78737 measured reflections

 $R_{\rm int} = 0.064$

3640 independent reflections

3200 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(2-Hydroxy-2,2-diphenylethyl)-(methyl)amino]-N.N-dimethylethanaminium bromide

Viktoria H. Gessner, Christian Däschlein and Carsten Strohmann*

Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany

Correspondence e-mail: mail@carsten-strohmann.de

Received 19 December 2008; accepted 19 January 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.099; data-to-parameter ratio = 16.6.

The title compound, $C_{19}H_{27}N_2O^+ \cdot Br^-$, is the hydrobromide of the trapping product of lithiated N,N,N',N'-tetramethylethylenediamine (TMEDA) with benzophenone. Thereby, the N atom of the NMe₂ group is selectively protonated and the respective trapping product represents a potential tridentate ligand with one O and two N donor atoms. The H atoms at N (H2N) and O (H1O) are involved in hydrogen bonds with the Br⁻. The molecular structure shows all donor atoms to be arranged on one side of the molecule, thus indicating a potential threefold coordination of a Lewis acid.

Related literature

For related literature on direct deprotonation of tertiary amines, see: Strohmann & Gessner (2007a,b,c, 2008a,b), Gessner & Strohmann (2008); Bojer et al. (2007); Karsch (1996); Strohmann et al. (2008); Köhler et al. (1987); Arnold et al. (2002).

Experimental

Crystal data

 $C_{19}H_{27}N_2O^+ \cdot Br^ M_r = 379.34$ Orthorhombic, Pbca a = 7.119 (2) Å b = 15.515 (3) Å c = 33.585 (7) Å

 $V = 3710 (1) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 2.22 \text{ mm}^{-1}$ T = 173 (2) K $0.4 \times 0.2 \times 0.2$ mm

Data collection

Bruker APEX CCD diffractometer Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 1999) $T_{\min} = 0.440, T_{\max} = 0.635$

Refinement

T 1 1 - 4

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$vR(F^2) = 0.099$	independent and constrained
S = 1.07	refinement
3640 reflections	$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$
219 parameters	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

lable I			
Judrogon	bond	geometry	()

Č,)
	΄.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2N\cdots Br$	0.87 (4)	2.52 (4)	3.276 (3)	145 (4)
$O-H1O\cdots Br$	0.69 (3)	2.76 (3)	3.398 (2)	156 (3)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS90 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support and the award of a scholarship (VHG). CD thanks the Studienstiftung des Deutschen Volkes for a doctoral scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2095).

References

- Arnold, J., Knapp, V., Schmidt, J. A. R. & Shafir, A. (2002). J. Chem. Soc. Dalton Trans. pp. 3273-3274.
- Bojer, D., Kamps, I., Tian, X., Hepp, A., Pape, T., Fröhlich, R. & Mitzel, N. W. (2007). Angew. Chem. Int. Ed. 46, 4176-4178.
- Bruker (1999). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Gessner, V. H. & Strohmann, C. (2008). J. Am. Chem. Soc. 130, 14412-14413. Karsch, H. H. (1996). Chem. Ber. 129, 483-484.

Köhler, F. H., Hertkorn, N. & Blümel, J. (1987). Chem. Ber. 120, 2081-2082.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Strohmann, C., Damme, A. & Gessner, V. (2008). Chem. Commun. pp. 3381-3383
- Strohmann, C. & Gessner, V. H. (2007a). J. Am. Chem. Soc. 129, 8952-8953.
- Strohmann, C. & Gessner, V. H. (2007b). Angew. Chem. Int. Ed. 46, 4566-4569.
- Strohmann, C. & Gessner, V. H. (2007c). Angew. Chem. Int. Ed. 46, 8281-8283.
- Strohmann, C. & Gessner, V. H. (2008a). J. Am. Chem. Soc. 130, 11719-11725.
- Strohmann, C. & Gessner, V. H. (2008b). Chem. Asian J. 3, 1929-1934.

Acta Cryst. (2009). E65, o383 [doi:10.1107/S1600536809002414]

2-[(2-Hydroxy-2,2-diphenylethyl)(methyl)amino]-N,N-dimethylethanaminium bromide

V. H. Gessner, C. Däschlein and C. Strohmann

Comment

Due to their application in many fields of chemistry, the preparation of nitrogen ligands is still of great interest in synthetic chemistry. Recent investigations have proved the direct deprotonation of methylamines to be a synthetically very useful method for functionalizations and thus for the synthesis of nitrogen ligands. Further donor atoms as well as further stereocenters can easily be introduced to the molecule. Only few tertiary methylamines are known for their reactivity towards such a direct lithiation reaction, amongst (*R*,*R*)-TMCDA (Strohmann & Gessner, 2007*a*,*c*, 2008*a*; Strohmann *et al.*, 2008), PMDTA (Strohmann & Gessner, 2007*b*) and TMEDA (Gessner & Strohmann, 2008; Köhler *et al.*, 1987). Generally, this type of reaction is an undesired side reaction resulting in the loss of base and leading to side products, *e.g.* in deprotonation or addition reactions with lithiumalkyls (Arnold *et al.*, 2002). However, this decomposition of the Lewis base can also be used synthetically for the preparation of new ligand systems (Karsch, 1996; Bojer *et al.*, 2007; Strohmann & Gessner, 2008*b*).

The title compound 2-[(2'-Hydroxy-2',2'-diphenylethyl)-*N*-methyl(amino)]-*N*,*N*-dimethylethanaminium bromide can be synthesized by direct deprotonation of TMEDA with *tert*-butyllithium and the subsequent trapping reaction with benzo-phenone. The yield of this lithiation reaction is limited due to the competitive deprotonation of the ethylene bridge of the ligand. Treatment of the resulting amino alcohol with lithiumbromide under acidic conditions gives the hydrobromide as colorless crystals. The structure indicates a potential threefold coordination as all donor atoms (two N atoms and one oxygen) are arranged at the same side of the molecule.

2-[(2'-Hydroxy-2',2'-diphenylethyl)-*N*'-methyl(amino)]-*N*,*N*-dimethylethanaminium bromide crystallizes in the othorhombic crystal system, space group Pbca. The asymmetric unit contains only one molecule of the monomeric compound.

Experimental

2-(2-Dimethylaminoethyl)(methyl)amino-1,1-diphenylethanol and an equivalent amount of LiBr were dissolved in a mixture of acetone and a few trops acetic acid and stored at room temperature for 24 h. After evaporation of the solvent a crystalline solid remained, suitable for X-ray studies.

¹H NMR (400.1 MHz, D₂O): δ = 2.17 (s, 3H; N(CH₃)CH₂), 2.42 (s, 6H; N(CH₃)₂), 2,68 (t, ³*J*_{HH} = 6.16 Hz, 3H; CH₂N), 2.95 (t, ³*J*_{HH} = 6.14 Hz, 2H; CH₂N), 3.43 (s, 2H; NCH₂C(OH)Ph₂), 6.60–7.10 (br, 2H; NH and OH), 7.20–7.24 (m, 2H; H_{para}), 7.24–2.33 (m, 4H; H_{arom}), 7.41–2.43 (m, 4H; H_{arom}).

 ${}^{1}H{}^{13}C$ NMR (100.6 MHz, D₂O): $\delta = 42.4$ (HN(CH₃)₂), 43.7 (N(CH₃)CH₂), 52.9 (CH₂N(H)(CH₃)₂), 55.1 (CH₂CH₂N(CH₃)CH₂), 66.6 (NCH₂C(OH)Ph₂), 78.1 (CPh₂), 125.9 (C_{meta}), 1276.4 (C_{para}), 128.6 (C_{ortho}), 145.3 (C_{ipso}).

Refinement

Refinement was accomplished by full-matrix least-squares methods (based on F_0^2 , *SHELXL97*); anisotropic thermal parameters for all non-H atoms in the final cycles; the H atoms were calculated into idealized positions and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$ for CH and CH₂ groups and $1.5U_{eq}(C)$ for methyl groups. The positions of H2N and H1O were determined from the difference Fourier map and they were refined without constraints.

Figures

Fig. 1. *ORTEP* plot of 2-[(2'-Hydroxy-2',2'-diphenylethyl)-*N*'-methyl(amino)]-*N*,*N*-dimethylethanaminium bromide. Thermal ellipsoids are drawn at the 50% probability level.

2-[(2-Hydroxy-2,2-diphenylethyl)(methyl)amino]-N,N-\ dimethylethanaminium bromide

Crystal	data
~	

$C_{19}H_{27}N_2O^+ \cdot Br^-$	$F_{000} = 1584$
$M_r = 379.34$	$D_{\rm x} = 1.358 {\rm Mg m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	$\theta = 1.2 - 26^{\circ}$
<i>a</i> = 7.119 (2) Å	$\mu = 2.22 \text{ mm}^{-1}$
<i>b</i> = 15.515 (3) Å	T = 173 (2) K
c = 33.585 (7) Å	Needle, colourless
$V = 3710 (1) \text{ Å}^3$	$0.4\times0.2\times0.2~mm$
Z = 8	

Data collection

3640 independent reflections
3200 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.064$
$\theta_{\text{max}} = 26^{\circ}$
$\theta_{\min} = 1.2^{\circ}$
$h = -8 \rightarrow 8$
$k = -19 \rightarrow 19$
$l = -41 \rightarrow 41$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.099$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0504P)^{2} + 4.0375P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.003$
3640 reflections	$\Delta \rho_{max} = 0.49 \text{ e} \text{ Å}^{-3}$
219 parameters	$\Delta \rho_{min} = -0.43 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br	0.55743 (4)	0.697337 (19)	0.564819 (9)	0.03232 (11)
C1	0.5689 (4)	0.93459 (17)	0.63574 (8)	0.0250 (6)
C2	0.6972 (4)	0.88169 (17)	0.66284 (8)	0.0250 (6)
C3	0.8583 (4)	0.9173 (2)	0.67970 (9)	0.0320 (7)
Н3	0.8892	0.9757	0.6743	0.038*
C4	0.9747 (5)	0.8691 (2)	0.70430 (9)	0.0406 (8)
H4	1.0839	0.8946	0.7155	0.049*
C5	0.9321 (5)	0.7848 (2)	0.71242 (10)	0.0450 (9)
Н5	1.0122	0.7516	0.7291	0.054*
C6	0.7726 (5)	0.7483 (2)	0.69634 (10)	0.0429 (8)
Н6	0.7427	0.6900	0.7021	0.052*
C7	0.6550 (5)	0.79621 (19)	0.67180 (9)	0.0332 (7)
H7	0.5451	0.7704	0.6611	0.040*
C8	0.4435 (4)	0.99595 (17)	0.65971 (8)	0.0263 (6)
C9	0.4565 (4)	1.0055 (2)	0.70069 (9)	0.0335 (7)
Н9	0.5476	0.9736	0.7151	0.040*
C10	0.3373 (5)	1.0615 (2)	0.72079 (9)	0.0380 (7)

H10	0.3473	1.0671	0.7489	0.046*
C11	0.2045 (5)	1.1091 (2)	0.70046 (10)	0.0372 (7)
H11	0.1250	1.1480	0.7143	0.045*
C12	0.1884 (4)	1.09930 (19)	0.65969 (9)	0.0337 (7)
H12	0.0965	1.1312	0.6454	0.040*
C13	0.3059 (4)	1.04315 (18)	0.63960 (9)	0.0290 (6)
H13	0.2928	1.0366	0.6116	0.035*
C14	0.6829 (4)	0.98676 (17)	0.60473 (8)	0.0285 (6)
H14A	0.5987	1.0285	0.5914	0.034*
H14B	0.7824	1.0198	0.6186	0.034*
C15	0.6945 (5)	0.9484 (2)	0.53493 (9)	0.0402 (8)
H15A	0.7315	1.0066	0.5267	0.060*
H15B	0.5572	0.9443	0.5355	0.060*
H15C	0.7445	0.9062	0.5160	0.060*
C16	0.9753 (4)	0.93415 (19)	0.57482 (9)	0.0289 (6)
H16A	1.0205	0.9333	0.6027	0.035*
H16B	1.0168	0.9890	0.5626	0.035*
C17	1.0617 (4)	0.85949 (18)	0.55238 (9)	0.0288 (6)
H17A	1.0360	0.8664	0.5236	0.035*
H17B	1.1995	0.8603	0.5562	0.035*
C18	1.0397 (5)	0.70427 (19)	0.53833 (10)	0.0345 (7)
H18A	1.1761	0.6960	0.5392	0.052*
H18B	1.0018	0.7198	0.5112	0.052*
H18C	0.9767	0.6508	0.5462	0.052*
C19	1.0432 (4)	0.7534 (2)	0.60756 (9)	0.0344 (7)
H19A	0.9805	0.7002	0.6161	0.052*
H19B	1.0071	0.8007	0.6253	0.052*
H19C	1.1796	0.7453	0.6086	0.052*
N1	0.7695 (3)	0.93059 (15)	0.57460 (7)	0.0262 (5)
N2	0.9858 (4)	0.77440 (16)	0.56609 (7)	0.0260 (5)
H2N	0.864 (6)	0.779 (2)	0.5669 (10)	0.044 (10)*
0	0.4411 (3)	0.88041 (14)	0.61458 (7)	0.0298 (5)
H1O	0.494 (5)	0.849 (2)	0.6050 (10)	0.024 (10)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	0.02792 (17)	0.03281 (18)	0.03624 (18)	-0.00315 (12)	0.00142 (12)	-0.00227 (12)
C1	0.0251 (14)	0.0217 (13)	0.0283 (14)	-0.0032 (11)	-0.0027 (12)	-0.0014 (11)
C2	0.0242 (14)	0.0256 (14)	0.0252 (13)	0.0005 (11)	0.0033 (11)	0.0001 (11)
C3	0.0301 (16)	0.0327 (15)	0.0333 (16)	-0.0008 (13)	-0.0003 (13)	-0.0044 (12)
C4	0.0297 (17)	0.062 (2)	0.0301 (16)	0.0028 (16)	-0.0057 (13)	-0.0061 (15)
C5	0.047 (2)	0.058 (2)	0.0308 (17)	0.0190 (17)	-0.0028 (15)	0.0079 (15)
C6	0.048 (2)	0.0371 (17)	0.0432 (18)	0.0083 (16)	0.0076 (16)	0.0158 (15)
C7	0.0315 (16)	0.0310 (15)	0.0371 (16)	-0.0041 (13)	0.0020 (14)	0.0034 (13)
C8	0.0249 (14)	0.0217 (13)	0.0324 (15)	-0.0050 (11)	-0.0008 (12)	-0.0002 (11)
C9	0.0331 (17)	0.0347 (16)	0.0327 (16)	-0.0002 (14)	-0.0033 (13)	-0.0013 (13)
C10	0.0387 (18)	0.0446 (18)	0.0309 (16)	-0.0019 (15)	0.0036 (14)	-0.0070 (14)

C11	0.0328 (17)	0.0306 (15)	0.0481 (19)	-0.0004 (14)	0.0075 (14)	-0.0079 (14)
C12	0.0261 (15)	0.0286 (15)	0.0464 (18)	-0.0006 (13)	0.0023 (13)	0.0022 (13)
C13	0.0281 (15)	0.0266 (14)	0.0322 (15)	-0.0029 (12)	-0.0012 (12)	0.0007 (12)
C14	0.0335 (16)	0.0203 (13)	0.0316 (15)	0.0005 (12)	-0.0005 (13)	0.0006 (11)
C15	0.0403 (18)	0.0470 (19)	0.0334 (16)	0.0054 (16)	-0.0093 (14)	-0.0049 (14)
C16	0.0276 (15)	0.0301 (15)	0.0289 (14)	-0.0067 (12)	-0.0014 (12)	-0.0005 (12)
C17	0.0252 (15)	0.0317 (15)	0.0295 (14)	-0.0032 (12)	0.0022 (12)	0.0041 (12)
C18	0.0328 (17)	0.0323 (16)	0.0384 (17)	0.0026 (13)	0.0037 (14)	-0.0078 (13)
C19	0.0347 (17)	0.0362 (16)	0.0325 (15)	0.0051 (14)	-0.0004 (13)	0.0063 (13)
N1	0.0266 (12)	0.0263 (12)	0.0255 (11)	-0.0010 (10)	-0.0018 (10)	-0.0005 (9)
N2	0.0198 (12)	0.0276 (12)	0.0306 (13)	0.0001 (10)	0.0033 (10)	0.0010 (10)
0	0.0274 (11)	0.0255 (11)	0.0365 (12)	-0.0004 (9)	-0.0045 (9)	-0.0082 (9)

Geometric parameters (Å, °)

C1—O	1.428 (3)	С13—Н13	0.9500
C1—C2	1.528 (4)	C14—N1	1.471 (4)
C1—C8	1.534 (4)	C14—H14A	0.9900
C1—C14	1.549 (4)	C14—H14B	0.9900
C2—C7	1.393 (4)	C15—N1	1.462 (4)
C2—C3	1.393 (4)	C15—H15A	0.9800
C3—C4	1.388 (4)	C15—H15B	0.9800
С3—Н3	0.9500	C15—H15C	0.9800
C4—C5	1.370 (5)	C16—N1	1.466 (4)
C4—H4	0.9500	C16—C17	1.513 (4)
C5—C6	1.379 (5)	C16—H16A	0.9900
С5—Н5	0.9500	C16—H16B	0.9900
C6—C7	1.390 (5)	C17—N2	1.499 (4)
С6—Н6	0.9500	С17—Н17А	0.9900
С7—Н7	0.9500	С17—Н17В	0.9900
C8—C9	1.387 (4)	C18—N2	1.483 (4)
C8—C13	1.397 (4)	C18—H18A	0.9800
C9—C10	1.389 (4)	C18—H18B	0.9800
С9—Н9	0.9500	C18—H18C	0.9800
C10-C11	1.380 (5)	C19—N2	1.487 (4)
C10—H10	0.9500	С19—Н19А	0.9800
C11—C12	1.382 (4)	С19—Н19В	0.9800
C11—H11	0.9500	С19—Н19С	0.9800
C12—C13	1.383 (4)	N2—H2N	0.87 (4)
C12—H12	0.9500	O—H1O	0.69 (3)
O—C1—C2	111.2 (2)	C1—C14—H14A	109.2
O—C1—C8	104.8 (2)	N1—C14—H14B	109.2
C2—C1—C8	111.6 (2)	C1C14H14B	109.2
O-C1-C14	107.9 (2)	H14A—C14—H14B	107.9
C2C1C14	111.6 (2)	N1—C15—H15A	109.5
C8—C1—C14	109.5 (2)	N1-C15-H15B	109.5
C7—C2—C3	117.8 (3)	H15A—C15—H15B	109.5
C7—C2—C1	120.7 (3)	N1—C15—H15C	109.5
C3—C2—C1	121.4 (2)	H15A—C15—H15C	109.5

C4—C3—C2	121.3 (3)	H15B-C15-H15C	109.5
С4—С3—Н3	119.3	N1-C16-C17	112.0 (2)
С2—С3—Н3	119.3	N1-C16-H16A	109.2
C5—C4—C3	120.0 (3)	C17—C16—H16A	109.2
С5—С4—Н4	120.0	N1-C16-H16B	109.2
C3—C4—H4	120.0	C17—C16—H16B	109.2
C4—C5—C6	119.7 (3)	H16A—C16—H16B	107.9
C4—C5—H5	120.2	N2-C17-C16	112.0 (2)
С6—С5—Н5	120.2	N2-C17-H17A	109.2
C5—C6—C7	120.6 (3)	С16—С17—Н17А	109.2
С5—С6—Н6	119.7	N2—C17—H17B	109.2
С7—С6—Н6	119.7	C16—C17—H17B	109.2
C2—C7—C6	120.5 (3)	H17A—C17—H17B	107.9
С2—С7—Н7	119.8	N2-C18-H18A	109.5
С6—С7—Н7	119.8	N2-C18-H18B	109.5
C9—C8—C13	118.0 (3)	H18A—C18—H18B	109.5
C9—C8—C1	123.3 (3)	N2—C18—H18C	109.5
C13—C8—C1	118.7 (2)	H18A—C18—H18C	109.5
C8—C9—C10	120.6 (3)	H18B—C18—H18C	109.5
С8—С9—Н9	119.7	N2-C19-H19A	109.5
С10—С9—Н9	119.7	N2-C19-H19B	109.5
C11—C10—C9	120.8 (3)	H19A—C19—H19B	109.5
C11—C10—H10	119.6	N2-C19-H19C	109.5
С9—С10—Н10	119.6	H19A—C19—H19C	109.5
C12-C11-C10	119.2 (3)	H19B—C19—H19C	109.5
C12—C11—H11	120.4	C15—N1—C16	111.3 (2)
C10-C11-H11	120.4	C15—N1—C14	111.2 (2)
C11—C12—C13	120.1 (3)	C16—N1—C14	113.2 (2)
C11—C12—H12	119.9	C18—N2—C19	110.9 (2)
C13—C12—H12	119.9	C18—N2—C17	111.1 (2)
C12—C13—C8	121.2 (3)	C19—N2—C17	112.5 (2)
С12—С13—Н13	119.4	C18—N2—H2N	110 (2)
С8—С13—Н13	119.4	C19—N2—H2N	105 (2)
N1-C14-C1	111.9 (2)	C17—N2—H2N	107 (2)
N1—C14—H14A	109.2	С1—О—Н1О	107 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H2N…Br	0.87 (4)	2.52 (4)	3.276 (3)	145 (4)
O—H1O…Br	0.69 (3)	2.76 (3)	3.398 (2)	156 (3)

