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Simple Summary: Recent studies have identified new anti-cancer mechanisms of nonthermal plasma
(NTP) in several cancers. However, the molecular mechanisms underlying its therapeutic effect
on thyroid cancer have not been elucidated. The objective of this study was to understand the
anticancer effects of NTP-activated medium (NTPAM) on thyroid cancer cells and elucidate the
signaling mechanisms responsible for NTPAM-induced thyroid cancer cell death.

Abstract: (1) Background: Nonthermal plasma (NTP) induces cell death in various types of cancer
cells, providing a promising alternative treatment strategy. Although recent studies have identified
new mechanisms of NTP in several cancers, the molecular mechanisms underlying its therapeutic
effect on thyroid cancer (THCA) have not been elucidated. (2) Methods: To investigate the mechanism
of NTP-induced cell death, THCA cell lines were treated with NTP-activated medium -(NTPAM), and
gene expression profiles were evaluated using RNA sequencing. (3) Results: NTPAM upregulated the
gene expression of early growth response 1 (EGR1). NTPAM-induced THCA cell death was enhanced
by EGR1 overexpression, whereas EGR1 small interfering RNA had the opposite effect. NTPAM-
derived reactive oxygen species (ROS) affected EGR1 expression and apoptotic cell death in THCA.
NTPAM also induced the gene expression of growth arrest and regulation of DNA damage-inducible
45α (GADD45A) gene, and EGR1 regulated GADD45A through direct binding to its promoter. In
xenograft in vivo tumor models, NTPAM inhibited tumor progression of THCA by increasing EGR1
levels. (4) Conclusions: Our findings suggest that NTPAM induces apoptotic cell death in THCA
through a novel mechanism by which NTPAM-induced ROS activates EGR1/GADD45α signaling.
Furthermore, our data provide evidence that the regulation of the EGR1/GADD45α axis can be a
novel strategy for the treatment of THCA.
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1. Introduction

Thyroid cancer (THCA) is the most common type of endocrine cancer, and its inci-
dence has been rapidly increasing over the last few decades [1,2]. THCA can be divided
into five major types according to histopathological features: papillary, follicular, medullary,
poorly differentiated, and anaplastic [3]. Papillary thyroid carcinoma (PTC) is the most
common form of THCA, accounting for 80% of all thyroid malignancies [4]. PTC has a good
prognosis and low mortality rate. However, PTC frequently metastasizes to the lymph
node, which can consequently increase the loco-regional recurrence rate and cancer-specific
mortality [5–9]. Anaplastic thyroid carcinoma (ATC), an undifferentiated thyroid carci-
noma, exhibits the most aggressive clinical behavior because of its rapid growth, extensive
local invasion of surrounding tissue, and metastasis to distant organs. Consequently, it
has the poorest prognosis among thyroid carcinomas, with a median overall survival of
only 2.5–6 months [10,11]. Therefore, it is necessary to discover novel ways to inhibit the
aggressive features in THCA.

Nonthermal plasma (NTP) is an ionized gas composed of ions, electrons, free radicals,
charged particles, and ultraviolet (UV) photons [12]. The anti-cancer effects of NTP have
been reported in several in vitro and in vivo models and investigated as a novel anti-cancer
therapeutic tool [13–17]. The most readily observed effect associated with NTP is oxidative
stress, which is typically induced by the formation of reactive oxygen and nitrogen species
(RONS) in cells [14,18]. Reactive oxygen species (ROS) generated by NTP can mediate the
apoptosis of mammalian cancer cells by mitochondrial dysfunction [15].

Early growth response 1 (EGR1) belongs to the zinc finger transcription factor family
and functions in cell growth, differentiation, and apoptosis. It is rapidly and transiently
induced by a large number of growth factors, cytokines, ROS, UV, hypoxia, and ionizing
radiation [19–22]. EGR1 exhibits either oncogenic or tumor-suppressive properties depend-
ing on the types of cells and stimuli [23–25]. EGR1 is implicated in the regulation of TP53
gene expression and TP53 protein function in human melanoma cells leading to apopto-
sis [26–28], and EGR1 directly activates PTEN during irradiation-induced signaling [22].
EGR1 also directly regulates multiple tumor suppressors including TGFB1, PTEN, TP53,
and Fibronectin [25]. In contrast, EGR1 transactivates the Fibronectin gene and enhances
attachment of human glioblastoma cell line [29]. And high levels of EGR1 play a central
role in the initiation of human prostate cancer [30,31].

The growth arrest and DNA damage-inducible gene 45 (GADD45) family consists of
GADD45A, GADD45B, and GADD45G. GADD45 proteins are small (~18kDa) and highly
acidic (pH 4.0–4.2) proteins and are mainly located within the nucleus. They are induced
by genotoxic and certain cellular stress situations, including ionizing and UV radiation
as well as various chemotherapeutic agents. GADD45 proteins have been implicated in
a variety of growth regulatory mechanisms including cell cycle arrest, DNA repair, cell
survival and senescence, and apoptosis. It was reported that GADD45α plays a role in
negative regulation of cell cycle progression and cell growth in various cancer [24,32–34].
Related to thyroid cancer, there is one report that GADD45γ has potential to be used as a
candidate gene for gene therapy in ATC for suppressing ATC cell growth [35].

Although recent studies have identified new mechanisms of NTP in several cancers,
the molecular mechanisms underlying its therapeutic effects on THCA remain unclear. The
objective of this study was to understand the inhibitory effects of NTP-activated medium
(NTPAM) on THCA cell survival and elucidate the signaling mechanisms responsible for
cell death.
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2. Results
2.1. NTPAM Induces Apoptotic Cell Death in THCA Cells

The anti-cancer effects of NTP on cell growth, migration, and invasion of various
cancers cells have been reported [15,36]. However, the molecular mechanisms underlying
NTP-induced THCA cell death are still unclear. In this study, He and O2 gas mixture plasma
was used, because He and O2 gas mixture plasma induces significantly more cell death than
He gas plasma alone [13]. The technical specifications of the plasma system are shown in
Figure 1A. Measurement of optical emission spectra in the NTP device with air gas flow was
conducted at wavelengths of 280 to 920 nm by optical emission spectroscopy (Figure 1B).
We measured temperature, electrical conductivity, pH, and RONS after NTP exposure. NTP
treatment leads to the formation of hydrogen peroxide (H2O2), and nitric oxide (NO3

−,
NO2

−) following continuous NTP exposure (Figure 1C). We conducted an experiment on
the storage stability of NTPAM. NTPAM maintained its ability to suppress the viability of
THCA cells for at least 10 days when stored at −80 ◦C and 2 days when stored at room
temperature, suggesting that the anticancer effect of NTPAM could not be maintained
for a long time (Figure S1). Therefore, we always used NTPAM freshly prepared in the
same manner, prior to each experiment. First, we investigated whether NTPAM, a solution
produced by exposing a liquid medium to NTP, could induce anti-cancer effects in various
THCA cells. We examined the viability of BCPAP, HTh7, KTC2, 8505C, and FRO-Luc cells
after NTPAM treatment for 24 h. NTPAM effectively inhibited the viability of all THCA cells
in an activation time-dependent manner (namely 0–120 min) (Figure 1D). Figure 1E shows
the cell morphology changes including marked rounding, shrinkage, and detachment
from the culture dish after NTPAM treatment of BCPAP and 8505C cells. Several studies
have reported that NTP induces apoptotic cancer cell death [16,36]. To determine whether
NTPAM led to the induction of apoptosis, AnnexinV/PI staining was performed at 24 h
after 2 h dose-NTPAM treatment in THCA cells. NTPAM treatment resulted in a significant
increase in apoptosis compared with the control group (Figure 1F). In addition, NTPAM
treatment triggered caspase 3 activation and PARP cleavage, indicating the induction of
apoptosis (Figure 1G). These results suggest that NTPAM induced apoptotic cell death in
the THCA cell lines.

2.2. NTPAM Induces Mitochondrial Dysfunction in THCA Cells

Our previous study demonstrated that THCA cell lines have reduced mitochondrial
function compared with the Nthy-ori3-1 normal cell line [37]. Thus, we hypothesized
that the effects of NTPAM treatment on mitochondrial function of cancer cells may differ
from those on normal thyroid cells. First, we investigated the morphological changes
after NTPAM treatment of Nthy-ori3-1 and BCPAP cells. BCPAP cells exhibited elevated
accumulation of swollen, abnormal mitochondria with disrupted cristae compared with
Nthy-ori3-1 cells after NTPAM treatment. After NTPAM treatment, the percentage of
dysmorphic mitochondria in BCPAP cells increased significantly compared to Nthy-ori3-1
cells (Figure 2A). These results showed that NTPAM induced mitochondrial stress, with
this effect stronger in THCA cells than in normal thyroid cells. Additionally, we compared
the oxygen consumption rates (OCRs) between Nthy-ori3-1, BCPAP, and 8505C cells after
NTPAM treatment. There was no significant change in basal respiration OCR, maximal
respiration OCR, or ATP-dependent respiration OCR in Nthy-ori3-1 cells after NTPAM
treatment. However, THCA cell lines exhibited reduced mitochondrial function compared
with Nthy-ori3-1 cells (Figure 2B–E). These results suggest that the greater effect of NTPAM
in cancer cells may be related to decreased mitochondrial function in cancer cells compared
to normal cells at baseline.
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Figure 1. Apoptotic effects of nonthermal plasma-activated medium (NTPAM) on thyroid cancer (THCA) cells. (A) Dia-
gram of the developed He- and O2-based NTP system and scheme as well as a photograph depicting the experimental 
design and preparation of NTPAM. (B) Measurement of the optical emission spectra (OES) of the NTP device with air gas 
flow. (C) Medium temperature, electrical conductivity (EC), pH, and concentrations of NO3−, NO2−, and H2O2 following 
continuous NTP exposure. (D) Various THCA cells were treated with indicated concentration (0, 5, 15, 30, 60, 120 min of 
activation) of NTPAM for 24 h, and cell viability was analyzed using the WST1 assay. Results were analyzed using non-
parametric one-way ANOVA followed by Dunnett’s post-hoc test. (E) Cell morphology changes in BCPAP and 8505C cells 
after 2 h dose-NTPAM treatment for 6 h. (F) Apoptosis was determined by AnnexinV/PI flow cytometry in 8505C cells 
after 2 h dose-NTPAM treatment for 24 h. Results were analyzed using Mann-Whitney U test. (G) Apoptotic proteins were 
examined using western blot analysis after 2 h dose-NTPAM treatment for 24 h. Each figure is representative of three 
independent experiments. Data were expressed as mean ± standard deviation of the mean (±SD). Differences were con-
sidered relevant at p < 0.05 (* p < 0.05, ** p < 0.01, *** p < 0.001). 

 

Figure 1. Apoptotic effects of nonthermal plasma-activated medium (NTPAM) on thyroid cancer (THCA) cells. (A) Diagram
of the developed He- and O2-based NTP system and scheme as well as a photograph depicting the experimental design
and preparation of NTPAM. (B) Measurement of the optical emission spectra (OES) of the NTP device with air gas flow.
(C) Medium temperature, electrical conductivity (EC), pH, and concentrations of NO3

−, NO2
−, and H2O2 following

continuous NTP exposure. (D) Various THCA cells were treated with indicated concentration (0, 5, 15, 30, 60, 120 min
of activation) of NTPAM for 24 h, and cell viability was analyzed using the WST1 assay. Results were analyzed using
non-parametric one-way ANOVA followed by Dunnett’s post-hoc test. (E) Cell morphology changes in BCPAP and 8505C
cells after 2 h dose-NTPAM treatment for 6 h. (F) Apoptosis was determined by AnnexinV/PI flow cytometry in 8505C
cells after 2 h dose-NTPAM treatment for 24 h. Results were analyzed using Mann-Whitney U test. (G) Apoptotic proteins
were examined using western blot analysis after 2 h dose-NTPAM treatment for 24 h. Each figure is representative of
three independent experiments. Data were expressed as mean ± standard deviation of the mean (±SD). Differences were
considered relevant at p < 0.05 (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure 2. NTPAM induces mitochondrial dysfunction in THCA cells. (A) Electron microscopy examination of Nthy-ori3-1 and
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white arrow, dysmorphic mitochondria: black arrow. Results were analyzed using Mann-Whitney U test. (B) Oxygen
consumption rates (OCRs) measured in Nthy-ori3-1, BCPAP, and 8505C cells with or without 2 h dose-NTPAM treatment
for 1 h. (C) Basal respiration, (D) Maximal respiration, (E) ATP-dependent respiration in Nthy-ori3-1, BCPAP, and 8505C
cells with or without NTPAM treatment. Results were analyzed using Mann-Whitney U test. Results were analyzed using
Mann-Whitney U test. Each figure is representative of three independent experiments. Data were expressed as mean ±
standard deviation of the mean (±SD). Differences were considered relevant at p < 0.05 (* p < 0.05, ** p < 0.01).

2.3. EGR1 Is a Regulator of Thyroid Tumorigenesis

To determine the major mechanism of NTPAM in human THCA, we conducted tran-
scriptome analysis of THCA cells with or without 2 h dose-NTPAM treatment for 24 h.
As shown in Figure 3A,B, changes in BCPAP and 8505C cells were positively correlated
with NTPAM treatment compared to other cells. There were many significantly changed
genes after NTPAM treatment in BCPAP and 8505C cells (Figure S2A). Our in vitro data re-
vealed abnormal mitochondrial accumulation in THCA after NTPAM treatment. Therefore,
we identified an association between NTPAM treatment and the mitochondrial unfolded
protein response (UPRmt) in human THCA. Interestingly, NTPAM treatment induced
significant changes in genes related to UPRmt (Figure 3C). To explore the important rela-
tionships between NTPAM and biological processes, we evaluated significantly enriched
KEGG gene sets with statistical significance (Figure 3D). As shown in Figure 3E and Figure
S2B, the top 10 upregulated pathways and top 10 downregulated pathways in BCPAP and
8505C cells revealed upregulation of mitophagy and ribosomal biogenesis as well as down-
regulation of pyruvate metabolism in BCPAP cells and oxidative phosphorylation in 8505C
cells after NTPAM treatment. To identify the upstream regulators after NTPAM treatment
in BCPAP and 8505C cells, we conducted ingenuity pathway analysis (IPA). Interestingly,
EGR1, DNA damage-inducible transcript 3 (DDIT3), and activating transcription factor 4
(ATF4) were identified as transcription regulators in both BCPAP cells and 8505C cells after
NTPAM treatment, and EGR1 was selected as a gene for further study (Figure 3F), because
it showed the highest expression ratio and z score in BCPAP and 8505C cells equally. We
also investigated two other candidate genes, ATF4 and DDIT3 (Figure S3). First, we investi-
gated the expression of gene sets regulated by EGR1. As shown in Figure 3G and Figure
S2C, NTPAM induced significant differences in genes related to EGR1 expression. To assess
the usefulness of EGR1 expression related with phenotypes in PTC, we investigated the
expression of EGR1 in a THCA cohort (Figure 3H). We determined a high EGR1 group
and a low EGR1 group based on the median value of EGR1 in the TCGA-THCA cohort.
The expression of EGR1 was significantly higher in normal samples compared to tumor
samples. To evaluate the relationship between EGR1 expression and clinicopathological
features, we catalogued the clinicopathological features associated with samples from 500
samples in the THCA cohort. The chi-square test and Fisher’s exact test were used to eval-
uate the significance of the correlation of EGR1 expression with clinical and pathological
parameters. Low EGR1 expression was significantly associated with several clinicopatho-
logical parameters including male gender (p = 0.034), tumor size (p = 0.014), and lymph
node metastasis (p = 0.009) (Table S1). Additionally, we performed the multivariable re-
gression analysis between the high EGR1 expression and clinicopathologic factors using
TCGA-THCA cohort (Table S2). In multivariable analysis, lymph node metastasis was
the significant factor associated with EGR1 expression. Next, the Kaplan-Meier analysis
were performed from total 500 patients. EGR1 low group showed slightly unfavorable
prognosis, however, there was no significant differences between two group (Figure 3I).
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genesis. (A) Correlation matrix of BCPAP and 8505C cells with or without NTPAM treatment. (B) Multi-dimensional
scaling plots for BCPAP and 8505C cells with or without NTPAM treatment. (C) Heatmap analysis of significantly changed
genes related to the UPRmt in BCPAP and 8505C cells with p < 0.05 for comparisons of cells with or without NTPAM
treatment. (D) The total number of significantly enriched KEGG gene sets with corrected p-values < 0.05 according to
the Benjamini-Hochberg procedure (considered statistically significant). (E) Top 10 upregulated pathways and top 10
downregulated pathways in BCPAP cells in relation to NTPAM treatment. (F) Upstream regulators in relation to NTPAM
treatment in BCPAP and 8505C cells via IPA. (G) Heatmap analysis of significantly changed genes related to EGR1 with
p < 0.05 compared to BCPAP cells with or without NTPAM treatment. (H) Box plot of log2TPM of EGR1 values between
normal and tumor samples in the TCHA cohort. The significance for between group differences was evaluated using
logrnak test. (I) Disease-free survival in relation to EGR1 expression in the THCA cohort. TPM: transcripts per million.

2.4. EGR1 Is Activated by NTPAM to Mediate Cell Death in THCA

EGR1 can function as a tumor suppressor or an oncogene, depending on the type of
tumor cell [23–25]. However, the role of EGR1 in THCA remains poorly understood. To
validate the RNA-seq analysis results (Figure 4A), the mRNA and protein expression levels
of EGR1 were examined in BCPAP and 8505C cells after 2 h dose-NTPAM treatment for 24 h.
EGR1 expression levels were markedly increased in NTPAM-treated cells (Figure 4B,C). We
hypothesized that EGR1 could suppress tumor progression in the thyroid. To this end, the
protein expression levels of EGR1 were investigated in normal and tumor tissues derived
from the same THCA patients. Lower expression of EGR1 was detected in four tumor
samples relative to normal tissue (Figure 4D). Then, we explored the effects of transient
overexpression and knockdown of EGR1 on the cell viability of THCA cells. An EGR1
overexpression vector was transiently transfected into BCPAP and 8505C cells, and cell
viability was determined by cell counting. EGR1 overexpression considerably suppressed
cell viability compared with the control (Figure 4E). In contrast, to examine the effect of
EGR1 knockdown, cells were transiently transfected with EGR1-specific siRNA or negative
control siRNA and EGR1 knockdown caused an increase in cell viability (Figure 4F). These
results confirm that EGR1 suppresses the cell viability of THCA cells and is activated by
NTPAM.
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the EGR1 expression was examined by quantitative PCR (qPCR) analysis (B) and western blot analysis (C). Results were
analyzed using Mann-Whitney U test. (D) Tissue samples obtained from patients with THCA were examined using
western blot analysis with an anti-EGR1 antibody. (E) BCPAP and 8505C cells were transiently transfected with an EGR1
overexpression vector or a negative control vector for 48 h. Cell viability was analyzed by cell-counting analysis. Results
were analyzed using Mann-Whitney U test. (F) BCPAP and 8505C cells were transiently transfected with EGR1-specific
siRNA or negative control siRNA for 48 h. Cell viability was analyzed by cell-counting analysis. Results were analyzed
using Mann-Whitney U test. Each figure is representative of three independent experiments. Data were expressed as
mean ± standard deviation of the mean (±SD). Differences were considered relevant at p < 0.05 (* p < 0.05, ** p < 0.01,
*** p < 0.001).

2.5. EGR1 Promotes NTPAM-Mediated Cell Death through Regulation of ROS

NTP can generate several RONS such as NO3
−, hydrogen, O2, and ozone and NTP

treatment mediates an increase in cellular ROS, contributing to cell death in various
cancers [15,17,38–40]. In this study, we also explored whether NTPAM mediates ROS accu-
mulation in THCA cells. Mitochondrial ROS levels increased in 2 h dose-NTPAM-treated
cells and N-acetylcysteine (NAC), a general anti-oxidant chemical, partly or completely
reversed the effects of NTPAM treatment (Figure 5A). Corresponding to the change in ROS
levels, the cell viability of BCPAP and 8505C cells were reduced by NTPAM treatment and
rescued by cotreatment with NAC (Figure 5B). NTPAM treatment-mediated ROS increased
EGR1 expression, and NAC inhibited NTPAM-induced EGR1 induction (Figure 5C). EGR1
expression also increased in a dose-dependent manner upon NTPAM treatment (Figure 5D).
NTPAM-induced THCA cell death was enhanced by EGR1 overexpression, whereas EGR1
siRNA led to the opposite result (Figure 5E,F). These data indicate that the upregulation of
EGR1 by NTPAM induces ROS-mediated cell death in THCA.
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Figure 5. NTPAM induces cell death through the regulation of ROS-induced EGR1 in THCA cells. BCPAP and 8505C
cells were treated with 2 h dose-NTPAM for 6 h or cotreated with NTPAM and NAC. (A) Mitochondrial ROS levels were
measured by Mitosox-based flow cytometry. Results were analyzed using non-parametric one-way ANOVA followed
by Dunnett’s post-hoc test. (B) Cell viability was evaluated using the WST1 assay. Results were analyzed using non-
parametric one-way ANOVA followed by Dunnett’s post-hoc test. (C) Cell lysates were assessed by western blot analysis
using antibodies against EGR1, PARP, and β-actin. (D) BCPAP and 8505C cells were treated with NTPAM for 24 h in a
dose-dependent manner up to 1:4 dilution and cell lysates were assessed by western blot analysis using an antibody against
EGR1. (E) BCPAP and 8505C cells were transfected with or without EGR1 vector for 48 h, and then cells were treated with
NTPAM for 24 h at the indicated concentrations. Cell viability was analyzed using the WST1 assay. Results were analyzed
using Mann-Whitney U test. (F) BCPAP and 8505C cells were transfected with or without EGR1-specific siRNA for 48 h, and
then cells were treated with NTPAM for 24 h at the indicated concentrations. Cell viability was analyzed using the WST1
assay. Results were analyzed using Mann-Whitney U test. Each figure is representative of three independent experiments.
Data were expressed as mean ± standard deviation of the mean (±SD). Differences were considered relevant at p < 0.05
(* p < 0.05, ** p < 0.01, *** p < 0.001).

2.6. NTPAM Induces Cell Death through the ROS/EGR1/GADD45α Pathway in THCA

Recent studies have reported that EGR1 transcription factor directly regulates the ex-
pression of tumor suppressors including TGFβ1, PTEN, p53, and fibronectin [22,25–28,41].
Also, EGR1 directly binds and regulates GADD45α and GADD45β expression during UVB
stress or oxidative stress such as arsenic exposure [21,24]. We used RNA-seq to confirm
the target genes of EGR1 upregulated by NTPAM. GADD45α, but not PTEN, TP53, or
TGFβ1, was reproducibly and statistically significantly upregulated in BCPAP and 8505C
cells (Figure 6A). The mRNA and protein levels of GADD45α were increased after 2 h
dose-NTPAM treatment for 24 h, as shown by RNA-seq (Figure 6B,C). Transfection with
EGR1-specific siRNA led to the downregulation of GADD45α, whereas EGR1 overex-
pression caused an increase in GADD45α expression (Figure 6D,E). To determine if the
induction of GADD45α is mediated by the direct binding of EGR1 to the promoter of the
GADD45α, we evaluated the effect of EGR1 on the activity of the human GADD45α pro-
moter. EGR1 siRNA decreased the luciferase activity of the wild-type GADD45α promoter
construct, whereas EGR1 overexpression increased the activity. However, EGR1 did not af-
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fect mutant GADD45α promoter activity (Figure 6F,G). Thus, direct DNA binding of EGR1
to the GADD45α promoter appears to be important for transactivation of the GADD45α
promoter. We investigated the role of GADD45α in the 8505C cell line. GADD45α over-
expression considerably suppressed cell viability compared with the control. In contrast
to GADD45α overexpression, GADD45α knockdown caused an increase in cell viability
(Figure 6H,I). These results suggest that NTPAM treatment-mediated ROS upregulates
EGR1, and EGR1 increases the expression of GADD45α through transcriptional regulation.
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Figure 6. NTPAM induces cell death through the ROS/EGR1/GADD45α pathway in THCA cells. (A) Changes in the
expression of EGR1 target genes after NTPAM treatment, as determined by RNA-seq. Results were analyzed using
independent t-test. After treatment of BCPAP and 8505C cells with 2 h dose-NTPAM for 24 h, GADD45α was examined
using qPCR analysis (B) and western blot analysis (C). Results were analyzed using Mann-Whitney U test. Cells were
transfected with EGR1 siRNA (D) or the EGR1 overexpression vector (E) for 48 h, followed by western blot analysis.
EGR1 siRNA (F) or the EGR1 overexpression vector (G) was co-transfected with the wild-type GADD45α promoter or the
mutant GADD45α promoter P-2/3m into 8505C cells. At 24 h after transfection, cells were lysed, and luciferase activity
was measured using a luminometer (FilterMax F5). Results were analyzed non-parametric one-way ANOVA followed
by Dunnett’s post-hoc test. 8505C cells were transiently transfected with a GADD45α overexpression vector (H) or the
GADD45α-specific siRNA (I) for 48 h. Cell viability was evaluated using the WST1 assay. Results were analyzed using
Mann-Whitney U test. Each figure is representative of three independent experiments. Data were expressed as mean ±
standard deviation of the mean (±SD). Differences were considered relevant at p < 0.05 (* p < 0.05, ** p < 0.01, *** p < 0.001).

2.7. Antitumor Effect of NTPAM in THCA in a Xenograft Mouse Model

To confirm the effects of NTPAM treatment on THCA cells in an established xenograft
mouse model (Reg. No. CNUH IRB No. 202006A-CNU-112), bioluminescence imaging
was performed to observe changes in tumor cell growth in vivo. We subcutaneously
administered Luciferase-expressing FRO (FRO-Luc) cells into BALB/c-nude mice and
treated them with NTPAM for 3 weeks. The region of interest (ROI) was measured on
day 21 post-injection (Figure 7A). The ROI of the NTPAM-treated group was significantly
reduced compared to the control group (Figure 7B,C). After final treatment with NTPAM,
tumor weight was significantly reduced in the NTPAM-treated group compared with
the control media injection group (Figure 7D,E). To determine whether NTPAM induced
THCA cell death through the upregulation of EGR1/GADD45α in vivo, we analyzed
changes at the molecular level in EGR1 and GADD45α by immunohistochemistry. EGR1
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and GADD45α were increased in NTPAM-treated mouse tumor tissues compared with
control tissues (Figure 7F). This is consistent with the in vitro protein expression data after
NTPAM treatment. These results suggest that NTPAM exerts an inhibitory effect against
tumor growth in vivo model. Additionally, we confirmed that NTPAM did not cause
any side effects on normal tissue in a mouse model. NTPAM-related damage was not
found in several organs including the liver, heart, lung, spleen, and kidney in treated mice
(Figure S4). Our all results indicate that NTPAM more effectively inhibited THCA cell
growth than did the control, and that ROS mediated the NTPAM-induced apoptotic cell
death through the regulation of EGR1/GADD45α (Figure 7G).
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Figure 7. NTPAM exerts anticancer effects in a xenograft in vivo model. Luciferase-expressing FRO (FRO-Luc) THCA cells
were injected subcutaneously into BALB/c-nude mice and treated with NTPAM every day for 3 weeks. (A) Schematic
illustration of the in vivo experimental design. (B) Final tumor images of cancer cells tracked with the IVIS imaging
system following the injection of mice with FRO-Luc cells. (C) The luminescence radiance of the ROI of the tumor was
determined. Results were analyzed using Mann-Whitney U test. (D) Final tumor images. (E) Final tumor weight. Tumor
tissues were extracted after the final determination of tumor growth. Results were analyzed using Mann-Whitney U test.
(F) Representative images of H&E and immunohistochemical staining of control and NTPAM group. (G) The proposed
NTPAM-induced ROS/EGR1/GADD45α axis in THCA based on this study. Data were expressed as mean ± standard
deviation of the mean (±SD). Differences were considered relevant at p < 0.05 (* p < 0.05).

3. Discussion

Recent studies have shown that NTP can induce cell death in various cancers such as
those of the brain, colon, skin, lung, pancreatic, and head and neck [14,16,38,42]. This study
investigated the anticancer effects and mechanism of NTP, a potential next-generation
therapeutic tool for THCA.

NTP, which has been used for cancer treatment, has been applied using direct and
indirect techniques. In the direct method, the cells and mouse tumor are directly exposed
to NTP. In the indirect method, the cells are exposed to cell culture medium treated with
NTP. Recent studies have shown that although the effectiveness of direct plasma treatment
is greater than that of indirect treatment, NTPAM (NTP-activated medium) shows great
potential for tumors located inside the body, suggesting that it may be an alternative
to direct plasma exposure in cancer treatment [43,44]. Therefore, in this study, we used
NTPAM to investigate the effect of NTP on THCA.



Cancers 2021, 13, 351 11 of 20

A promising cancer therapy should not only be effective but also selective. NTP
selectively induces cancer cell death but not normal cell death [45,46]. There is a hypothesis
to explain the selective killing of cancer cells by NTP. RONS created by NTP can trigger
mechanisms that lead to apoptosis. ROS are generally produced in cancer cells at much
higher levels than in normal cells. Thus, cancer cells are more sensitive than normal cells
to ROS generated by NTP [18]. In our study, the concentrations of hydrogen peroxide
and nitric oxide in media peaked in the measurable range after only 1 h of NTP exposure.
And NTPAM pH reaches ~8.6 after 2 h of activation with NTP. We should consider that
our results may in part be due to the effects of cell exposure to supraphysiological pH,
though our findings focus on ROS after NTPAM treatment. NTPAM treatment-mediated
oxidative stress, resulting in mitochondrial ROS accumulation following apoptotic cell
death in THCA. We also determined whether NTPAM destroys mitochondria of cancer
cells without damaging normal cells. BCPAP cells exhibited elevated accumulation of
swollen, abnormal mitochondria with disrupted cristae compared with Nthy-ori3-1 cells
after NTPAM treatment. NTPAM induced mitochondrial stress, and this effect was stronger
in THCA cells than in normal thyroid cells. There was no significant change in basal respi-
ration OCR, maximal respiration OCR, or ATP-dependent respiration OCR in Nthy-ori3-1
cells after NTPAM treatment. However, THCA cell lines exhibited reduced mitochondrial
function compared with Nthy-ori3-1 cells. Additionally, we confirmed that NTPAM did
not cause any side effects on normal tissue in a mouse model. NTPAM-related damage was
not found in several organs including the liver, heart, lung, spleen, and kidney in treated
mice (Figure S4).

To determine the major mechanism of NTPAM in human THCA, we conducted tran-
scriptome analysis of THCA cells with or without NTPAM treatment. Transcriptome
analysis revealed that there were many significantly changed genes after NTPAM treat-
ment in THCA cells. Interestingly, EGR1, DDIT3, and ATF4 were identified as upstream
transcription regulators through IPA, and EGR1 was selected as a gene for this study be-
cause it showed the highest expression ratio and z score in BCPAP and 8505C cells equally.
However, we also investigated two other candidate genes, ATF4 and DDIT3. The expres-
sion of ATF4 and DDIT3 increases in response to microenvironmental stresses including
oxidative stress and endoplasmic reticulum stress, and ATF4 induces the transcriptional
expression of DDIT3. ATF4 controls the expression of adaptive genes that allow cells to
endure stress. However, ATF4 promotes the induction of apoptosis under persistently
stressful conditions [47]. We found that ATF4 siRNA reduced cancer cell viability and
NTPAM-induced cell death was enhanced by ATF4 siRNA, suggesting that ATF4 may be
increased by NTPAM for THCA cell adaptation but not cell death (Figure S3).

EGR1 is a redox-sensitive transcription factor, and its mRNA and protein expression is
rapidly induced by ROS [48,49]. In this study, EGR1 was markedly upregulated by NTPAM
in both BCPAP and 8505C cells. NTPAM treatment-mediated ROS increased EGR1 gene
expression and NAC, a ROS scavenger, reduced NTPAM-induced EGR1 induction as well
as NTPAM-induced cell death. EGR1 overexpression significantly suppressed cell viability
compared with the control, indicating that EGR1 acts as a tumor suppressor in THCA cells.
NTPAM-induced THCA cell death was enhanced by EGR1 overexpression, whereas EGR1
siRNA had the opposite effect. However, the change of cell viability by NTPAM showed
even in EGR1 siRNA, suggesting that NTPAM-induced cancer cell death may be the result
of simultaneous regulation of various molecules and EGR1 is at least one of the major
factors for NTPAM-induced cell death.

We found that the expression of EGR1 was significantly higher in normal samples
than in tumor samples in the THCA cohort. We also investigated the correlation between
EGR1 expression and clinicopathologic characteristics. Low EGR1 expression in PTC is
significantly associated with several clinicopathological parameters including male gender,
tumor size, and lymph node metastasis, suggesting the novel role of EGR1 as a tumor
suppressor in PTC. In addition, we showed that EGR1 expression was related to the
disease-free survival rate in PTC through the analysis using a THCA cohort.
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GADD45 is a regulator at the G2/M checkpoint and plays roles in apoptosis, the
DNA damage response, and cell-cycle arrest. It is often upregulated in response to various
environmental stresses and drug therapies [50,51]. It was reported that the increase of
GADD45α in response to As3+ was mediated sequentially by ELK1 and EGR1 [21]. Also,
EGR1 directly binds to GADD45α and GADD45β and regulates their expression during
UVB stress or oxidative stress [21,24]. In our data, GADD45α was significantly upreg-
ulated by NTPAM in BCPAP and 8505C cells, as shown by RNA-seq. EGR1 positively
regulated GADD45α expression via direct binding to the GADD45α promoter. GADD45α
overexpression suppressed cell viability compared with the control, whereas GADD45α
knockdown caused an increase in cell viability, suggesting that GADD45α acts as a tumor
suppressor. Our results clearly demonstrate that NTPAM treatment-mediated ROS up-
regulates EGR1 and EGR1 increases the expression of GADD45α through transcriptional
regulation, leading to cell death in THCA.

Heterogeneity of tumor genotypes among patients and within the same patient may
render target therapeutics ineffective [52]. In this study, we examined the effect of NTPAM
on different types of thyroid cancer cell lines with a different genetic variation. Even
though papillary THCA (PTC) and anaplastic THCA (ATC) are totally different disease
clinically and the cellular mechanism underlying might be different between these cell
line, NTPAM consistently suppressed the growth of both PTC (BCPAP) and ATC (8505C,
HTh7, and KTC2), characterized by the different types of genetic alterations. In addition,
in a xenograft in vivo model using FRO-Luc cells, an anaplastic THCA, we also found that
tumor growth in the NTPAM-treated group was significantly reduced compared to the
control.

The stability of NTPAM for anticancer effect during its storage is an important factor
for determining its potential for clinical applications. We conducted an experiment on
the storage stability of NTPAM. NTPAM maintained its ability to suppress the viability of
THCA cells for at least 10 days when stored at −80 ◦C and 2 days when stored at room
temperature, suggesting that the anticancer effect of NTPAM could not be maintained for a
long time (Figure S1). Therefore, research to maintain NTPAM activity for a long time is
urgently needed to overcome the limitations for clinical application.

NTP has some advantages over conventional chemotherapy and radiotherapy. NTP as
a therapeutic agent can be generated safely and inexpensively. NTPAM is suitable for the
clinical applications because NTPAM can be prepared in advance and stored until use [53].
In addition, NTPAM could be a useful treatment for large area, such as an intraperitoneal
treatment to eliminate the residual micro-tumors and the micro-metastatic dissemination
of cancer cells after surgery [43]. Although NTPAM treatment shows novel and effective
tools for cancer therapy, further investigations are still needed to more fully determine the
clinical anti-tumor effects of NTPAM.

This is the first study to elucidate transcriptomic changes in NTPAM-treated THCA
cells. Our findings establish that EGR1 as a potential tumor suppressor that leads to
NTPAM-induced apoptotic cell death via GADD45α regulation in THCA cells. We conclude
that the application of NTPAM may be an effective and safe treatment for THCA in the
future.

4. Materials and Methods
4.1. Cell Lines and Materials

The human THCA cell lines BCPAP, HTh7, KTC2, 8505C, and FRO-Luc and the normal
thyroid cell line Nthy-ori3-1 were obtained from the Young Joo Park Laboratory (Seoul
National University, Seoul, Korea). All THCA cells were authenticated using the short
tandem repeat typing method in May 2020. BCPAP and HTh-7 cells were maintained in
high-glucose Dulbecco’s modified Eagle medium (Gibco, Gaithersburg, MD, USA). KTC2,
8505C, FRO-Luc, and Nthy-ori3-1 cells were maintained in Roswell Park Memorial Institute
1640 medium (Gibco). All cells were supplemented with 10% fetal bovine serum and 100
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units/mL penicillin-streptomycin (Gibco) and grown at 37 ◦C with 5% carbon dioxide
under humidified conditions.

4.2. Experimental System Specifications of NTP and NTPAM Preparation

Each medium was treated using an NTP jet generated by a device composed of a
quartz tube (outer diameter, 6 mm; inner diameter, 4 mm) with two electrodes—an inner
stainless-steel tube electrode and an outer ground ring-electrode. The inner tube electrode
also functions as a gas inlet. A high voltage amplifier supplied input power (a few kV
at 20 kHz) to the device. Discharge power varied from 10 to 24 W. The plasma jet was
positioned perpendicularly over the medium in a flask, and the gas flowed from the inside
of the device towards the medium surface. Helium (He) (4 standard liters per minute
(slpm)) and oxygen (O2) (1 standard cubic centimeters per minute (sccm)) were used as
carrier gases, because several reports previously found that the addition of O2 improved
the efficiency of cancer cell inhibition [13,54]. The emission spectra of the plasma revealed
the presence of strong nitrogen-, He-, and O2-related light emissions. To prepare NTPAM,
RPMI 1640 medium was exposed to NTP for various periods of time which correspond
to different NTPAM concentrations. Most of the expreriments were conducted using 2 h
dose-NTPAM. 2 h dose-NTPAM represents the NTPAM produced by exposing to NTP for
2 h. The distance between the plasma device and above the medium was maintained at
around 1 cm. NTPAM was prepared with 50 mL of culture media. Cell treatment with
NTPAM was performed by changing the culture medium for NTPAM. We always used
NTPAM freshly prepared in the same manner, prior to each experiment.

4.3. Cell Viability Assay

Cells were seeded at a density of 5 × 103 cells per well in triplicates in 96-well plates.
Next day, the medium was replaced, and cells were treated with 2 h dose-NTPAM for 24 h.
After treatment, cell viability was measured using WST-1 (Roche Diagnostics, Indianapolis,
IN, USA) according to the manufacturer’s protocol. WST-1 formazan was quantitated at
450 nm using an enzyme-linked immunosorbent assay reader. Results are presented as
percentages relative to control cells.

4.4. Apoptosis Assay

To detect apoptosis, Annexin V-fluorescein isothiocyanate (FITC) and propidium
iodide (PI) staining was performed, and cells were evaluated using a flow cytometer
(LSRFortessa X-20; BD Biosciences, Brea, CA, USA) with an Alexa FluorTM 488 Annexin
V/Dead Cell Apoptosis kit (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s
protocol. In short, cells were treated with NTPAM and incubated for 24 h, after which they
were collected, washed with Dulbecco’s phosphate-buffered saline, stained with Annexin
V-FITC and PI, and analyzed using flow cytometry. FlowJo software version 10 (Tree
Star, Ashland, OR, USA) was used to analyze the percentage of cells in four populations:
FITC-/PI- (living cells), FITC+/PI- (early apoptotic cells), FITC+/PI+ (late apoptotic cells),
and FITC-/PI+ (necrotic cells).

4.5. Measurement of Oxygen Consumption Rate

Oxygen consumption rate (OCR) was measured using a Seahorse XF-24 analyzer
(Seahorse Bioscience Inc., North Billerica, MA, USA). Briefly, thyroid cells were seeded in 5
replicates in XF-24 plates (4 × 104 cells in 200 µL of growth medium per well) and placed
in a 37 ◦C/5% CO2 incubator for 24 h. The sensor cartridge was placed into calibration
buffer supplied by Seahorse Bioscience and incubated at 37 ◦C in a non-CO2 incubator
for 24 h before the experiment. Immediately before measurement, the cells were washed
and incubated in assay medium at 37 ◦C for 1 h in a non-CO2 incubator. Oligomycin A
(20 µg/mL), an ATP synthase (complex V) inhibitor, was injected to measure cellular ATP
production and carbonyl cyanide m-chloro phenyl hydrazine (optimized concentration,
50 µM). The uncoupling agent was used to measure maximal respiration by disrupting
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the mitochondrial membrane potential. Rotenone, a complex I inhibitor, was injected to
inhibit mitochondrial respiration (20 µM), which allowed calculation of non-mitochondrial
respiration. The OCR was automatically recorded by a sensor cartridge and calculated
using Seahorse XF-24 software.

4.6. Transmission Electron Microscopy

Cells were pelleted via centrifugation, and the cell pellet was fixed in 2.5% glutaralde-
hyde in 0.1 M phosphate buffer (pH 7.4) at 4 ◦C. After 2 h, the pellet was rinsed three
times in 0.1 M phosphate buffer and then post-fixed in 1% osmium tetroxide at 4 ◦C for
1–2 h, followed by three washes in phosphate buffer. The pellet was dehydrated via a
series of ethanol solutions and exposed to two changes of propylene oxide. After the
dehydration process, the pellet was infiltrated with 2:1, 1:1, and 1:2 mixtures of EMbed 812
resin and propylene oxide for 1 h each time and then finally embedded in 100% EMbed
812 resin. After polymerization for 24–48 h at 60 ◦C, ultrathin plastic sections (80-nm thick)
were cut at room temperature using a Leica EM UC6 ultramicrotome (Leica Microsystems
GmbH, Wetzlar, Germany) and collected on 200-mesh carbon-coated grids. The grids were
post-stained with 2% uranyl acetate and 1% lead citrate at room temperature for 15 and
5 min, respectively. The Zeiss LEO912AB 120 kV transmission electron microscope (Carl
Zeiss, Oberkochen, Germany) and FEI Tecnai G2 Spirit Twin 120 kV transmission electron
microscope (FEI Company, Columbia, MD, USA) were used for transmission electron
microscopy observations.

4.7. RNA Extraction for Sequencing

To analyze the transcriptome and identify differentially expressed genes (DEGs),
RNA was extracted from THCA cells. After 2 h dose-NTPAM treatment for 24 h, THCA
cells or control cells were isolated and total RNA was extracted using an easy-spin Total
RNA Extraction kit (iNtRON, Gyeonggi, Korea) following the manufacturer’s protocol.
All experiments were conducted under clean conditions, and the equipment was pre-
autoclaved. Sequencing was performed by Macrogen, Inc (Seoul, Korea). Brifely, The
extracted RNA quality was evaluated using an Agilent 2100 Bioanalyzer RNA Nano Chip
(Agilent Technologies, Savage, MD, USA). A total of 1 µg of extracted RNA was used
to construct RNA libraries with a TruSeq Stranded mRNA Sample Preparation Kit v2
(Illumina, San Diego, CA, USA) according to the manufacturer’s protocols. The library
quality was analyzed with the Agilent 2100 Bioanalyzer using an Agilent DNA 1000 kit.
All samples were sequenced on the Illumina HiSeq 2500 platform (Illumina), yielding an
average of 38 million paired-end 100 base-pair reads.

4.8. Bioinformatic Transcriptome Analysis

All genomic data of PTC from The Cancer Genome Atlas were obtained from a specific
portal (https://tcga-data.nci.nih.gov) and cancer browser (https://genome-cancer.ucsc.
edu). Gene expression data from mRNA and clinical parameters in patients with PTC
(n = 500) were analyzed. The reads were aligned to the UCSC Homo sapiens reference
genome (GRCh37/hg19) using TopHat2 v2.1.5 (https://ccb.jhu.edu/software/tophat/
index.shtml). The default TopHat parameter options were used. To analyze the DEG
profiles between the compared groups (control vs. NTPAM treatment), the Tuxedo protocol
was used [55]. The aligned reads were processed via Cufflinks v2.2.1 (https://github.com/
cole-trapnell-lab/cufflinks), which is based on the fragments per kilobase of exon model
per million reads mapped (FPKM), and unbiased, normalized RNA sequencing (RNA-seq)
fragment counts were used to analyze the relative transcript levels [55]. Gene transfer
format (GTF) files were generated to quantitatively compare the transcript levels in each
sample to those in a reference GTF file. Next, we used Cuffdiff to calculate the differences in
FPKM between each group pair. False discovery rate-adjusted P-values were calculated via
the Benjamini-Hochberg multiple testing method [56]. To compare gene sets in relation to
NTPAM, the gene set collection of the Kyoto Encyclopedia of Genes and Genomes (KEGG)

https://tcga-data.nci.nih.gov
https://genome-cancer.ucsc.edu
https://genome-cancer.ucsc.edu
https://ccb.jhu.edu/software/tophat/index.shtml
https://ccb.jhu.edu/software/tophat/index.shtml
https://github.com/cole-trapnell-lab/cufflinks
https://github.com/cole-trapnell-lab/cufflinks
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was obtained from Enrichr (https://amp.pharm.mssm.edu/Enrichr/). DEGs and KEGG
pathways with corrected p-values < 0.05 according to the Benjamini-Hochberg procedure
were considered statistically significant. Heat maps were generated using PermutMatrix
version 1.9.3 (http://www.lirmm.fr/~caraux/PermutMatrix/).

4.9. Western Blot Analysis

Cells were lysed in Ripa buffer containing 150 mM sodium chloride, 1.0% Nonidet
P-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 50 mM Tris (pH 8.0), and
a protease inhibitor cocktail (Roche Applied Science, Vienna, Austria). Electrophoresis
was performed as previously described [57]. The following primary antibodies were
used for Western blot analysis: anti-poly (ADP-ribose) polymerase (PARP), anti-caspase
3, anti-B-cell lymphoma 2 (Bcl-2), anti-EGR1, anti-β-actin (1:1000; Cell Signaling Technol-
ogy, Danvers, MA, USA), and anti-GADD45α (1:1000; Santa Cruz Biotechnology, Santa
Cruz, CA, USA). Following incubation with the corresponding horseradish peroxidase-
conjugated secondary antibodies (1:1000; Santa Cruz Biotechnology), immunoreactive
bands were visualized using enhanced chemiluminescence (Bio-Rad Laboratories, Her-
cules, CA, USA). The original Western Blot pictures can be found in the Supplementary
Materials.

4.10. RNA Isolation and Quantitative PCR

Total cellular RNA was extracted using TRIzol reagent (Invitrogen). The cDNAs
were synthesized with 5 µg total RNA and TOPscriptTMRT DryMIX (Enzynomics Inc.,
Dajeon, Korea) according to the manufacturer’s instructions. Amplification was carried out
using SYBR Green qPCR Master Mix (Thermo Fisher Scientific). The PCR reactions were
performed for 40 cycles of 95 ◦C for 15 s, 60 ◦C for 1 min, and 72 ◦C for 1 min. melting curve
analysis was performed. The PCR primer sequences were as follows: human EGR1-F: 5′-
ATG ATC CCC GAC TAC CTG TTT-3′, EGR1-R: 5′-CTG AGT GGC AAA GGC CTT AAT-3′

(amplicon length: 144 bp); human GADD45α-F: 5′-GAG AGC AGA AGA CCG AAA G-3′,
GADD45α-R: 5′-AGA GCC ACA TCT CTG TCG T-3′ (amplicon length: 186bp); and human
GAPDH-F: 5′-GTC TCC TCT GAC TTC AAC AGC G-3′, GAPDH-R: 5′-ACC ACC CTG
TTG CTG TAG CCA A-3′ (amplicon length: 131bp). We used 2−∆∆Ct model for Relative
quantification of real-time qPCR fold change. The Ct values provided from real-time PCR in-
strumentation are imported into Microsoft Excel. Here are the formulae for 2−∆∆Ct method.
∆Ctctrl = (Ctctrl − Ct GAPDH), ∆CtNTPAM = (CtNTPAM − CtGAPDH). ∆∆Ctctrl = ∆Ctctrl −
∆Ctctrl average, ∆∆CtNTPAM = ∆CtNTPAM − ∆Ctctrl average. 2−∆∆Ctctrl, 2−∆∆CtNTPAM is rela-
tive value. Fold change = > 2−∆∆Ctctrl/2−∆∆Ctctrl, 2−∆∆CtNTPAM/2−∆∆Ctctrl [58].

4.11. Patients’ Samples and Ethics Statement

Four patients’ smaples who were diagnosed with PTC in Chungnam National Uni-
versity Hospital were included in the study. Paired tumor and normal thyroid tissues
were obtained from the patients with PTC. All specimens were collected from patients
after informed consent was obtained in accordance with the institutional guidelines of
Chungnam National University Hospital. The protocol for this study was approved by the
Institutional Review Board of Chungnam National University Hospital (Reg. No. CNUH
IRB No. 2017-07-005). Human tissues were homogenized in RIPA buffer and processed
according to the western blot analysis protocol.

4.12. Measurement of Mitochondrial ROS Production

The MitoSOX fluorescent probe (Cat. #M36008; Thermo Fisher Scientific, Waltham,
MA, USA) was used to detect mitochondrial superoxide. Cells were co-treated with or
without NTPAM and N-acetyl cysteine (NAC) (2 and 5 mM) and then incubated at 37 ◦C
for 24 h. After treatment, cells were stained with MitoSOX (5 µM) in Hank’s balanced salt
solution for 15 m. Fluorescence-stained cells (1 × 104) were analyzed via flow cytometry

https://amp.pharm.mssm.edu/Enrichr/
http://www.lirmm.fr/~caraux/PermutMatrix/
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(LSRFortessa X-20; BD Biosciences), and FlowJo software version 10 (Tree Star) was used to
analyze the percentage of cells.

4.13. Transient Transfection

Cells were seeded at 2 × 105/well in 6 well and cultured overnight to achieve
60–70% confluence. Next day, Transient transfection was performed using Lipofectamine
RNAiMAX reagent (Invitrogen) with small interfering RNA (siRNA) and jetPEI DNA trans-
fection reagent (Polyplus, Illkirch-Graffenstaden, France) for the overexpression vector,
following the manufacturers’ standard protocols. The siRNAs for EGR1 and GADD45α
were acquired from Santa Cruz Biotechnology, and the siRNA for the control was acquired
from Bioneer (Daejeon, Korea). The overexpression vectors for EGR1 and GADD45α were
obtained from OriGene Technologies (Rockville, MD, USA). GADD45 WT-luc and GADD45
P-2/3m-luc were obtained from Addgene (Watertown, MA, USA) [38].

4.14. Xenograft In Vivo Tumor Model

Mice were kept under specific pathogen-free conditions and used in accordance with
the guidelines of the Institutional Animal Care and Use Committee of Chungnam National
University, which approved the animal research protocol (Daejeon). Ten BALB/c-nude
mice (6 weeks old) were obtained from Orient Bio Inc. (Seongnam, Korea). Luciferase-
expressing FRO (FRO-Luc) cells were inoculated subcutaneously into the lower right flanks
of BALB/c-nude mice. The mice were divided randomly into control medium and NTPAM
groups (5 mice per group) 10 days later when the tumors reached ~50 mm in diameter,
and the tumors were injected daily with 100 µL of control medium or NTPAM for 21 days.
After the last injection of NTPAM, the tumors were excised from euthanized mice and used
for western blot assays.

4.15. Bioluminescence Imaging and Survival Analysis

Thyroid tumor growth was observed via bioluminescence imaging using an in vivo
imaging system (IVIS) consisting of a Lumina XRMS instrument (PerkinElmer, Waltham,
MA, USA). For the detection of in vivo live imaging, the mice were intraperitoneally
administered 150 mg/kg D-luciferin (Promega, Fitchburg, WI, USA). After anesthetizing
the mice with 2% isoflurane in 100% O2, bioluminescence images were taken. The signals
were analyzed and quantified by calculating the luminescence intensity in the region of
interest (ROI) using Living Image software (Caliper Life Sciences, Waltham, MA, USA)
registered with the imaging system.

4.16. Histological and Immunohistochemical Analysis

Tissue samples were fixed in 4% formalin solution and paraffin-embedded. For H&E
staining, tissue sections were deparaffinized in xylene, hydrated in graded alcohols and
stained with hematoxylin and eosin. The samples examined under an automatic digital
slide scanner (Pannoramic MIDI) after mounting. For immunohistochemistry (IHC), tissue
sections were deparaffinized in xylene, hydrated in graded alcohols, and heated (100 ◦C)
for 15 min in Antigen Retrieval Citra Soluion, pH 6.0 for antigen retrieval. For single
immunostaining, endogenous peroxidase activity was blocked in a 1% hydrogen peroxide
solution (Sigma-Aldrich, St. Louis, MO, USA) in PBS with 0.3% Triton X-100 for 30 min at
room temperature. The sections were incubated with the indicated antibodies overnight
at 4 ◦C and then incubated with the corresponding horseradish peroxidase-conjugated
secondary antibody. Finally, 3,3′ diaminobenzidine (DAB; DAKO) was used to detect
these labeled antibodies and the nucleus was stained with hematoxylin. After rinsing
with PBS, the samples were mounted and analyzed by an automatic digital slide scanner
(Pannoramic MIDI).
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4.17. Statistical Analysis

Data were analyzed using GraphPad Prism 8.0 software (GraphPad Software, La Jolla,
CA, USA) and SPSS statistical softmare for Windows, version 22 (International Business
Machines, Armonk, NY, USA). Non-parametric one-way ANOVA followed by Dunnett’s
post-hot test, Mann-Whitney U test, Student’s t-test, Independent t-test, and logrank test
were used for statistical analysis. Data were expressed as mean ± standard deviation of
the mean (±SD). Differences were considered relevant at p < 0.05 (* p < 0.05, ** p < 0.01,
*** p < 0.001).

5. Conclusions

In conclusion, NTPAM treatment showed beneficial anticancer effects through up-
regulation of the EGR1/GADD45α signaling in THCA. Our findings demonstrate that
EGR1 is a potential tumor suppressor that leads to apoptotic cell death in THCA and the
EGR1/GADD45α axis could be a good therapeutic target for THCA.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/2/351/s1, Figure S1: The effect of NTPAM according to storage temperature and duration,
Figure S2: Transcriptomic analysis in thyroid cancer cells ± treatment with NTPAM, Figure S3:
The effect of ATF4 in NTPAM-treated cell viability, Figure S4: In vivo cytotoxic effect evaluation of
NTPAM, Table S1: Comparison of clinico-pathologic findings in relation to EGR1 mRNA expression
level in the THCA cohort, Table S2. Multivariable regression analysis of EGR1 expression associated
with the clinic-pathological parameters.
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