1 ± 3.4 mmHg; p = 0.5) in CypD−/− 
hearts (Fig. 6).

The improved protection against I/R injury with CypD ablation was associated with significantly increased 
mtHK activity (0.061 ± 0.009 vs 0.12 ± 0.01; p = 0.02) and reduced cytosolic HKII amount (1 ± 0.07 vs 
0.63 ± 0.07; p = 0.004) at end-ischemia (Fig. 7a,d and f, respectively). No effects of CypD ablation were observed 
on mtHKII amount or cytosolic HK activity (Fig. 7c,e and b, respectively). IPC significantly reduced cytosolic 
HKII in WT animals from to 0.77 ± 0.05 (p = 0.02), with a non-significant trend for increased mtHK activity 
to 0.087 ± 0.009 (p = 0.2). The absence of a protective effect of IPC on I/R injury was mirrored by the obser-
vation that IPC was now without an effect on any of the HK determinations in CypD−/− hearts. Differences in 
end-ischemic HK were not associated with differences in end-ischemic Akt phosphorylation (Fig. 7g and f). 
There were no differences between pAkt/Akt between wt and CypD−/− hearts (1.0 ± 0.12 vs 0.91 ± 0.05; p = 0.9). 
pAkt/Akt was non-significantly decreased after IPC in both groups (1.0 ± 0.12 vs 0.82 ± 0.12; p = 0.3 in the WT 
and 0.91 ± 0.05 vs 0.76 ± 0.07; p = 0.07 in the CypD−/− hearts).

Discussion
In this study we observed that 1) CypD is not necessary for HKII to bind to mitochondria in the heart, 2) deletion 
of the mitochondrial CypD enzyme augments hexokinase activity at the mitochondria during cardiac ischemia in 
the all substrates series, 3) CypD is not always mandatory for IPC protective effects, 4) glucose as sole metabolic 
substrate is insufficient for the Langendorff perfused mouse

Multiple studies in cancer cells have shown that CypD inactivation leads to release of HKII from the mito-
chondria, assuming CypD activity is necessary for HKII binding to the mitochondria20,33. As both the presence 

Figure 4. CypD and IPC have no effect on end-ischemic mtHKII in hearts perfused with glucose only. (a) 
End-ischemic mitochondrial HK activity as ratio to CS activity. (b) Cytosolic HK activity normalized to 
protein content. (c) Representative Western blot images of mitochondrial HKII/VDAC and (d) cytosolic HKII/
tubulin. The amount of end-ischemic mitochondrial (e) and cytosolic (f) HKII as ratio of VDAC and tubulin 
respectively, normalized to WT control. n = 6 per group. Data are shown as mean + SEM. Mann-Whitney U 
tests were performed to test for significance between 1) control treated WT and CypD−/− animals 2) control and 
IPC treated animals in WT and 3) CypD−/− animals. p < 0.05.
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of mtHKII and the absence of CypD protect the heart against I/R injury5–10,13,14,16,19, we studied in intact hearts 
whether HKII binding to mitochondria was dependent on the presence of CypD. In our study however, we found 
under baseline, non-ischemic, conditions that in CypD−/− hearts HKII was bound to mitochondria and that the 

Figure 5. Metabolic substrates influence time of contracture during ischemia. Diastolic pressure (a + c) and 
time of contracture (b + d) during ischemia and perfusion pressure (Pperf) at the end of baseline (e + f) in 
the presence of glucose only (a + b + e) or glucose, pyruvate, lactate and L-glutamine (c + d + f). (g) Glycogen 
content in the heart after 30 min basal perfusion with the different perfusates. n = 12–19 (a–f) and n = 6–7 
(g) per group. Data are shown as mean + SEM. For TOC Mann-Whitney U tests were performed to test for 
significance between 1) control treated WT and CypD−/− animals 2) control and IPC treated animals in WT 
and 3) CypD−/− animals. Glycogen data weas analysed using an Independent T-test. *p < 0.05.
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amount of mtHKII binding or mtHK activity did not differ between WT and CypD−/− hearts. The difference 
between this study and other studies might be caused by difference in cell type. Above mentioned studies were all 
performed in cancer cells, where the amount of mtHKII is higher and significant changes in the activation status 
of cellular signalling pathways are present. In addition, none of these studies have been performed in CypD−/− 
cells, but rather using CsA. In CypD−/− animals, compensatory mechanisms might have restored mtHKII to WT 
levels. Conflicting results on the effects of proteins on I/R have been reported for other proteins, eg p66Hsc38. Also 
for P66Shc effects on I/R are critically dependent on the specifics of the experimental model. Summarised, during 
baseline, non-ischemic, conditions, chronic CypD deletion is without effect on mtHKII in the heart.

As in other studies5,7 we observed a protective effect of CypD−/− on I/R injury. As a novel observation, the 
present study demonstrates that this CypD−/− protective effect was more pronounced in the presence of glucose, 
L-glutamine, lactate and pyruvate than with glucose only. In the presence of multiple substrates, the protective 
effect was associated with an increase in end-ischemic mtHK activity, without changes in the amount of mtHKII 
or cytosolic HK activity. This higher activity could have been caused by HKI translocation, since hexokinase 

Glucose-only GGLP P

ATP (µg/g DW) 25.1 ± 1.0 25.7 ± 1.2 0.69

PCr (µg/g DW) 21.8 ± 1.9 24.8 ± 2.1 0.32

Cr (µg/g DW) 31.3 ± 1.8 30.2 ± 2.7 0.75

Pi (µg/g DW) 16.5 ± 1.3 12.9 ± 2.6 0.25

PCr/ATP 0.87 ± 0.08 0.96 ± 0.07 0.43

ΔGATP (kJ) 50.5 ± 0.4 49.3 ± 0.7 0.22

Table 2. Cardiac energetics. GGLP: glucose, L-glutamine, lactate, pyruvate; PCr: phosphocreatine; Cr: 
Creatine; Pi: inorganic phosphate; ΔGATP: free energy of ATP. Data are presented as mean ± SEM, 6–7 animals 
per group. An independent T- test has been performed to test between groups.

Figure 6. CypD ablation reduces I/R injury in hearts perfused with glucose, pyruvate, lactate and glutamine. 
(a) Lactate dehydrogenase (LDH) release during reperfusion as a percentage of total LDH in the heart. (b) Rate 
pressure product (RPP) at the end of reperfusion as percentage of baseline values. (c) End-diastolic pressure 
(EDP) at the end of reperfusion. (d) Developed left ventricular pressure (DLVP) at the end of reperfusion. 
n = 6–7 per group. Data are shown as mean + SEM. Mann-Whitney U tests were performed to test for 
significance between 1) control treated WT and CypD−/− animals 2) control and IPC treated animals in WT 
and 3) CypD−/− animals. *p < 0.05.
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activity is the activity of both HKI and HKII. Although we cannot exclude a translocation of HKI, in other stud-
ies we have shown that IPC can increase the amount of HKII, but has no effect on HKI15. In addition, all arti-
cles that have examined HK translocation in the heart have ascertained that HKI does not translocate with any 
intervention13,15,39. Furthermore, if HKI was translocated we would have expected a decrease in cytosolic HK 
activity which was not observed. Therefore, we hypothesize that the higher hexokinase activity was not caused 
by HK translocation, but by increased activity due to post-translational modification. The activation of different 

Figure 7. CypD and IPC have no effect on end-ischemic mtHKII in hearts perfused with glucose, pyruvate, 
lactate and glutamine. (a) End-ischemic mitochondrial HK activity as ratio to CS activity. (b) Cytosolic HK 
activity normalized to protein content. (c) Representative Western blot images of mitochondrial HKII/VDAC 
and (d) cytosolic HKII/tubulin. The amount of end-ischemic mitochondrial (e) and cytosolic (f) HKII as ratio 
of VDAC and tubulin respectively, normalized to WT control. (g) Representative Western blot image and 
quantification (h) of whole homogenate pAkt/Akt, normalized to WT control. n = 6 per group. Data are shown 
as mean + SEM. Mann-Whitney U tests were performed to test for significance between 1) control treated WT 
and CypD−/− animals 2) control and IPC treated animals in WT and 3) CypD−/− animals. *p < 0.05.
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kinases, like Akt and AMPK, has been shown to be able to phosphorylate hexokinase and increase its activ-
ity10,40,41 Therefore we hypothesized that an increase in pAkt caused the increase in HK activity. In contrast to 
our hypothesis, CypD−/− did not increase end-ischemic pAkt. Nor was end-ischemic pAkt increased after IPC. 
Others did also not observe increased pAkt in the hearts of CypD−/− mice5. Therefore, further studies are neces-
sary to examine how CypD−/− increases end-ischemic hexokinase activity.

Summarized, during conditions of ischemia, CypD deletion is associated with increased mtHK activity in the 
heart.

We observed that CypD−/− hearts could still be preconditioned using IPC when perfused with glucose only. 
The absence of a preconditioning effect in CypD−/− hearts in the mixed substrate perfusion might be caused 
by the already good recovery in the control group. Cell death was already decreased to 8% in CypD−/− control 
hearts. Protection of CypD−/− hearts using IPC indicates that other mechanisms for IPC protection than delayed 
opening of the MPTP are operative in the heart. Ruiz-Meana et al.9 showed that an important part of necrosis 
after short periods of ischemia was caused by reperfusion contracture that mechanically resulted in sarcolem-
mal rupture. These mechanisms were independent of CypD and the MPTP. IPC could affect these causes of cell 
death and thereby improve cardiac function and survival after I/R also in CypD−/− animals. The observation that 
CypD−/− hearts in this study could be preconditioned is in contrast to findings by the group of Yellon5,7. This 
difference might be caused by the difference in model employed. We used a Langendorff perfused mouse heart 
while the other studies were performed in vivo or in cardiomyocytes.

In this study we observed only a marginal effect of IPC in WT animals in the presence of glucose only and no 
increase in mtHK in IPC hearts. Pasdois et al.19 showed that there is a link between cardioprotection, mtHK and 
pre-ischemic glycogen content. A lower glycogen content of the heart, which is one of the consequences of IPC, 
is associated with a better outcome after I/R34,35,42. A smaller TOC is a sign of early inhibition of glycolysis due to 
depleted glycogen. This decreases glucose-6-phosphate and reduces the drop in pH, which in turn reduces the 
amount of HKII released from mitochondria19. In our hearts perfused with glucose only, no reduction of TOC 
was observed in IPC animals. On the contrary, TOC was significantly smaller in WT control animals compared 
to WT IPC animals. This might have been caused by IPC slowing down energy metabolism during ischemia43. 
We hypothesized that the absence of a reduction in TOC after IPC was caused by extensive glycogen depletion 
during normoxic perfusion, because the 11 mM glucose, used in our model, provided insufficient substrate. In 
the absence of glycogen, the IPC-induced slowing down of metabolism might have overridden the IPC effects of 
glycogen, and increased TOC. Therefore experiments were repeated in the presence of glucose, glutamine, pyru-
vate and lactate as substrates for the heart. We chose these substrates, because we think that it 1) mimics the in 
vivo physiological conditions more closely, and thereby improves translatability of the isolated heart model and 2) 
provides a more stable preparation. Indeed, with this protocol glycogen concentrations were significantly higher 
and TOC was now significantly smaller in preconditioned hearts compared to control hearts. However, still no 
increase in mtHKII after IPC or protective effect of IPC could be observed. So glycogen depletion cannot explain 
the absence of an increase in mtHKII and preconditioning in the WT animals. Others have also shown that gly-
cogen depletion is not the only determinant for the effectiveness of IPC42,44. We have recently shown that using 
this mixed substrate perfusate will result in rather low glycolysis rates45. Knowing that increases in glycolysis may 
partly underlie cardioprotection and alterations in mitochondrial function following IPC27,46,47, the impairment 
of glycolysis using the mixed substrate perfusate may be responsible for the diminished IPC potential with the 
mixed substrate perfusate. Further studies are necessary to elucidate this with more certainty.

In the Langendorff perfused rat heart it has been shown that glucose has only a small contribution to 
acetyl-CoA formation in the absence of insulin37. Indeed, we observed a small TOC and a significantly lower 
amount of glycogen in control hearts with glucose-only perfusion indicating that glucose as sole metabolic sub-
strate is insufficient for the Langendorff perfused mouse heart and the heart therefore is depleting its glycogen 
storage36. Lactate and pyruvate have a significant contribution to acetyl-CoA formation, especially in the absence 
of insulin37, which can explain the delayed TOC in the presence of these substrates. In addition, glutamine is 
the most abundant amino acid that can be found in the blood and amino acids are important players in cardiac 
metabolism and IR studies48,49. Therefore we believe it is important to have glutamine present in studies examin-
ing I/R, knowing that also I/R is largely metabolically driven.

Another indication that glucose as singular substrate is insufficient in the Langendorff perfused mouse heart 
is the decrease in perfusion pressure we observed in glucose-only perfused hearts, but not in hearts perfused with 
additional substrates.

From our data we summarised that only providing glucose as substrate to the isolated mouse heart results in 
an unstable heart preparation, and should be avoided in future experiments.

It should be taken into account that this study also has several limitations. One of the limitations is the use 
of an ex vivo instead of in vivo model, because it cannot recapitulate the complexity of the in vivo setting50,51. 
However, it was necessary for the quick determination of the labile binding of HKII to mitochondria, with-
out contamination with other tissue and/or blood. In addition, the isolated heart also allowed to study con-
tracture development during ischemia, which was an important parameter in the present study. Finally, cardiac 
mechanical performance that can totally be ascribed to the functioning of the heart per se, and not to systemic 
pre-afterload, or changes in the hormonal/neural environment of the heart in the in vivo condition, allowed 
improved characterization of how CypD deletion in the heart directly affected cardiac mechanical performance 
following I/R, which is one of the main topics of the current manuscript.

Secondly, the use of LDH as determinant of cardiac necrosis, instead of the golden standards TTC or histol-
ogy50 may be a limitation. As with TTC staining, cell death measured by LDH release depends on the wash-out 
of dehydrogenases, which might be obstructed. Therefore, we have also measured LDH in the heart at the end 
of reperfusion. This correlated well with the LDH release data in effluent. In addition, LDH has previously been 
shown to correlate well with infarct size as measured by TTC staining (e.g.29–31).
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Another limitation of this study is the use of a high, non-physiological, concentration of glucose (11 mM), 
even in the more physiological multi-substrate perfusate. A high concentration of glucose is necessary to facilitate 
glucose uptake in the cardiomyocyte, since no insulin was present. This mild hyperglycemia, although being a 
common and necessary characteristic of the Langendorff perfused mouse heart model52,53, might have affected 
our results54.

In conclusion, in contrast to cancer cells, our results show that HK can still bind to mitochondria in the 
absence of CypD in the heart, and that mtHK may be involved in reduction of I/R injury by CypD ablation.

Data availability. The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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