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Abstract: The aromatic structure and the rich nitrogen content of polymers based on covalent triazine-
based frameworks (CTF) and their unique hydrophilic-lipophilic-balanced adsorption properties
make them promising candidates for an adsorbent that can be used for sample pretreatment. Herein,
a new covalent triazine-based framework (CTF-DBF) synthesized by a Friedel–Crafts reaction was
used for the determination of the content of nucleotides in commercial infant formula. It was shown
that the synthetic materials had an amorphous microporous structure, a BET surface area of up
to 595.59 m2/g, and 0.39 nm and 0.54 nm micropores. The versatile adsorption properties of this
material were evaluated by quantum chemistry theory calculations and batch adsorption experiments
using five nucleotides as probes. The quantum chemistry results demonstrated that CTF-DBF can
participate in multiple interactions with nucleotides. All the analyses performed present good
linearity with R2 > 0.9993. The detection limits of targets ranged from 0.3 to 0.5 mg/kg, the spiked
recoveries were between 85.8 and 105.3% and the relative standard deviations (RSD, n = 6) were
between 1.1 and 4.5%. All these results suggest that this versatile CTF-DBF has great potential for
sample pretreatment.

Keywords: covalent triazine-based frameworks; solid-phase extraction; nucleotides

1. Introduction

Nucleotides identified as conditionally essential nutrients are widely added to infant
formula. Studies have shown that the addition of nucleotides to milk powder promotes
the growth and maturation of the gastrointestinal tract of infants [1,2]. Consequently, the
analysis of nutrients in infant formula should be a useful method to evaluate various infant
formulas. There is however no standard method of sample preparation that can achieve
effective enrichment of multiple nucleotides in infant formula and at the same time remove
matrix interference. With the development of new materials, the development of a new
enrichment method may be an effective way to solve this problem.

The unique properties of covalent organic frameworks (COF), including their high
surface area, physicochemical stability and structural diversity, have led to their receiving
extensive attention during the past few years [3–10]. However, the adsorption by tra-
ditional COFs mainly depends on their large conjugated systems, porous structure and
hydrophobicity, and this restricts their use with polar or ionic solutes [11,12]. To address
this problem, pre-synthetic methods such as modification of the precursor monomers, or
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post-synthetic steps, including modification of the organic backbone of the COF, were
used to introduce specific chemical functionality into the pores of the polymers, tailoring
interactions with specific guests while making full use of the surface area and high porosity
of the frameworks [13–18]. However, both pre-synthetic and post-synthetic modification
of COFs generally necessitated tedious synthetic efforts and often harsh experimental
conditions and frequently led to side reactions and interfered with the COF formation, all
issues that greatly limited the generality of these approaches [13,15,19–22].

As alternatives to COFs, covalent triazine-based organic framework/-polymers
(CTF/CTP) comprised of alternating triazine-benzene units can be synthesized economi-
cally under relatively mild conditions [23,24]. The triazine unit and the absence of weak
bonds except in the aromatic group endow CTF/CTPs with rich nitrogen content, high
chemical and thermal stability, and a remarkable heteroatom effect (HAE) [25,26]. These
special properties endow CTFs with useful hydrophilic-lipophilic equilibrium properties,
abundant recognition sites and excellent adsorption properties for polar, non-polar and
other compounds, which have been applied effectively in the field of adsorption and sepa-
ration [12,25,27]. For example, Liu et al. [28] prepared a triazine-based covalent organic
framework adsorbent with a unique rigid structure by using the trimerization reaction
of cyano groups. This rigid structure has multiple adsorption properties, including π-π
interaction, hydrophobic interaction and electrostatic attraction. However, all classical CTF
syntheses are neither economically nor ecologically favorable, and this seriously limits the
applications of CFTs in sample preparation [29–33]. Lars et al. [34] elucidated a solvent-free
and time-efficient approach involving Friedel-Crafts alkylation for the synthesis of porous
CTFs. Its application as a sorbent is still limited, however, and its mechanism of adsorption
is also unclear. Thus, it is necessary to expand the value of sample pretreatment and to
investigate the adsorption mechanism.

Herein, we describe CTF-DBF, a new type of CTF synthesized according to the method
proposed by Lars. This uses dibenzofuran (DBF) and cyanuric chloride (2,4,6-trichloro-1,3,5-
triazine, CC) as monomers. The morphology and physicochemical properties of CTF-DBF
were characterized by SEM, elemental analysis, FT-IR spectra, solid-state 13C NMR, nitro-
gen sorption analysis and thermogravimetric analysis. Nucleotides are compounds with a
nitrogenous base and an aldopentose and at least one phosphate group, and triazines are
aromatic heterocyclic rings containing N atoms and a π-electron structure. Accordingly, the
proposed CTF-DBF has several possible interactions with nucleotides, including hydrogen
bonding, hydrophobic interactions, electrostatic attraction, and π-π interaction and, as a
result, could be an efficient solid phase-extraction (SPE) adsorbent for nucleotides. Five
nucleotides were selected as probes to evaluate the adsorption capacity and mechanism of
CTF-DBF. Quantum chemistry theory calculations were conducted to describe quantita-
tively the versatile adsorption properties of CTF-DBF. In addition, adsorption experiments
were conducted to identify five nucleotides in the infant formula. The main factors that
influence the SPE efficiency, such as the amount of adsorbent, composition, and volume of
desorption solvent, times reused, and sample pH, were optimized, leading to a CTF-DBF
with the potential to become a powerful food sample pretreatment adsorbent.

2. Experimental Section
2.1. Materials and Instruments

Aluminum trichloride, cyanuric chloride and dibenzofuran were purchased from
Aladdin Reagent Co., Ltd. (Shanghai, China). Analytical grade 1,2-dichloroethane, ethanol,
tetrahydrofuran, methanol, acetone, and other solvents were provided by Sinopharm Chem-
ical Reagent Co., Ltd. (Shanghai, China). Uridine 5′-monophosphate (UMP), cytidine 5′-
monophosphate (CMP), adenosine 5′-monophosphate (AMP), inosine 5′-monophosphate
(IMP), and guanosine 5′-monophosphate (GMP) standards (Figure 1) (purity ≥ 98%) were
purchased from Aladdin Biochemical Technology Co., Ltd. (Shanghai. China). A 3 mL
polypropylene solid-phase extraction empty column tube and a matching 20 µm pore size
PTFE sieve plate were purchased from Waters (Framingham, Massachusetts, USA). The
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ultrapure water used in the experiment was purified from a Milli-Q system. Infant formula
samples were purchased from different local supermarkets in Zhengzhou.(Zhengzhou,
Henan, China).

Figure 1. Chemical structural formulas of five nucleotides.

Scanning Electron Microscope (SEM) images were collected on an S-4300 SEM con-
figured with an energy dispersive spectrometer system (Zeiss/Auriga FIB, Oberkochen,
Baden-Württemberg, Germany). Solid-state 13C NMR spectra were performed at ambient
pressure on a Bruker AVANCE 400 spectrometer (Bruker, Bly red card, MA, USA) using
a standard Bruker magic angle-spinning probe with 4 mm (outside diameter) zirconia
rotors. Transmission electron microscopy (TEM) images were produced on a TalosF200S
TEM (Thermo Fisher, Waltham, MA, USA). A Nicolet 6700 spectrometer (Shimadzu, Kyoto,
Japan) was used to record the Fourier-transform infrared (FT-IR) spectra. N2 adsorp-
tion/desorption isotherms were measured on an Autosorb-1 MP gas adsorption instrument
(Quantachrome, Boynton, FL, USA). Elemental analysis was accomplished with a Flash
EA 1112 elemental analyzer (Thermo Electron, Waltham, MA, USA). X-ray diffraction
(XRD) spectra were collected from an ARL X′TRA diffraction-meter using Cu Kα radiation
(ARL, Lausanne, Switzerland). Ultrapure water use in this work was taken from a Milli-Q
gradient ultrapure water system (Millipore, Boston, MA, USA). The HPLC separations
were performed on Agilent 1260 (Agilent, Palo Alto, CA, USA) with an Ultimate XB-C18
column (250 × 4.6 mm i.d., 5 µm) and a UV detector.

2.2. Synthesis of Porous Covalent Triazine Framework Materials

The synthesis was conducted using published methods with some modifications.
Briefly, dibenzofuran (2.52 g) dissolved in 1,2-dichloroethane (100 mL) was added dropwise
to a mixture of cyanuric chloride (1.84 g) and aluminum trichloride (4.80 g) and the mixture
was refluxed under a nitrogen atmosphere for 24 h. After cooling to room temperature (rt),
the product was washed thoroughly with ice water, tetrahydrofuran, and ethanol three
times to obtain a crude product. Soxhlet extraction was conducted for 48 h with a mixture
of tetrahydrofuran and methanol as the extraction liquid to further purify the obtained
product. The final product was vacuum dried for 12 h at 60 ◦C to obtain CTF-DBF as a
brown powder. The yield of polymer is up to 85%. A schematic of this method is shown
in Figure 2.
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Figure 2. Schematic of this work.

2.3. Quantum Chemistry Calculations

All calculations were performed using the Gaussian 09 program. To explore the ad-
sorption mechanism of the CTF-DBF adsorbent and nucleotides, their optimized molecular
structures and adsorption energies of the nucleotides were obtained using density func-
tional theory (DFT). Molecular docking was conducted using the AutoDock Vina program
to help obtain the rational preliminary estimates of complexes of various nucleotides with
CTF-DBF. The lowest energy structure of each complex was selected for further optimization
at the B3LYP/6-31G (d,p) level. Finally, molecular non-covalent interaction (NCI) analysis
was conducted by using the Multiwfn program. The stabilization energy (4En), calculated
from Equation (1) changes on the formation of a so-called CTF-DBF-analyte supramolecule:

4En = ECTF-DBF-n − ECTF-DBF − En, (1)

where ECTF-DBF-n is adsorption energy between CTF-DBF and the target molecule, ECTF-DBF
is energy of CTF-DBF and En is the energy of the target.

2.4. Sample Pretreatment

Infant formula milk powder (5 g) was dissolved into ultrapure water (20 mL) at
50–60 ◦C and the solution was cooled to rt. The obtained solution was first ultrasonicated
for 10 min, then the pH was adjusted to 4.0 with acetic acid. The solution was then diluted
to 50 mL and filtered for use in the following experiments.

SPE measurements were performed to verify the adsorption capacity of the pre-
pared CTF-DBF adsorbent. Briefly, the above filtrate (5 mL) was loaded onto a self-made
80 mg/3 mL CTF-DBF solid-phase extraction cartridge which had been pretreated with
methanol (3 mL) and water (3 mL). Then the nucleotides were eluted with a 20% methanol
aqueous solution (6 mL). The eluent was evaporated to dryness at rt under a gentle stream
of N2 and the residues were redissolved in the mobile phase (1 mL).

2.5. Detection Conditions

An Agilent 1260 with a UV detector was used to perform all the analyses in the experi-
ments. A unitary C18 column (250 × 4.6 mm I.D., 5 µm) was used as the chromatographic
separation column. The injection volume was set at 20 µL, the column temperature at 30 ◦C,
the detection wavelength at 254 nm, and the flow rate at 0.8 mL/min. The mobile phase
was composed of an aqueous solution of MeOH/KH2PO4 (10/90, v/v).
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3. Results and Discussion
3.1. Material Characterization of CTF-DBF

The external morphology of the prepared CTF-DBF material was first characterized
and analyzed with a scanning electron microscope. As shown in Figure 3a, the CTF-DBF
polymer consists of a series of aggregated particles, the smaller ellipsoidal ones ranging
from 1 to 1.5 µm in size. The chemical structure of the networks was examined by Fourier
transform infrared (FT-IR) spectroscopy. As shown in Figure 3b, compared with cyanuric
chloride, the intensity of the C-Cl stretching vibration absorption peak at 850 cm−1 in CTF-
DBF is significantly reduced, indicating the completion of the Friedel–Crafts alkylation
reaction shown in Figure 2. The presence of characteristic C-O-C vibrations (1191 cm−1)
of the furan unit and the strong C=N vibrations (1521 cm−1and 1365 cm−1) confirm the
existence of the triazine core (Figure 3b). All those FT-IR results support the successful
formation of the network. The network formation was further confirmed by solid-state 13C
NMR. As shown in Figure 3c, the resonance absorption peak at 172 ppm corresponds to
the triazine ring carbons, strongly supporting the presence of the cyanuric chloride moiety
in the network. All the other major peaks, ranging from 110 to 160 ppm, may be attributed
to the aromatic carbons of the dibenzofuran. All the signals show little shift, which is
due to the electron-withdrawing effect of triazine moieties and thus a changing electronic
environment of the carbon atoms in CTF-DBF. The above data further prove that the porous
CTF-DBF material had been successfully prepared.

Figure 3. Characterization of CTF-DBF: (a) SEM; (b)FT-IR; (c) Solid-state 13C NMR; (d) N2 adsorption-
desorption isotherms; (e) Pore size distribution; (f) TGA.

The porosity and the high surface area of CTF-DBF were investigated by N2 adsorption
analysis. The N2 isotherms of CTF-DBF were measured at 77 K. As shown in Figure 3d,
the microporosity of CTF-DBF is implied by the steep increase of the N2 isotherms in the
low relative pressure range. A continued gentle rise in N2 in the entire pressure range may
be attributed to the mesopores with a very broad size distribution or the outer surfaces
of small particles. Thus, the isotherm curve follows a combination of types I and II in the
IUPAC classification. The hysteresis loop indicates the flexible framework structure of CTF-
DBF.A Brunauer–Emmet–Teller (BET) model and the quenched solid density functional
theory (QSDFT) method were conducted to investigate the specific surface area and the
pore size distribution, respectively. The physisorption experiments reveal an intrinsic and
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permanent surface area of 595.59 m2/g and a sharp pore size distribution (Figure 3e) with
two micropores of 0.39 nm and 0.54 nm.

Thermogravimetric analysis (TGA) was used to explore the thermal stability of the
material, and the result is shown in Figure 3f. It can be seen that the mass of CTF-DBF
decreased by 2% below 250 ◦C. This may be caused by the material absorbing some moisture
and indicates that the material is relatively stable below 250 ◦C and the structure does not
change. As the temperature increases, the material begins to decompose above 250 ◦C,
so the temperature at which CTF-DBF is used should be below 250 ◦C to ensure that the
material is stable and has better adsorption.

To gain insight into the local chemical environment, X-ray photoelectron spectroscopy
(XPS) was conducted. The low-resolution XPS spectra demonstrated the existence of C 1s,
O 1s, and N 1s electrons (Figure 4a). The high-resolution XPS spectra of C 1s reveal three
major peaks (Figure 4b), which can be attributed to sp2 carbon atoms of the dibenzofuran
moiety (284.6 eV), the carbon atoms in the triazine node (285.8 eV), and the carbon atoms
of C-O-C (288.7 eV) of the oxygens in CTF-DBF. All the above results further confirmed
that the polymer had been successfully prepared.

Figure 4. XPS spectra of CTF-DBF: (a) Wide-scan survey spectra; (b) High-resolution C 1s.

3.2. Study of Intermolecular Forces

To describe the interactions between CTF-DBF and CMP, UMP, IMP, AMP, and GMP
directly and quantifiably, the optimized complex with the supramolecular structures of
analyte-CTF-DBF at the lowest energy was first obtained using quantum chemistry calcula-
tions in vacuo and DFT/B3LYP/6-31G (d,p) as the basis set (Figure S1). As the stabilization
energy (4En) changes (Table S1) upon the formation of a CTF-DBF-analyte complex, we
also calculated4En using Equation (1). From the results of quantum chemistry calculation,
it can be seen that all the adsorption energies between CTF-DBF and guest molecules are
negative, which implies that these so-called supramolecules are stable. In addition, the
adsorption energies of CMP and GMP are significantly higher than those of IMP and UMP,
which is due to the existence of amino groups which significantly enhance the hydrogen
bonding interaction between CTF-DBF and guest molecules. However, the4E of IMP is
higher than that of the nitrogen-rich compound UMP and why the significantly different
structures compounds (UMP, CMP, AMP) should have similar4E values. This may be the
result of the anisotropic of the multiple forces such as inclusion interactions, π-π interac-
tions, and hydrogen bonding interactions generated among CTF-DBF and detection targets.
For example, the hydrogen bonding of UMP, CMP, and AMP increased with the increase
of nitrogen content and amino group number, while their inclusion decreased with the
increase of molecular size, which led to similar4E values.
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To further confirm this inference, a non-covalent interaction (NCI) was conducted as a
theoretical research strategy to explore the detailed intermolecular interactions between
CTF-DBF and nucleotides. As shown in Figure 5, nucleotides with various structures
can generate π-π interactions, CH . . . π interactions and NH...O hydrogen bonds with
CTF-DBF. For example, IMP can insert into the cavity of CTF-DBF using an inclusion
interaction; the H2PO4

− in nucleotides can insert into or approach the cavity of CTF-
DBF, forming O-H . . . N hydrogen bonds with the nitrogen heterocycle of CTF-DBF. The
benzene ring and partially protonated nitrogen can control the formation and assembly
of the supramolecular structure of the complex by forming hydrogen bond interactions
and π-π interactions, while the benzene ring, nitrogen heterocycle, and electron-donating
amino groups promote the formation of CH...π interactions, CH . . . O, OH . . . N, NH...O
hydrogen bonds, and LP...π interactions. NCI analysis intuitively clarified the excellent
adsorption potential of CTF-DBF for nucleotides from the theoretical perspective.

Figure 5. Theoretical analysis of non-covalent forces.
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3.3. Optimization of Solid-Phase Extraction Conditions

An effective and sensitive SPE-HPLC method was developed for nucleotides in infant
formula using CTF-DBF as a solid-phase extraction (SPE) adsorbent for enrichment and
purification. The main factors, including the amount of adsorbent, sample pH, composition
and volume of desorption solvent and the extent of reuse, all affect the extraction efficiency.
All these main factors were investigated and evaluated in the sample pretreatment step
to obtain the best extraction efficiency using 5 mL of a 100 µg/mL nucleotides standard
solution sample as the test probe. The amount of sorbent is closely correlated with the
quantity of adsorbed analytes, so the experiments were first studied with the sorbent
amount ranging from 40 mg to 120 mg. As can be seen in Figure 6a, 100 mg was sufficient
to achieve a satisfactory extraction efficiency and, accordingly, 100 mg was selected as
the optimal adsorbent amount. When the dosage of the adsorbent ranged from 40 mg to
120 mg, the recovery rate of GMP maintained a high rate, corresponding to the results in
Table S1. The proper type and composition of eluate play an important role in improving
the recovery of substances and reducing the interface. Thus, the nature and composition of
the eluate were optimized (Figure 6b) and maximum extraction efficiency was obtained
with a mixture of water: MeOH (5:95, v/v). For the choice of the elution volume, varying
volumes (4 to 12 mL) of 5% MeOH were applied for solid-phase extraction progress. As
shown in Figure 6c, the recoveries increase with the increase of elution volume from 4 to
8 mL and remain almost constant when the elution volume increases from 8 mL to 12 mL.
Therefore, 8 mL of 5% MeOH solution was chosen for the following experiments: when the
sample pH varied from pH 3 to 7 (Figure 6d), the recovery increased from pH 2 to 4 and
significantly decreased from pH 4–7 and the optimal sample loading pH was 4. Moreover,
as can be seen from Figure 6e, the collected composites can be reused five times without
any obvious loss of performance.

Figure 6. Optimization of solid-phase extraction conditions: (a) Amount of sorbent; (b) Type and
composition of eluate; (c) Elution volume; (d) Sample pH; (e) Reused times.

3.4. Methodology Verification

Method validation methods, including limit of quantification (LOQ), limit of detection
(LOD), linear range, and correlation coefficient (r2) were studied and are summarized in
Table S2. The results showed that good linearity was obtained in the range of 1–100 µg/mL
for UMP, 1.5–50 µg/mL for IMP, 2–100 µg/mL for CMP and AMP with the correlation
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coefficients all being >0.9993. LODs (S/N = 3) for the analytes were between 0.30 and
0.50 pg/mL and LOQs (S/N = 10) were between 1.10 and 1.70 pg/mL.

A recovery study was performed to validate the accuracy of the developed method.
Spiked samples at 2, 10 or 50 mg/kg were prepared by adding a known amount of a
solution of standard nucleotides to the blank infant formula milk powder matrix. As shown
in Table 1, the recoveries ranged from 85.8 to 105.3% with RSD values ranging from 1.1 to
4.5%, which demonstrated that the developed SPE-HPLC method possesses good accuracy.
The chromatograms of blank samples and spiked samples treated by solid-phase extraction
are shown in Figure S2.

Table 1. Recovery and precision of 5 different nucleotides (n = 6).

Analytes Spiked Level
(mg/kg)

Detection Value
(mg/kg)

Recovery
(%)

RSD
(%)

CMP
2.0 1.76 88.2 2.1
10.0 9.17 91.7 1.7
50.0 45.15 90.3 3.4

UMP
1.0 0.87 87.6 4.3
5.0 5.11 102.1 2.2
25.0 26.15 104.6 3.1

IMP
1.0 0.86 85.8 2.6
5.0 4.36 87.2 1.1
25.0 22.10 88.4 3.5

AMP
2.0 1.76 88.1 4.5
10.0 10.53 105.3 3.4
50.0 51.35 102.7 2.7

GMP
2.0 1.73 86.6 2.4
10.0 8.71 87.1 2.2
50.0 44.71 89.4 1.6

3.5. Actual Sample Determination

The applicability of the proposed method was investigated by analyzing actual sam-
ples. Eight infant formula milk powders with added nucleotides described in the nutrition
ingredient tables of different brands were determined using this developed method. As
shown in Table 2, the amount of each of the five nucleotides determined using the devel-
oped method was equivalent to the added amount indicated in the nutrient composition
table printed on the outer packaging. This further proved that the method has a certain
accuracy and can meet the detection requirements of actual samples.

Table 2. Contents of five nucleotides in real samples.

Sample No CMP
(mg/kg)

UMP
(mg/kg)

IMP
(mg/kg)

AMP
(mg/kg)

GMP
(mg/kg)

Total Content
(mg/kg)

Labeled Content
(mg/kg)

1 69.7 39.5 26.1 47.6 13.4 196.3 197
2 84.2 70.6 17.8 51.6 17.4 241.6 240
3 61.5 36.2 16.7 24.1 13.5 152.0 150
4 79.1 63.8 25.4 44.7 15.8 228.8 230
5 123.2 82.4 21.3 53.5 17.6 298.0 300
6 57.8 41.7 15.1 25.5 13.5 153.6 153
7 117.5 77.6 18.6 64.5 20.3 298.5 300
8 98.1 65.7 19.8 48.2 17.9 249.7 250

4. Conclusions

In summary, a new type of covalent triazine-based framework (CTF) has been syn-
thesized by a one-pot method. Its morphology and physicochemical properties were
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measured by SEM, FT-IR spectra, solid-state 13C NMR, nitrogen sorption analysis, and
thermogravimetric analysis. The results demonstrated its high physicochemical stability
and excellent absorption affinity for nucleotides. Quantum chemistry calculation results
further demonstrated that CTF-DBF, a versatile covalent triazine framework material, can
have various interactions with nucleotides, including inclusion interaction, π-π interactions,
CH . . . O, OH . . . N, NH...O hydrogen bond interactions, CH...π interactions and LP...π
interactions, which ensure the adsorption capacity to nucleotides. Under the optimized
SPE conditions, a new method for simultaneous determination of five nucleotides in infant
formula by SPE-HPLC was established. The detection limit of the target ranges from 0.3 to
0.5 mg/kg and the recovery ranges from 85.8 to 105.3% with an RSD between 1.1 and 4.5%.
However, the selectivity of the adsorbent constructed in this paper is relatively poor, so we
seek to modify it in the follow-up research aimed at improving its molecular recognition
performance and achieving the enrichment detection of specific targets.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12132213/s1, Figure S1: (a) Optimal structure of the host
molecule CTF-DBF; (b-f)Optimal conformation of host and guest molecules; the optimization of
the above structural models all use the B3LYP/6–31+G basis set; carbon atoms are gray, hydrogen
atoms are white, oxygen atoms are red, nitrogen atoms are blue, and chlorine atoms are green;
Figure S2: Chromatograms of five nucleotides after SPE treatment of blank and blank spiked samples
(a:Blank sample; b:Blank spiked sample 5.0 mg/kg); Table S1: Adsorption energy between host and
guest molecules ∆En; Table S2: Relevant parameters of SPE-HPLC-UV metho;The coordinates of
the CTF-DBF.
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