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SUMMARY
3D digital subtraction angiography (DSA) reconstruction from rotational 2D projection X-ray angiography is an
important basis for diagnosis and treatment of intracranial aneurysms (IAs). The gold standard requires
approximately 133 different projection views for 3D reconstruction. A method to significantly reduce the radi-
ation dosage while ensuring the reconstruction quality is yet to be developed. We propose a self-supervised
learning method to realize 3D-DSA reconstruction using ultra-sparse 2D projections. 202 cases (100 from one
hospital for training and testing, 102 from two other hospitals for external validation) suspected to be suffering
from IAs were conducted to analyze the reconstructed images. Two radiologists scored the reconstructed
images from internal and external datasets using eight projections and identified all 82 lesions with high diag-
nostic confidence. The radiation dosages are approximately 1/16.7 comparedwith the gold standardmethod.
Our proposed method can help develop a revolutionary 3D-DSA reconstruction method for use in clinic.
INTRODUCTION

Subarachnoid hemorrhage is a severe subtype of stroke associ-

ated with permanent brain damage or death. The average age of

patients suffering from subarachnoid hemorrhage is 55 years. In

approximately 85% of the cases, subarachnoid hemorrhage is

caused by intracranial aneurysms (IAs). The mortality rate for

aneurysmal subarachnoid hemorrhage is approximately 50%,

and 10%–15% of the patients die at home or during transporta-

tion to a hospital.1,2 Although the rate of survival recorded for pa-

tients suffering from subarachnoid hemorrhage has increased by

17% over the past few decades, long-term cognitive impair-

ments accompanying subarachnoid hemorrhage affect the daily

work and quality of life of the patients.3 Two-dimensional (2D)

and 3D images recorded using the digital subtraction angiog-

raphy (DSA) technique can be analyzed to directly visualize the

bleeding points. This method has long been used as the gold

standard for the diagnosis of IAs.4,5 DSA is also an indispensable

technology that is used for interventional therapy. It has been re-
This is an open access article under the CC BY-N
ported5–7 that high-definition and intricate 3D images can be re-

constructed using the rotational 2D projection X-ray angiog-

raphy technique, which is superior to the 2D planar imaging

technique. The most classic 3D-DSA reconstruction method in-

volves the use of the Feldkamp-Davis-Kress (FDK) algorithm.8

The steps followed to obtain the 3D-DSA reconstruction data

have been reported: a patient lies on the operating table for

DSA, and the brain of the patient is scanned using the DSA tech-

nique. A small amount of iodixanol (contrast agent) is injected

into the patient’s carotid artery. Following this, the patient’s brain

is scanned again using the DSA technique. During the scanning

process, the C-arm is rotated by �199.5� over �5 s keeping the

position of the fulcrum unchanged (0�). During the process,�133

2D images are recorded. The images recorded before and after

the injection of the contrast agent are labeled as the mask and

dynamic images, respectively. 2D-DSA images are generated

by subtracting the mask image from the corresponding dynamic

image. The 3D-DSA image is obtained by reconstructing the

�133 2D-DSA images using the FDK-based 3D reconstruction
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Figure 1. Schematic representation of the 3D-DSA reconstruction of samples using the gold standard method and the method proposed

herein
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algorithm. The FDK-based algorithm was revised and used by

Siemens, General Electric, Philips, and other medical device

manufacturers for years.8–10 It has long been used as the gold

standard in clinic. This traditional 3D-DSA scanning and recon-

struction method (the gold standard) requires the patient to be

continuously exposed to radiation. To date, effective methods

that can help significantly reduce the radiation dosage (ensuring

the quality of the reconstructed images) have not been reported.

Deep learning (DL) is a type of machine learning technique that

uses multi-layered artificial neural networks for the automated

analysis of signals or data.11–13 Convolutional neural networks

(CNN) are a popular embodiment of the DL technique that can

be used for fitting nonlinear equations using 2D or 3D images

as the input data. The technique does not require the use of

manually designed image features. Some CNN-based image

reconstruction methods based on sparse sampling data have

been developed and used to record images using magnetic

resonance imaging, photoacoustic imaging, and other medical/

biomedical imaging techniques.14–19 Most of the developed

methods are based on image super-resolution and enhance-

ment algorithms used in the field of computer vision. Recent

years have seen the development of a few 2D (X-ray)-3D

computed tomography (CT) reconstruction methods that can

be used in the field of medical imaging: (1) a patient-specific

2D-3D reconstruction method20 is used to obtain the 3D data

of each patient for personalized training. In this case, 2D data

need not be used to reconstruct the 3D images if the 3D-DSA

technique is used to record the relevant images. (2) Two 2D-

3D reconstruction methods based on two projection views

have also been reported.21,22 These methods exhibit good

reconstruction effects when samples (such as knee bone and
2 Cell Reports Medicine 3, 100775, October 18, 2022
coronary artery) for which detailed data are absent are studied.

The methods are not suitable to study cases where detailed in-

formation on vasculature needs to be reconstructed.

Herein, we report the development of a self-supervised 3D-

DSA reconstruction (SSDR) network to reconstruct 3D-DSA

images from ultra-sparse 2D projection views. While the gold

standard requires the analysis of �133 2D images, our method

can be used to efficiently reconstruct multi-scale human cerebral

vasculature characterized by the presence of detailed microves-

sels from eight 2D images (Figure 1). Thus, the patient is sub-

jected to 1/16.7th of the radiation dosage used during the gold

standard imaging method. The 3D reconstruction process

does not require annotation by radiologists, and 3D data are

not used for supervision and training while using the SSDR

method. Instead, we developed a novel self-supervised learning

method to train the 3D reconstruction network using sparse 2D

views. Once the model is trained, it can be used to reconstruct

3D images in real time.

A total of 202 DSA cerebrovascular imaging datasets from pa-

tients suspected to be suffering from cerebral aneurysms were

retrieved from the imaging databases of three hospitals: Wuhan

Union Hospital (institution I), WuhanUnionWest Hospital (institu-

tion II), and Hubei Provincial People’s Hospital (institution III).

Among these, a total of 100 cases were retrieved from the Wu-

han Union Hospital in the period ranging from December 2020

to March 2021; 50 cases were used for training, and the

other 50 cases were used for testing. Fifty-four cases were

retrieved from the Wuhan Union West Hospital in the period

ranging from January to February 2022, and 48 cases were

retrieved from the Hubei Provincial People’s Hospital in the

period ranging from January to February 2022. The data from
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the two centers were used for external validation. The flowchart

corresponding to the process of data acquisition and division is

shown in Figure S1. We realized the 3D-DSA reconstruction of

the data, performed the image rendering and quantitative ana-

lyses, and used different colors to identify blood vessels of

different diameters to quickly distinguish between and identify

lesions. The details have been presented in the STAR Methods

and results sections. The SSDR network is expected to revolu-

tionize the 3D-DSA reconstruction technology used in clinic.

RESULTS

Overall framework and performance of the SSDR
network
The DL method was developed with the aim of using it in clinic.

The framework of the SSDR network is presented in Figure 2A.

Multiple (4, 6, 8, 10, and 12) 2D projections from different view

angles of the 3D-DSA images were used as the inputs for our

network. The angles corresponding to the 4, 6, 8, 10, and 12 pro-

jection views are listed in Table S1. The used angles covered

180�. We experimentally demonstrated that the reconstruction

results are affected when limited angle projections are used as

input, as shown in the reconstruction results with limited angle

projections of the STAR Methods and Table S2. The self-super-

vised 3D-DSA reconstruction process proceeds over threemod-

ules: the multi-view preprocessing module, the reconstruction

network, and the self-supervised module. Using the multi-view

preprocessing module, we analyzed the 2D and 3D feature rep-

resentations following resizing, angle-based dimensional

ascending, and convolution processes. Herein, we used the

key step of the backpropagation (BP) algorithm:23,24 each input

2D image was back-projected according to the corresponding

viewing angle to obtain the 3D data. These 3D data were further

input to the next module as different channels. In the reconstruc-

tion module, 3D reconstruction is realized using a 3D U-Net25

system that contains the details of encoding and decoding oper-

ations. In the self-supervised module, the 2D-DSA images are

obtained from the reconstructed 3D-DSA images by analyzing

the differentiable projections and using a loss function to deter-

mine the difference between the input image and the projected

2D-DSA image (recorded at the same angle). The training pro-

cess followed by us proceeds over two stages: the first stage

uses low-resolution images for 3D-DSA reconstruction, and its

prediction result is fused with the high-resolution images to pre-

dict the high-resolution 3D-DSA image. A detailed description of

these two stages is presented in the detailed description of the

two stages of the SSDR network of the STAR Methods and

Figure S2. During the process of testing, we directly input the

multi-view 2D images into the DL models to rapidly obtain the

corresponding 3D reconstruction results.

To verify whether 50 cases were enough for training, we used

75 and 100 cases isolated from institution I to train models under

conditions of the same iteration numbers (400 epochs) and

tested these three models using the 102 cases obtained from

the other two centers. The peak signal-to-noise ratio (PSNR),

structural similarity index (SSIM), mean square error (MSE),

and mean absolute error (MAE) of the reconstruction results ob-

tained using the eight projections were calculated (Table S3). We
observed that when the number of cases used for training was

increased to 100, the quantitative results remained unaffected.

This proves that unless the training data were increased in mul-

tiple-rate, little effect was exerted on the results.

The reconstruction ability of the SSDR network was studied.

Figure 2B presents the anteroposterior and lateral views of

the 3D reconstructed images of a patient suffering from an aneu-

rysm. 4, 6, 8, 10, and 12 2D projections were used as the inputs.

The rendering results obtained by analyzing the 3D recon-

structed images presented in Figure 2B are shown in Video S1.

There are two reasons for choosing these two projections for

comparing the groups: (1) lateral (90�) and anteroposterior

(180�) projections are used as supervised projections for every

group (for all 4, 6, 8, 10, and 12 projections). The reconstruction

quality obtained can intuitively reflect the quality of the trained

models. (2) Lateral and anteroposterior positions are standard

medical positions. Aneurism can be clearly observed in

Figure 2B, and it is indicated with yellow arrows in these two fig-

ures. The 3D reconstructed images are comparable to the im-

ages recorded using the gold standard method. It is difficult to

differentiate the images with naked eyes. We further quantified

and determined the efficiency of the method by analyzing the

loss curves (Figures 2C–2H). Figure 2C presents a summary of

all the loss curves. Steel-blue, goldenrod, tomato-red, cyan,

and slate-gray lines represent the training loss curves of the re-

constructed results obtained using 4, 6, 8, 10, and 12 projec-

tions, respectively. The enlarged images of the training loss

curves are presented in Figures 2D–2H. Analysis of the loss

curves indicates that the models are trained to fit the training

data well. This was manually confirmed (Figure 2B).

Quantitative analysis
The process of 3D quantitative analysis was used to further verify

the efficiency of the SSDR network (Figure 3). Figures 3A–3F pre-

sent the quantitative results obtained for the vascular and lesion

diameters of a randomly selected patient. The 3D reconstructed

models are shown in Video S2. The quantification method used

for the analysis of the vascular and lesion diameters is an intuitive

and high-standard evaluation method. Subtle changes in the re-

constructed pattern are intuitively reflected in the results. This

method can efficiently assist radiologists in locating and identi-

fying lesions as color mutations are observed in the areas

bearing the lesion. It has been observed that it is gradually

becoming easy to obtain good quantitative results from the 3D

reconstruction images obtained using 4, 6, 8, 10, and 12 projec-

tions. As indicated by the red (two) and cyan (one) arrows, signif-

icant levels of differences in the color can be observed between

Figures 3A and 3F. The vessels and the lesion presented in

Figure 3B appear thick. The vessels and the lesion presented

in Figures 3C–3E are similar to those presented in Figure 3F.

The four key indicators (SSIM, PSNR, MSE, and MAE)26 were

further used to quantify the reconstruction results obtained for

the internal testing data obtained from the patients (institution

I). A detailed description of these four indicators can be found

in the STAR Methods section. The five color bars (steel-blue,

goldenrod, tomato-red, cyan, and slate-gray) presented in

Figure 3G reveal the results obtained from the quantitative

studies conducted using the 3D reconstruction images. The
Cell Reports Medicine 3, 100775, October 18, 2022 3



Figure 2. Overall framework and reconstruction results of the SSDR network

(A) Overall framework of the SSDR network.

(B) Lateral and anteroposterior views of the 3D reconstructed images obtained using 4, 6, 8, 10, and 12 2D projections as inputs recorded for a typical patient

suffering from aneurysms.

(C–H) Training loss curves. Steel-blue, goldenrod, tomato-red, cyan, and slate-gray lines represent the training loss curves of the reconstructed results obtained

using 4, 6, 8, 10, and 12 projections, respectively.

4 Cell Reports Medicine 3, 100775, October 18, 2022
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Figure 3. Results obtained using the 3D quantitative analysis method

(A–F) Quantification results obtained for the vascular and lesion diameters of a randomly selected patient. Different diameters are represented by different colors.

(G) Results from quantitative analysis displayed in violin plots for the four key indicators (SSIM, PSNR, MSE, and MAE ) of internal testing patients (institution I).
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colors represent the results obtained when 4, 6, 8, 10, and 12

projections were used, respectively. The values of the four indi-

cators are presented in Table S4 as mean ± standard deviation

(SD). Analysis of Figure 3G reveals that as the number of input

projections increases, better PSNR and MSE values are

obtained. The SSIM and MAE values basically conform to this

rule. Excellent reconstruction results (corresponding to the

indicators) were obtained using eight projections. The mean

SSIM, PSNR, MSE, and MAE values were 0.987, 38.69,

1.58 3 10�4, and 1.05 3 10�3.

Evaluation of image quality and diagnostic confidence
by radiologists
Currently, there are no radiologist scoring methods that can be

effectively used to conduct these studies. We developed a

comprehensive scoring method (Table S5) for evaluating the 3D

reconstruction results based on the results presented in previ-

ously reported papers dealing with the subjective evaluation of

vascular visualization.27,28 The reconstructed image perfor-

mance, vessel detectability, and the diagnostic confidence for

vascular pathology were analyzed by radiologists. Two radiolo-

gists with 8 (reader 1, R1) and 7 (reader 2, R2) years of experience

randomly selected 10cases (nos. 1–10) out of the 50 testedcases

from institution I. They evaluated a total of 30 images, recon-

structed from four, six, and eight projections to verify the repeat-

ability of the developed scoring method. The results (Table S6)

reveal a good interobserver agreement: the k value (quadratic

weighted kappa test was used to obtain the values) of the overall

image performance, blood vessel recognition for internal carotid

artery (ICA), anterior cerebral artery (ACA), and middle cerebral

artery (MCA), were 0.853, 0.792, 0.902, and 0.902, respectively.

The results indicate that the scoring method is highly repeatable

and can be efficiently used to conduct this study.
Table 1 presents the evaluation results obtained by the radiol-

ogists during the analysis of the 3D images of the remaining 40

tested datasets (nos. 11–50) in institution I. The images were re-

constructed from 4, 6, 8, 10, and 12 projections. The detailed

scoring results for every patient have been presented in

Tables S7–S11. The Friedman test was conducted to obtain the

p values to compare the data obtained using 4, 6, 8, 10, and 12

projections (post-hoc pairwise comparisons). Among the five

types of reconstruction results, the total score of the recon-

structed images obtained using four projections was the lowest

(7.28 ± 5.15). The total score of the reconstructed images ob-

tained using six projections (11.5 ± 4.6) was significantly higher

than that obtained using four projections. This is primarily re-

flected by the degree of improvement in visualization achieved

for the sub-branches of ACA and MCA. It should be noted that

the overall image performance and the degree of visualization

corresponding to ICA need to be improved further. The total

scores recorded for the reconstructed images obtained using

10 and 12 projections (15.59 ± 0.88 and 15.88 ± 0.52, respec-

tively) were close 16, the maximum score. The total score of the

reconstructed images obtained using eight projections

(14.71 ± 2.29) was slightly lower than the total score of the recon-

structed images obtained using 10 projections. A significant

difference in the imaging performance or vessel detectability

was not observed (p > 0.05). This indicates that high-quality im-

ages can be recorded using the minimum number of projections

when the method that used eight projections as the input is

followed.

External validation
External data from institutions II and III were used to validate the

generalization ability of the proposedmethod. The overall perfor-

mance (Figures 4A and 4B), results from quantitative analyses
Cell Reports Medicine 3, 100775, October 18, 2022 5



Table 1. Overall image performance and vessel detectability studied by the radiologists

4 projections 6 projections 8 projections 10 projections 12 projections p value

The overall image

performance

1.29 ± 1.53a,b,c 2.63 ± 1.62d,e,f 4.1 ± 1.15g 4.64 ± 0.74 4.9 ± 0.38 <0.001

Vessel detectability ICA 2.99 ± 1.43h,a,b,c 3.98 ± 1.17d,e,f 4.76 ± 0.54 4.95 ± 0.22 4.98 ± 0.16 <0.001

ACA 1.55 ± 1.5a,b,c 2.48 ± 1.15 2.93 ± 0.47 3 ± 0 3 ± 0 <0.001

MCA 1.45 ± 1.44h,a,b,c 2.43 ± 1.16 2.93 ± 0.47 3 ± 0 3 ± 0 <0.001

Total score 7.28 ± 5.15h,a,b,c 11.5 ± 4.6d,e,f 14.71 ± 2.29g 15.59 ± 0.88 15.88 ± 0.52 <0.001

Data are presented as mean ± SD. Friedman test was conducted to obtain the p values to compare the data obtained using 4, 6, 8, 10, and 12 pro-

jections (post-hoc pairwise comparisons). ICA, internal carotid artery; ACA, anterior cerebral artery; MCA, middle cerebral artery.
aAdjusted p < 0.05, comparison between scores of 4 and 8 projections by post-hoc pairwise comparisons.
bAdjusted p < 0.05, comparison between scores of 4 and 10 projections by post-hoc pairwise comparisons.
cAdjusted p < 0.05, comparison between scores of 4 and 12 projections by post-hoc pairwise comparisons.
dAdjusted p < 0.05, comparison between scores of 6 and 8 projections by post-hoc pairwise comparisons.
eAdjusted p < 0.05, comparison between scores of 6 and 10 projections by post-hoc pairwise comparisons.
fAdjusted p < 0.05, comparison between scores of 6 and 12 projections by post-hoc pairwise comparisons.
gAdjusted p < 0.05, comparison between scores of 8 and 12 projections by post-hoc pairwise comparisons.
hAdjusted p < 0.05, comparison between scores of 4 and 6 projections by post-hoc pairwise comparisons.
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(Figures 4C and 4D), and subjective scores (Tables 2 and 3) were

evaluated. Figures 4A and 4B present the anteroposterior and

lateral views of the 3D reconstructed images of two randomly

selected patients, one selected from each of the two institutions.

In these cases, 4, 6, 8, 10, and 12 2D projections were used as

inputs. Analysis of Figure 4A reveals that a little loss in layer

information is observed when four projections are used to

reconstruct images. The loss is represented by red arrows.

This phenomenon is observed during the post-processing

method for a few of the reconstructed images formed using

four projections. The occurrence of this phenomenon can be

avoided by adjusting the threshold. A detailed description of

the post-processing method has been presented in the

detailed description of the post-processing method of the

STAR Methods and Figure S3. Analysis of Figure 4 also reveals

that the external validation data are in good agreement with

the internal test data. The results obtained from the quantitative

analyses revealed that significant differences were not observed

for the external centers for the reconstruction results obtained

using the 8, 10, or 12 projections. Parameters of institutions II

and III were slightly better than those of institution I. The mean

SSIM, PSNR,MSE, andMAE values recorded for the reconstruc-

tion results obtained using the eight projections were 0.989,

40.06, 1.06 3 10�4, and 8.6 3 10�4 (Figure 4C) and 0.981,

39.58, 1.32 3 10�4, and 1.23 3 10�3 (Figure 4D) for institutions

II and III, respectively, and the mean SSIM, PSNR, MSE, and

MAE values were 0.987, 38.69, 1.58 3 10�4, and 1.05 3 10�3

(Figure 3G) for institution I. The values of these four indicators

are presented in detail in Table S4. The values are presented

as mean ± SD.

Table 2 presents the results obtained by the radiologists dur-

ing the analysis of themulticenter 3D images (nos. 11–50 of insti-

tution I, nos. 1–54 of institution II, and nos. 1–48 of institution III)

obtained using eight projections. The detailed scoring results for

every patient admitted to institutions II and III have been pre-

sented in Table S12. The Kruskal-Wallis test was conducted to

obtain the p values to compare the data obtained using themulti-

center eight projections method. The data presented in the table
6 Cell Reports Medicine 3, 100775, October 18, 2022
reveal that the evaluation results obtained for the patients

admitted to institution III were slightly better than those obtained

for the patients admitted to the other two centers. Significant dif-

ferences were not observed between the four indicators (overall

image performance, ICA, ACA, and MCA) corresponding to the

three centers.

We studied whether the reconstructed 3D images obtained

from eight projections could meet the requirements of the radiol-

ogists for diagnosis. Table 3 presents the diagnosis confidence

(for the two radiologists) obtained during the identification of

the lesions present in these reconstructed multicenter images

obtained using eight projections. The detailed scoring method

has been presented in the STAR Methods section, and

the detailed scoring results for every patient are shown in

Table S13. High diagnosis confidence was obtained by R1 and

R2 during the diagnosis of the pathological and non-pathological

vessels. All scoring results were greater than 4 points (4 points =

basically certain). The radiologists correctly identified all 82 an-

eurysms (27, 26, and 29 aneurysms were identified from institu-

tions I, II, and III, respectively) from the 3D reconstructed images

without knowing the results beforehand. In addition, the diag-

nostic confidence reached good interobserver consistency.

The k values corresponding to the diagnostic confidence were

0.93, 0.91, and 0.90 for pathological vessels associated with in-

stitutions I, II, and III, respectively, and 0.75, 0.90, and 0.87 for

non-pathological vessels associated with institutions I, II, and

III, respectively.

We classified 82 lesions for more detailed quantification, and

the classifiedmethod is described in the subjective and objective

evaluations of the STARMethods section. Among the 82 lesions,

21 were divided into the tiny aneurysm group, 37 were divided

into the small aneurysmgroup, and the remaining24weredivided

into the ‘‘other’’ group. We scored the reconstruction results ob-

tained at different groups using subjective and objective evalua-

tion methods, and the scoring results are shown in Table S14.

Two cases from each group were randomly selected for presen-

tation, as shown in Figure S4. TheKruskal-Wallis testwas used to

compare the differences between the objective indices and the



Figure 4. External validation results

(A and B) Anteroposterior and lateral views of the 3D reconstructed images recorded using 4, 6, 8, 10, and 12 2D projections as inputs for two randomly selected

patients, one from each of the two institutions.

(C–D) Results fromquantitative analysis displayed in the violin plots corresponding to the four key indicators (SSIM, PSNR,MSE, andMAE). Values corresponding

to the (C) 54 patients admitted to institution II and (D) 48 patients admitted to institution III.
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diagnostic confidence during the diagnosis of different groups.

The quadratic weighted k test was used to analyze the consis-

tency of the diagnostic confidence of different observers. The

data are presented as mean ± SD. For the case of the objective

indicators, the values of the four indicators (SSIM, MAE, MSE,

and PSNR) improved by a small degree with the progression of

the lesion stages. Statistical differences between the groups

(the p values were 0.16, 0.46, 0.46, and 0.19, respectively) were

not observed (Table S14). For the case of the subjective indica-

tors, the scores corresponding to the observer’s diagnostic con-
fidence recorded at different stages of aneurysms were all >4

points, and statistical difference between the groups was not

observed (the p values were 0.70 and 0.71, respectively). High

diagnostic confidence and interobserver agreement were real-

ized for R1 and R2 at different lesion stages. The interobserver

agreement increases (for tiny, small, and ‘‘others’’ group, the k

values are 0.87, 0.93, and0.95, respectively) with theprogression

of the lesion stage. The results revealed that the reconstruction

results obtained for the tiny and small aneurysms could be effec-

tively used for disease diagnosis.
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Table 2. Comparison between the overall image performance

and vessel detectability

Institution I II III p value

The overall

image

performance

4.1 ± 1.15 4.31 ± 0.54 4.45 ± 0.53 0.340

Vessel

detectability

ICA 4.76 ± 0.54 4.81 ± 0.46 4.88 ± 0.43 0.144

ACA 2.93 ± 0.47 2.94 ± 0.31 2.99 ± 0.07 0.589

MCA 2.93 ± 0.47 2.87 ± 0.39 2.96 ± 0.14 0.203

Total score 14.71 ± 2.29 14.92 ± 1.19 15.27 ± 0.84 0.183

The data were obtained using the multicenter eight-projection method.

Data are presented as mean ± SD. Kruskal-Wallis test was conducted

to obtain the p values that compare the data obtained using the multi-

center eight-projection method. ICA, internal carotid artery; ACA, anterior

cerebral artery; MCA, middle cerebral artery.

Table 3. Diagnostic confidence corresponding to vascular

pathology

Reader 1 Reader 2 k p value

Institution I

Pathological vessel

(n = 27)

4.21 ± 1.08 4.10 ± 0.99 0.93 <0.001

Non-pathological

vessel (n = 13)

4.26 ± 1.08 4.16 ± 1.00 0.75 0.005

Institution II

Pathological vessel

(n = 26)

4.19 ± 0.85 4.08 ± 0.80 0.91 <0.001

Non-pathological

vessel (n = 28)

4.36 ± 0.62 4.36 ± 0.62 0.90 <0.001

Institution III

Pathological vessel

(n = 29)

4.24 ± 0.74 4.17 ± 0.73 0.90 <0.001

Non-pathological

vessel (n = 19)

4.26 ± 0.65 4.26 ± 0.65 0.87 <0.001

Data are presented as mean ± SD. The interobserver reliability was

observed during the diagnostic confidence evaluation process (recorded

by both the readers, asmeasured from the quadratic weighted kappa [k]).
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DISCUSSION

Herein, we proposed a self-supervised learning method to

realize 3D cerebrovascular DSA reconstruction using ultra-

sparse 2D projection views. The advantages of using this self-

supervised learning method have been presented. First, unlike

the gold standard method, where �133 2D-DSA images are

required to obtain good reconstruction results, in this case,

good reconstruction results can be achieved using 1/16.7th of

the 2D images used in the gold standard method. Second, this

method does not require the use of a 3D label. This is advanta-

geous as it is difficult to obtain real 3D labels (as described in

the STAR Methods section). Third, it alleviates the problem of

excessive background noise in the case of 3D supervision

because more than 95% of the voxels in the 3D labels are back-

ground voxels. The background ratio recorded for the 2D labels

post projection is approximately 70%. This helps realize efficient

supervision. 4, 6, 8, 10, and 12 2D projections were used for the

studies. Excellent image quality was obtained, even if compared

with the gold standard (reconstructed with�133 2D projections).

The use of the SSDR network can potentially help significantly

reduce the radiation dosage received by the human body during

the process of imaging. The method can be used to develop

innovative technologies for DSA reconstruction.

Three methods20–22 have been reported in the literature to

realize 2D-3D medical imaging. However, these methods could

not be effectively used for our studies. The SSDR network pre-

sents several advantages: (1) themulti-view preprocessingmod-

ule to provide high-quality inputs for the next two stages; this

module combines the key parts of the BP algorithm23,24 with

that of Kasten et.al.21 Kasten et.al21 only inputs different projec-

tions through multiple channels, whereas we back-project each

input 2D projection according to the corresponding viewing

angle to obtain the 3D data. This allows the 3D data to have a

rough outline from the beginning. (2) Multi-scale features can

be extracted using two cascaded networks (i.e., the low- and

high-resolution reconstruction stages). (3) A novel self-super-

vised method is proposed, and the input 2D images are used

for self-supervised training. Hence, the 3D reconstruction pro-

cess does not require annotations from radiologists nor the 3D

data obtained by the gold standard method for supervision.
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The results reveal that the SSDR network helps realize superior

3D cerebrovascular DSA reconstruction from ultra-sparse 2D

projections.

Objective and subjective quantitative evaluation methods were

used to evaluate the reconstruction results obtained using the

SSDR network. These two evaluation methods have their advan-

tages. SSIM, PSNR,MSE, andMAE values are used as the objec-

tive evaluation parameters. An objective evaluation can be con-

ducted under these conditions. Under these conditions, the

introduction of artificial subjective factors can be avoided. The

disadvantage of the method lies in the fact that when minutely

detailed areas are poorly reconstructed, the values of the quanti-

tative parameters remain almost unaffected. Radiologists can

readily identify the differences in results obtained during analytical

studies. However, subjective differences are unavoidable. The re-

sults obtained using subjective and objective evaluation methods

were analyzed. An increase in the input projection numbers re-

sulted in the improvement of the overall image performance and

detectability of ICA, ACA, and MCA of the reconstructed images.

The noise decreasedsignificantly, and themicrovasculature grad-

ually became clear. The diagnostic confidence recorded by the

two radiologists for non-pathological vessels was higher than

the diagnostic confidence recorded for the pathological vessels.

This can be attributed to the fact that the course and shape of

healthy cerebral vasculature are regular. Thus, accurate diagnosis

ismadeby the radiologists. It has beenobserved that pathological

vessels do not present a regular appearance. Even then, radiolo-

gists can identify tiny aneurysms in reconstructed images from

eight projections under these conditions. We concluded that the

method used to obtain the 3D reconstruction results obtained us-

ing four or six projections should be improved further. Significant

statistical differencesbetween the reconstruction resultsobtained

using eight and10projectionswerenot observed. Itwasobserved

that the performances of the 10- and 12- projection-based
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methods could be improved (the performance improved with an

increase in the number of projections). However, the radiation

dosage used and the computational complexity of the models

were significantly high. Therefore, themethod based on eight pro-

jectionswas themost cost-effectivemethod that could be used in

clinic. The SSDRmethod can be executed using eight 2D projec-

tions (fromdifferent views) for 3D reconstruction, and the radiation

dosage is only 1/16.7th of the dosage currently used in clinic. The

currently usedmethoduses1332Dprojections for reconstruction.

Limitations of the study
There are certain limitations to the method, and there is scope

for improvement: (1) the SSDR network was built in a data-

driven manner, and it may not have enough generalization abil-

ity to perfectly analyze thousands of data centers. Thus,

massive validations using more data are still required before it

is used in clinical applications. (2) We empirically observed

that the performance of SSDR deteriorated when the borders

of the input vessels could not be distinctly identified or images

contained significantly high levels of noise. Thus, a denoising

module should be added to the algorithm in the near future to

improve the method and render it applicable for the diagnosis

of more diseases. (3) Slight differences in the signal strength

and background noises in the reconstructed images obtained

from different centers were observed during subjective evalua-

tion. The differences can be attributed to the differences in the

input images collected using different scanner makers. Howev-

er, the method does not influence the subjective and objective

scoring results. This proves that effective generalization can

be achieved for the images collected using these three

commonly used scanner makers using SSDR. The results will

be further validated using more scanner makers in the near

future. (4) As the injection dosage of the contrast agents used

under clinical settings is strictly regulated,29,30 we did not

discuss the generalization ability of SSDR using different

contrast agents. This will be further verified in the near future

by conducting animal experiments.
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Matlab R2017a Matlab https://ww2.mathworks.cn

Imaris 7.4.2 Imaris https://imaris.oxinst.com/

R 4.0.5 R https://www.r-project.org/

SPSS 25.0 SPSS https://spss.en.softonic.com/

SSDR code This paper https://github.com/zhouzhenghong-gt/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Chuansheng Zheng

(hqzcsxh@sina.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The relevant data supporting the results reported herein are available within the text. The code used to perform the analyses

and produce figures can be found on GitHub: https://github.com/zhouzhenghong-gt/self-supervised-3D-DSA-reconstructio-

network#self-supervised-learning-enables-excellent-3d-digital-subtraction-angiography-reconstruction-from-ultra-sparse-2d-

projection-views. The raw datasets are protected because of patient privacy. Any additional information required to reanalyze the

data reported in this work paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study involved human subjects, and the criteria are described in the Introduction section and Figure S1. This study retrospec-

tively enrolled patients from three Chinese hospitals (Institution I: Wuhan Union Hospital, Institution II: Wuhan Union West Hospital,

Institution III: Hubei Provincial People’s Hospital). This study has been reviewed and approved by the institutional review boards of

the Medical Ethics Committee of the Union Hospital, Tongji Medical College, Huazhong University of Science and Technology. The

requirement of informed consent was waived. All the centers registered and approved the studies labeled as Project Number 2022

(0311) and this study.

METHOD DETAILS

Overall description of the scientific research problem
It is important to reconstruct the 3D image of human cerebral vasculature from 2D-DSA images. Traditional non-DL 3D medical

reconstruction methods require the use of a large number of 2D-DSA images, resulting in the use of a large amount of radiation.

The end-to-end optimization method cannot be followed under these conditions. The use of the DL method for 3D medical recon-

struction is hindered by the fact that it is difficult to accurately obtain true 3D labels. The gold standard method requires the use of a

large number of 2D images. Complex image processing and matching procedures should be conducted to obtain a good visualiza-

tion effect for the obtained 3D image. But, it is different from that of the real 3D label as the traditional methods inevitably result in

vascular distortions.31 The traditional methods are used as the gold standard under sub-optimal conditions.
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To solve this problem, we propose a novel self-supervised 3Dmedical image reconstruction method that can be used without ac-

cessing the true 3D labels. The method can be used to train the 3D reconstruction network using 2D images and camera angles. This

method is different from other self-supervised DLmethods.32–34 Pretext tasks for pre-training need not be set up in this case, and the

method is different from the classic autoencoder self-supervised method. It is used as the input itself for supervision to achieve self-

supervised learning.

Study design
To test the reconstruction results under varying sparse sampling conditions, 4/6/8/10/12 projections frommulti-view 2D perspectives

were used as the inputs, and the required projection angles are shown in Table S1. 3D images reconstructed using traditional

methods were obtained and used as the gold standard. PSNR/MSE/MAE/SSIM values were used as the objective quantitative in-

dicators, and the scores recorded by the radiologists were used as the subjective indicators to evaluate the reconstruction effect

of the SSDR network. This retrospective study has been reviewed and approved by the institutional review boards of the Medical

Ethics Committee of the Union Hospital, Tongji Medical College, and Huazhong University of Science and Technology. The require-

ment of informed consent was waived.

Detailed steps of data acquisition
Three DSA equipment (AxiomArtis Zee, SiemensMedical Systems, Erlangen, Germany; Innova IGS 540, General Electric Healthcare,

United Kingdom; Axiom Artis Q Biplane, Siemens Medical Systems, Erlangen, Germany) from the Wuhan Union Hospital, Wuhan

Union West Hospital, and Hubei Provincial People’s Hospital, was used to record the 2D images. Iodixanol (Hengrui, Jiangsu, China;

320 mg/mL) was used as the contrast agent. A high-pressure injector (MEDRAD Mark VII ProVis (Bayer), Berlin, Germany) was used

to inject iodixanol. The data to reconstruct the 3D images were collected under the 5 s DSA Head mode. During the process, the

C-arm was rotated by 199.5� over 5 s. The contrast agent was injected into the body 1 s earlier before C-arm rotated, and the

flow rate of the contrast agent was maintained at 3.5 mL/s. A total of 21 mL of the contrast agent was used for imaging once. A total

of �133 2D projection images were recorded, and the images were transferred to the workplace workstation for 3D reconstruction

(gold standard). The institutional review board-approved protocols were followed to approach the patients whowere being treated at

the participating institutions, and the patients gave informed consent.

Problem description and response strategy
When a series of 2D projections fX1;X2.XNg and their corresponding view angles fq1; q2.qNg are known, a deep neural network (as

the mapping function F) is used to predict the 3D reconstruction result ðYpredÞ. This problem can be formulated as follows:

FðX1;X2.XN; q1; q2.qNÞ = Ypred (Equation 1)

When the 2D projection images corresponding to different projection views enter the network in the form of different channels, the

model sends as output the 3D prediction result of a single channel. Following this, the 3D prediction result is projected under con-

ditions of the same view as the input. The calculation method of the projection can be expressed as follows:

Yi = PðYpred; qiÞ; (Equation 2)

where Yi represents the of Ypred at an angle qi, and i represents the number of views.

In an actual clinical setting, the electron beam is emitted in the form of a cone. The 2D-DSA images should be corrected and

approximated to the projection of the parallel beam to facilitate the diagnosis process. Therefore, we used parallel beams from

different angles for projection to simulate a real environment. The maximum value corresponding to each beam was used to obtain

a digitally generated projection. This can be expressed as follows:

YiðrpÞ = PðYpredðrÞ; qiÞ = maxðYpredðrÞÞ (Equation 3)

where r represents the position index of a beam passing through Ypred at an angle of qi, Yi is a 2D image projected by Ypred at an angle

of qi, rp is the index of the corresponding position inYi after the projection of r at the angle of qi, and r is orthogonal to the planewhere Yi

is located.

3D U-Net at full resolution can be used to consider less context information as a large single sample data corresponding to the

3D reconstruction task. Hence, we used the cascade method to increase the receptive field of the 3D reconstruction at high res-

olution and improve the results obtained using the 3D reconstruction method. As shown in the figure, we first trained the 3D U-Net

on the down-sampled data and then used the second full-resolution 3D U-Net to refine the low-resolution reconstruction results.

In clinical applications, the reconstruction resolution and the number of cascades can be determined according to application

requirements.

The cascaded neural network can be mathematically expressed as follows:

F1ðX1;X2.XN; q1; q2;.qNÞ = Y 0
pred (Equation 4)
e2 Cell Reports Medicine 3, 100775, October 18, 2022
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F2

�
X1;X2.XN; q1; q2;.qN;Y

0
pred

�
= Y 00

pred (Equation 5)

where F1 represents the first-stage neural network, F2 represents the second-stage neural network, Y 0
pred represents the prediction

result of the first-stage neural network, and Y 00
pred is the prediction result of the second-stage neural network. If a two-stage cascade is

considered, Y 00
pred denotes the final output of the model. During training and testing, the input images are scaled to different resolu-

tions using the linear interpolation method according to the network requirements at different stages.

Detailed description of the two stages of the SSDR network
In the dimensional ascending stage, different projections are input into different channels. We used 4/6/8/10/12 channels (according

to the number of input projections) to conduct the studies. Two datasets of different scales were input into low- and high-resolution

reconstruction stages to reconstruct high-quality multi-scale vasculatures. In the high-resolution scale, the image sizewas 5123 395

pixels. In the low-resolution scale, the 512 3 395 pixels per channel were resized to 256 3 128 pixels per channel. Following this,

under the given conditions of two different scales, the image was copied 512 (256) times along the vertical direction of each viewing

angle, resulting in the generation of 3D data in each channel containing 512 3 5123395 (256 3 2563128) voxels. We used the 3D

space formed under conditions of the 180� viewing angle to constrain data to ensure that multi-channel data can be integrated into

the same channel. In other words, we cropped the part outside the 3D space formed under conditions of the 180� viewing angle to

generate data in the same space. Following this, we extracted the features of each channel following the process of the convolution

operation, and the obtained data consisted of 5123 51233953 16 (2563 25631283 16) voxels per channel. Finally, the low-res-

olution data obtained for each channel was introduced to obtain the final data (2563 25631283 16 voxels). This was the input data

of the low-resolution reconstruction stage. The input of the high-resolution data was cascaded with the output data of the low-res-

olution reconstruction stage, and the resultant data was used as an input during the high-resolution reconstruction stage. The whole

process is presented in Figure 3. In the low-resolution reconstruction stage, the data are used for encoding and decoding. The data

are then subjected to successive resizing and convolution operations. We used a 3D U-Net25 for encoding and decoding. The pro-

cesses of encoding and decoding and the changes in the data size are presented in Figure S5. During the encoding process, the data

is subjected to four cycles of pooling and convolution operations (convolution kernel size: 33 333). During the decoding process, the

data are subjected to four cycles of up-sampling and convolution operations (convolution kernel size: 33 333). The method of skip

connection is used to connect the data of the same size obtained during the processes of encoding and decoding. Finally, 16 groups

of data are integrated into 1 group of the 3D data following a 1 3 131 convolution operation. In the high-resolution reconstruction

stage, the same 3D U-Net is used. The only difference lies in the fact that the input data is of higher resolution. The encoding and

decoding processes and the changes in the data size are presented in Figure S6. At the end of the stage, a post-processing method

was used to obtain the final 3D data. A detailed description of the post-processing method has been presented in Detailed descrip-

tion of the post-processingmethod and Figure S6. It is worth noting that a series of 2D projections fX1;X2;.XNg are normalized in the

interval of [0,1] before they are input into CNN. We cut the original data in the Z-direction because of the limitations of the graphics

processing unit (GPU, 48GBmemory) of our computer. The data were then imported for encoding. The patch size was 2563 256332

in the low-resolution reconstruction stage and 512 3 512332 in the high-resolution reconstruction stage.

Training details
We trained CNN to predict the 3D images (Ypred) with input images (X) containing a stacked sequence of 2D projections.We define the

cost function as the MSE between the 2D projections of the 3D prediction and corresponding input 2D projections. The maximum

intensity projection (MIP) of the reconstructed 3D-DSAwas used as the 2D projections of the 3D prediction. The loss calculation func-

tion is expressed as follows:

Loss =
XN
i = 1

kYi � Xik22 =
XN
i = 1

kPðYpred; qiÞ � Xik22; (Equation 6)

where N is the number of views used in training.

The model was optimized iteratively following the method of stochastic gradient descent. We used the same training strategy and

hyper-parameters for all experiments to objectively compare the reconstruction results obtained using different numbers of projec-

tions as input. We implemented the network using the PyTorch35 library (with CUDA andCUDNN support). The adam optimizer36 was

used to minimize the loss function and update the network parameters iteratively following the process of back-propagation. The

exponential decay learning rate37 was used in all CNN-based experiments. The initial learning rate corresponding to the low- and

high-resolution reconstruction stages was set to 0.001 and 0.03 (decay: 0.9), respectively. Finally, the best checkpoint model with

the smallest validation loss was saved as the final model. We respectively trained the low- and high-resolution reconstruction stages

network for 1,500 and 400 epochs using the Nvidia RTX 8000 graphics processing unit (GPU, 48GB memory).
Cell Reports Medicine 3, 100775, October 18, 2022 e3
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Detailed description of the post-processing method
There must be a situation where a patch of 512 3 512332 voxels is present in the background to ensure that all outputs are char-

acterized by 5123 5123395 voxels (in the test data). The intensities of the noise signals in such a patch are enhanced using the test

model (Figure S6A; yellow arrows) if the post-processing method is not initiated at this point. We addressed this problem using the

sparse reconstruction method to analyze the vasculature signal obtained from the 3D reconstruction result. It was observed that

the average value of each patch voxel was less than 0.01 when the gold standard was used for analysis. Our model predicts that

the average value of the background patch prediction results will exceed 0.01. We set the values corresponding to the patches to

zero for cases where the average predicted result exceeded 0.01 during post-processing.

However, in some extreme cases (e.g., for the case of 4 projections), the predicted value corresponding to the dense blood vessels

tends to be larger, resulting in inaccurate predictions (Figure S6B; red arrows). At this point, we can address the problem by tuning the

threshold, that is, by increasing the value from 0.01 to 0.02. The adjusted result is shown in Figure S6C.

QUANTIFICATION AND STATISTICAL ANALYSIS

Subjective and objective evaluations
We used the trained model to analyze a testing dataset to evaluate the performance of the method. We analyzed the reconstruction

results using both subjective and objective evaluation indicators. Furthermore, we classified lesions into three groups: tiny aneu-

rysms (<3 mm), small aneurysms (3–7 mm), and ‘‘others’’ by measuring the long diameter of the aneurysms based on the standard

criteria.38 We considered the 3D reconstruction results obtained using the 8 projections as the typical in-depth analytical results of

these three types of lesions.

Subjective evaluations: The quadratic weighted k test was used to test the scoring consistency of the two readers (the scoring

method used for evaluating the 3D reconstruction results and the diagnostic confidence were also studied). The strength of agree-

ment between the observers was classified as poor (k < 0.2), fair (0.2%k < 0.4), moderate (0.4%k < 0.6), strong (0.6%k < 0.8), and

super (0.8%k < 1.0). The Friedman test was used to compare the image quality scores obtained using 4, 6, 8, 10, and 12 projections

(Institution I). The Kruskal–Wallis test was conducted to compare the image quality scores obtained using the multicenter 8 projec-

tionsmethod (scoreswere derived from the average score of R1 and R2). The Bonferroni methodwas used to correct the significance

level, and the results were compared. The scores of image quality and diagnostic confidence were presented asmean ±SD. Pairwise

comparisons between any two views were performed following a post hoc analysis method, following the process of Bonferroni

correction. The different grades of aneurysms were analyzed. The Kruskal–Wallis test was conducted to compare the objective

indices and the diagnostic confidence, and the quadratic weighted k test was conducted to determine the consistency of the diag-

nostic confidence obtained by different observers. p < 0.05 was considered statistically significant.

Objective evaluations: Four key quantitative indicators (SSIM, MAE, MSE, and PSNR) were used to study the similarities and dif-

ferences between our results and those obtained using the gold standard. MAE/MSE is the L1-norm/L2-norm error, SSIM score is

used for measuring the overall similarity between the two images, and PSNR is defined as the ratio between the maximum signal

power and the noise power that affects the image quality (it is widely used to determine the quality of the reconstructed image).

In general, a lower value of MAE and MSE or a higher SSIM and PSNR score indicates a better reconstruction result.

MSE = kref � reck22 (Equation 7)
MAE = kref � reck11 (Equation 8)
PSNR = 20log10

maxðrefÞ ffiffiffiffi
N

p

kref � reck22
(Equation 9)
SSIM =
2mrefmrec + c1

m2
ref +m2

rec + c1

,
2sref rec + c2

s2
ref + s2

rec + c2

,
sref rec + c3

srefsrec + c3

(Equation 10)

Here rec is the reconstructed image, ref denotes the reference image, and N is the total number of image voxels. The SSIM index is a

multiplicative combination of the luminance term, the contrast term, and the structural term. The values of mref and mrec are themean

values of reconstructed images and reference images, respectively. The values of sref and srec are the standard deviations of recon-

structed images and reference images, respectively. The value of sref rec denotes the covariance of the reconstructed image and the

reference image. The values of c1; c2; and c3 are the non-negative real numbers that specify the regularization constants for the lumi-

nance, contrast, and structural terms, respectively.
e4 Cell Reports Medicine 3, 100775, October 18, 2022
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Evaluation of image quality and diagnostic confidence by radiologists
Before conducting the experiments, the details of the patients in the images were hidden. The process of subjective evaluation of the

reconstructed images is divided into two aspects (analysis of image quality and diagnostic confidence for vascular pathology).

Two radiologists (R1 and R2) independently studied the reconstructed images. The anteroposterior and lateral images were used

to evaluate the image quality. In particular, the overall image performance and the degree of vessel detectability were evaluated. The

evaluation criteria are presented in Table S5. The 3D reconstruction results obtained using 4, 6, and 8 projections (for 10 random

patients of Institution I) were used to determine the reproducibility of the scoring method. That is, a total of 30 sets were selected

for inter-observer consistency analysis.

The 3D images reconstructed from 8 projections were used for evaluating the diagnostic confidence, and the gold standards were

used to determine whether pathological vessels exist. R1 and R2 independently followed the multi-directional rotational viewing

method to study the reconstructed 3D images using the Imaris software. They used the following scoring standards to determine

the diagnostic confidence of the pathological and non-pathological vessels: 1 point = very uncertain; 2 points = not so sure; 3

points = neutral; 4 points = basically certain; 5 points = very sure. Points R4 are considered as high diagnostic confidence.

Reconstruction results with limited angle projections
We conducted an experiment with three types of inputs with eight projection views. The projection angles used by the three schemes

cover 45�, 90�, and 180�. This experiment was conducted to verify if the reconstruction ability of 3D-DSA with limited angle projec-

tions would be affected. The reconstruction results obtained by analyzing the 102 cases reported by Institutions II and III were quan-

titatively analyzed using SSIM/MAE/MSE/PSNR. The statistical results are listed in Table S2. It can be seen from this table that the

reconstruction results are significantly affected when limited angle projections are used as input.

Experiments to compare the data obtained by three different methods
We compared three types of reconstruction results: (1) Only stage 1 is used for reconstruction; (2) Only stage 2 is used for reconstruc-

tion; (3) Both two stages are used for reconstruction. The reconstruction images obtained from stage 1, stage 2, both two stages, and

the gold standard are presented in Figure S5A–S5D). The quality of the image presented in Figure S5A is poor. An area containing

dense blood vessels was enlarged (yellow, green, tomato-red, and blue dotted boxes). Themicrovessels presented in the tomato-red

dashed box were similar to those presented in the blue dashed box. The reconstruction results obtained by analyzing 50 cases re-

ported by Institution I were quantitatively analyzed using SSIM/MAE/MSE/PSNR. Statistical results are presented in Figure S5E–S5H.

It can be seen that the SSIM and MAE values for these three cases are at the same level. Analysis of the MSE and PSNR indicators

reveals that the quality of the reconstructed images obtained from stage 1, stage 2, and both two stages improve gradually. In sum-

mary, the results proved that the absence of any one of the stages results in the deterioration in the quality of the reconstruction

results.
Cell Reports Medicine 3, 100775, October 18, 2022 e5
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