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Algorithms meet sequencing
technologies – 10th edition
of the RECOMB-Seq workshop

Rob Patro1 and Leena Salmela2,*
Summary

DNA and RNA sequencing is a core technology in biological andmedical research.
The high throughput of these technologies and the consistent development of
new experimental assays and biotechnologies demand the continuous develop-
ment of methods to analyze the resulting data. The RECOMB Satellite Workshop
on Massively Parallel Sequencing brings together leading researchers in compu-
tational genomics to discuss emerging frontiers in algorithm development for
massively parallel sequencing data. The 10th meeting in this series, RECOMB-
Seq 2020, was scheduled to be held in Padua, Italy, but due to the ongoing
COVID-19 pandemic, the meeting was carried out virtually instead. The online
workshop featured keynote talks by Paola Bonizzoni and Zamin Iqbal, two high-
light talks, ten regular talks, and three short talks. Seven of the works presented
in the workshop are featured in this edition of iScience, and many of the talks are
available online in the RECOMB-Seq 2020 YouTube channel.
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The development of sequencing technologies has revolutionized biological and medical research in last

decades. High-thoughput sequencing by synthesis made genomic analysis cost effective bringing it to

the standard toolbox of most biological and medical research groups. The growth in available sequencing

data has been staggering as exemplified by the number of deposited genomes in the RefSeq database

over the years (Leary et al., 2015), as shown in Figure 1A. Today, the field is dominated by two types of

sequencing technologies: massively parallel sequencing by synthesis technologies such as Illumina that

produce short but highly accurate sequencing reads and long reads produced by third-generation

sequencing technologies such as Pacific Biosciences’ single molecule, real-time (SMRT) sequencing and

Oxford Nanopore’s pore-based sequencing which produce long but highly erroneous sequencing reads.

Short reads typically are a few hundred base pairs in length with an error rate of� 0.1%, whereas long reads

are tens of thousands of base pairs long with an error rate of up to 13% (Kozi�nska et al., 2019). Long reads

are favored in applications where long range information is important, such as genome assembly and

determining long structural variations. On the other hand, the per-base sequencing cost is lower for short

reads, and thus, they are popular in applications where the depth of sequencing is crucial such as metage-

nomics and RNA sequencing. Some tools attempt to combine the best of both worlds and develop hybrid

strategies using both short and long reads. Yet other technologies, such as optical mapping, Hi-C

sequencing, or linked reads, are used to further improve the analysis (Rice and Green, 2019).

Twobasic problems arise for analyzing sequencingdata:Mapping localizes the sequencing reads on a reference

genome or genome graph, and assembly reconstructs the sequence or sequences from which the reads orig-

inate. Both of these problems have been studied extensively, yet fundamental challenges remain. Mappingmay

produce incorrect alignments and assemblies may be fragmented and contain errors. Also, computational effi-

ciency needs to be addressed. HASLR (Haghshenas et al., 2020) introduces a newmethod for genome assembly

using a hybrid approach. Its assembly strategy is based on a backbone graph which is built on preassembled

short read contigs, which are aligned to long reads to reveal connections between the contigs. CONNET (Zhang

et al., 2020) addresses the high number of errors present in long read assemblies by providing a fast method

based on deep learning to compute the consensus between aligned reads.

Short read aligners such as BWA (Li and Durbin, 2009) and Bowtie (Langmead and Salzberg, 2012) rely on

Burrows-Wheeler transform (BWT)-based techniques for efficient mapping of short reads to a reference
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Figure 1. The growth in available genomic data—both raw sequencing data and processed data—is staggering

The plot in Figure 1A shows the growth, over time, of the total number of genomes deposited in the RefSeq database

(Leary et al., 2015); note the y axis is on a log scale. The number of available assemblies has been increasing at an

exponential rate, and the availability of such a wide and growing variety of references highlights the importance of

developing scalable approaches for pan-genomic representation and indexing. Likewise, the plot in Figure 1B (with data

as reported in [Svensson et al., 2019]) shows the growth, over time, of the total number of reported cells in different single-

cell RNA-seq sequencing experiments, with the blue line signifying the total cumulative number of reported cells. The

clear trend is that more recent studies report sequencing results onmore individual cells, with one recent study (Cao et al.,

2020) reporting � 4 million cells.
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genome. When long reads emerged, transforming these techniques directly to long read aligners was

problematic as BWT-based seed-finding techniques were less efficient in reads having higher error rates.

Instead, techniques based on minimizers (Kucherov, 2019) were introduced and these form the basis of

many long read aligners such as Minimap (Li, 2018) today. However, repetitive regions remain problematic

for minimizer-based aligners because they are often discarded in the minimizer index for efficiency reasons

and thus reads are not aligned correctly or at all to such areas. Jain et al. (2020) propose weighted mini-

mizers as a method tomitigate these shortcomings and to produce accurate alignments in repetitive areas.

As high error rates are problematic for both assembly algorithms, as well as read aligners, methods have

been developed to correct sequencing errors in the reads before further processing (Zhang et al., 2019).

This can greatly improve the accuracy of assembly or alignment. Because of the high accuracy of short

reads, long reads are often corrected by hybrid methods utilizing both short and long reads. Correction

of whole-genome sequencing reads has received a fair amount of attention, and fewer methods have

focused on other types of data. TALC (Broseus et al., 2020) studies hybrid error correction of RNA-seq

data. Special attention is paid to taking into account transcript abundance and architecture in the correc-

tion process to produce more accurate results.

RNA-seq—the sequencing of RNA molecules (or their reverse-transcribed counterparts)—is one of the

most popular and widely used sequencing assays. Sequencing the RNA molecules in the cell can provide

a window into the dynamic processes that occur within different types of tissues, in response to different

stimuli, in different disease states, or under a host of other perturbations. While RNA-seq enables the

posing and answering of an array of questions that are different from those arrived at by genome

sequencing, it also brings with it a distinct set of computational challenges.

One of the core challenges in processing RNA-seq data is the quantification of transcript abundance levels

from the underlying set of sequencing reads and a known or derived (i.e. assembled) annotation of the tran-

scripts in the organism being assayed. Many challenges stand in the way of accurate quantification, such as

prevalent multimapping of sequencing reads among genes and transcripts (Li et al., 2010), extensive sam-

ple-specific sequence (Roberts et al., 2011; Jones et al., 2012) and fragment-level (Love et al., 2016; Patro

et al., 2017) biases, and reference divergence (Munger et al., 2014). Many methods have been developed to

tackle the problem of transcript abundance estimation (Trapnell et al., 2010; Li et al., 2010; Turro et al.,

2011; Glaus et al., 2012; Roberts and Pachter, 2013; Patro et al., 2014, 2017) that apply a range of different

probabilistic models and inference techniques to estimate transcript abundance.
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The XAEM method (Deng et al., 2019) adopts a bilinear model for transcript-level quantification that aims

to perform multi-sample inference, considering evidence from multiple samples within the same RNA-seq

experiment jointly when performing quantification. The model can be viewed as a generalization of more

common transcript quantificationmodels where the so-called ‘‘design’’ matrix is fixed, and inference solves

for the maximum likelihood parameters under this design matrix and the observed sequences. Instead, the

XAEMmethod takes both the parameters and the designmatrix as unknown and uses an alternating expec-

tation maximization algorithm to solve the resulting inference problem. This provides a mechanism to

share information across the samples being quantified and to account, within the model, for certain sam-

ple-specific biases even when the full causes of such biases may not be known. The authors demonstrate

that the XAEM algorithm accurately quantifies transcript abundances and is particularly effective,

compared to existing methods, in quantifying paralogous sets of genes. They also provide a mechanism

for determining when a set of transcripts may not be reliably distinguishable based on the annotation

and observed sequencing reads and offer the potential to quantify them as a group.

The TALCmethod (Broseus et al., 2020), mentioned briefly above, tackles another important problem in the

processing of RNA-seq data—error correction for long-read RNA-seq data. Long read RNA-sequencing

offers to greatly improve the quality of transcript assembly (Kovaka et al., 2019; Tung et al., 2019; Workman

et al., 2019; Wyman et al., 2020). Yet, to maximize this potential, the long sequencing reads should be error

corrected to improve alignment (either to the reference or amongmultiple long-read sequences), which, in

turn, can lead to more accurate identification of transcript structure. While many methods have been intro-

duced for ‘‘hybrid’’ long-read error correction (that attempt to correct error-prone long reads with low error

rate short reads), TALC is specifically designed to handle long-read transcriptome data, which is distinct

since the distribution of sequencing reads follows the underlying distribution of transcript abundances

in the samples being assayed. TALC makes use of a weighted de Bruijn graph constructed on short reads

and corrects long reads by identifying them with a coverage-consistent path through the weighted de

Bruijn graph. The authors show that hybrid error correction of long reads using TALC improves base-level

error rates, improves recovery of correct exon structure (which aids in accurate transcript identification),

and also leads to improved quantification from long-read sequencing data. TALC generally outperforms

other hybrid error correction methods that were not designed for and therefore are not particularly aware

of the fact that the paired long and short reads are arising from the transcriptome.

While bulk RNA-seq remains a popular experimental assay, the prevalence of single-cell RNA-seqdata has been

increasing drastically over the past few years as shown in Figure 1B. These groundbreaking technologies allow

measuring gene expression at the resolution of individual cells, letting scientists probe gene expression at un-

precedented resolution. This, in turn, has helped contribute to our understanding of cellular diversity, treatment

resistance, and developmental biology among other areas. There were three talks at RECOMB Satellite Work-

shop on Massively Parallel Sequencing (RECOMB-Seq) on the topic of single-cell RNA-sequencing analysis.

Do et al. (2020) presented Sphetcher, a newmethod for sketching large single-cell RNA-seq data. The sketch is a

small representation of the larger data set that retains key properties, like the overall geometry of the transcrip-

tional space, while also retaining information about potentially rare cell types. These sketches can act as small

stand-ins for the larger data set to aid in many downstream analyses, like trajectory inference. Sphetcher works

by producing a spherical sketch of the underlying data such that all cells in the data set are covered by small

spheres centered around a subset of the original cells. Do et al. demonstrate that Sphetcher produces a faithful

sketch of the original data set, resulting in a smaller Hausdorff distance to the original data set than alternative

sketching approaches like geometric sketching (Hie et al., 2019).

Another key challenge in the analysis of single-cell RNA-seq data is the integration of multiple data sets

into a unified ‘‘atlas’’ of cells. While different samples are assayed using the same technology, manifold

technical differences can make the comparison of cells across samples difficult and make it challenging

to properly integrate data from different samples together. To address this challenge, Mandric et al.

(2020) introduce BATMAN. This method determines anchor cells and builds an anchor graph between

the two data sets to be integrated. It then resolves which anchors to match by solving a minimum weight

bipartite matching problem, while simultaneously computing batch effect correction factors for the anchor

cells and extrapolating these corrections to the rest of the data set. The authors show that BATMAN out-

performs existing approaches in both simulated and experimental data when integrating multiple different

data sets in the presence of batch effects.
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Figure 2. Graph-based representations of pangenomes and the trade-offs between what can be represented and

what can be efficiently indexed

General graphs can express all variations and directed acyclic graphs (DAGs) only miss some structural variations but

these representations are not efficiently indexable (Equi et al., 2020). Haplotype-aware graphs (Sirén et al., 2019) and

founder block graphs (Mäkinen et al., 2020) are a restricted form of DAGs that can be efficiently indexed. Colored de

Bruijn graphs (Iqbal et al., 2012) are efficiently indexable (Almodaresi et al., 2018) but collapse repeats.
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The remaining single-cell work presented at RECOMB-Seq focused on bridging the analysis gap between

single-cell RNA-seq and single-cell ATAC-seq and DNA methylation data. Danese et al. (2019) described

EpiScanpy which brings a host of the visualization and analysis techniques available in the popular Scanpy

tool (Wolf et al., 2018) to bear in single-cell epigenetic analysis using single-cell ATAC-seq and single-cell

DNA methylation data. As multi-omic single-cell data become more common, such analysis frameworks

will become increasingly important. To demonstrate the utility of EpiScanpy, Danese et al. apply it to sin-

gle-cell atlases of mouse brain containing single-cell ATAC-seq, single-cell DNA methylation, and single-

cell RNA-seq data. They show that EpiScanpy identifies differential methylation and chromatin accessibility

between cell clusters that complement each other and also the single-cell gene expression data. These

different data modalities can thus complement each other, for many purposes such as the discovery of

cell-type markers, when analyzed by powerful and unifying frameworks such as Scanpy and EpiScanpy.

Pangenomics was an unexpectedly unifying theme of RECOMB-Seq 2020, as it was the main topic of the

keynotes on both days of the workshop. Prof. Paola Bonizzoni showcased an in-depth analysis of previous

and current developments in the graph-based representation of genomes, including the relationships and

trade-offs of different representations as shown in Figure 2, and the primary computational challenges to

be addressed as the community seeks to scale graph-based solutions to the ever-growing wealth of

genomic data. Her keynote laid out the theoretical foundations of graph-based genome representation,

highlighting known hardness results, but focusing on recent scalability improvements and motivating

the need for continued algorithmic development to meet the promise of graph-based genome and pan-

genome analysis.

Dr. Zamin Iqbal, the second keynote speaker, focused strongly onbacterial pangenomics and the particular chal-

lenges and opportunities brought by bacterial genome diversity. He argued that the graphical representation of

bacterial pangenomes is a powerful tool for the analysis of genetic variation among of large collections of bac-

terial strains and species. Dr. Iqbal discussed the design, implementation, and validation of ‘‘pandora’’ (Colqu-

houn et al., 2020), a tool that his lab has created to discover and characterize genomic variants in bacterial data

using both long-read (ONT) and short-read (Illumina) data. The results, which demonstrate high sensitivity and a

lowdegree of referencebias for pandora, stronglymotivate the continueddevelopment anduse of graph-based

tools for pangenomic analysis, especially in bacterial genomes.
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Due to projects such as the Vertebrate Genome Project and UK10K, an increasing number of genomes are

becoming available, and thus, the development of tools for the analysis of these massive data sets is becoming

more andmore important. Pangenomics and the graph representations of pangenomes discussed above is one

example of such analysis but also to answer fundamental questions about genome evolution and function these

genomes need to be compared to each other. However, comparison of these extremely long sequences is

computationally difficult and as the data volumes keep growing new methods are needed. Pairwise alignment

of sequences has quadratic complexity and thus quickly becomes infeasible for long sequences. Thus, homol-

ogous blocks are first identified instead. Apart from being a starting point for building multiple alignments and

pangenome graphs, homologous blocks can be used for studying genome rearrangements and phylogenetics.

Bubbz (Minkin and Medvedev, 2020) addresses this problem by building a compacted de Bruijn graph of the

sequences and studying the paths induced by them in the graph.

To understand genome structure in a population, a first step is to compute haplotype blocks for the pop-

ulation. A haplotype block is a region in the genome where little or no recombinations occur, i.e., the block

is inherited as a whole (Gabriel et al., 2002). Williams and Mumey (2020) identify such blocks given a set of

single-nucleotide polymorphisms (SNPs) called for many individuals from the same population. Specif-

ically, they extend the notion of haplotype blocks to include wildcards as in practice SNP sets are seldom

perfect and thus some SNP calls are missing for some individuals.

Metagenomics studies microbial communities in, e.g., environmental samples from any biome (Gilbert et al.,

2014) or in samples taken from the humangut or skin (Turnbaugh et al., 2007).Metagenomics attempts to answer

two questions about these samples: who is there and what are they doing. Because metagenomics attempts to

capture the whole biological diversity of the sample, the data sets are huge, easily surpassing the data set sizes

for sequencing a single organism. Therefore, scalable and efficient algorithms are even more important for

metagenomics than for sequencing single organisms. Both Utro et al. (2020) and LaPierre et al. (2020) provide

scalable and efficient solutions for metagenomics. Utro et al. (2020) present a new method based on BWT for

phylogenetic and functional annotation, while Metalign by LaPierre et al. (2020) introduces an efficient align-

ment-basedmethodbasedonmin hash for taxonomic profiling. Besides the two fundamental questions of taxo-

nomic profiling and functional annotation, some special questions arise in metagenomics. Pellow et al. (2020)

study the assembly of plasmids in metagenomic samples. Plasmids are important, e.g., to human health since

they can transfer antibiotic resistance from one bacteria to another.

Computational biology is intrinsically tied to the technological development inmolecular biology as exemplified

by how the design of read aligners has developed as sequencing technologies have advanced. One of themost

ground-breaking discoveries in biology in the recent years is CRISPR/Cas9 (clustered regularly interspaced short

palindromic repeats) gene editing (Cong et al., 2013; Mali et al., 2013; Doudna and Charpentier, 2014) for which

Emmanuelle Charpentier and Jennifer A. Doudna were awarded the Nobel prize in chemistry in 2020. CRISPR/

Cas9 makes it possible to edit a living organism’s genome, thus opening up new horizons in medicine and

biology. Such discoveries also bring up new computational problems. In the case of CRISPR/Cas9, a central

problem is detecting off-target sites, i.e., regions of the genome that gene editing could target instead of

the intended site. CRISPRitz (Cancellieri et al., 2019) detects such off-target sites in a variant-aware fashion while

being computationallymore efficient thanpreviouswork. In the coming years, weexpectmany such newcompu-

tational problems to arise and to be discussed in the future meetings of RECOMB-Seq.

Despite the challenges of organizing RECOMB-Seq as a virtual workshop this year, we had a program with

great talks. Many of the talks are available on the RECOMB-Seq 2020 YouTube channel (RECOMB-Seq

2020, 2020). Moreover, as the virtual meeting allowed participation from anywhere in the world, we had

a considerably larger audience than in previous editions of the meeting. Thus, while the meeting was

certainly different than in past years, it was nonetheless quite successful. This, of course, is due to the great

contributed talks, fantastic keynote addresses, and thought-provoking audience interaction.

The dynamics of a virtual meeting are quite different than those of an in-person meeting, and we note

certain benefits and drawbacks. The biggest drawbacks are the most obvious ones; there is no opportunity

for the chance in person interactions (e.g. during a coffee break) that can be so gratifying, especially at

smaller meetings like RECOMB-Seq. Also, while remote attendance allows synchronous interaction from

participants across the world, these participants still reside in their own local time zones, making atten-

dance of certain parts of the meeting more difficult for some than others. However, there were clear
iScience 24, 101956, January 22, 2021 5
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benefits as well. The recording of the talks was generally well received. The video conference format also

allows for a broader diversity in the way in which questions are asked and fielded by speakers. In addition to

directly asking questions, audience members may also type their questions to be read by speakers directly

or chosen by session moderators. This may appeal to attendees who are more comfortable formulating

their question in writing than having to ask it in real time in front of the audience. Further, the video con-

ference format chat allows for a discussion, via chat, with presenters and other audience members, which

seems to add to the experience. These benefits suggest that, even when in-person meetings resume, there

may be reasons to consider allowing remote attendance or to avail ourselves of some of the technical ca-

pabilities offered by large-scale videoconferencing software. These are possibilities that RECOMB-Seq

may consider going forward.

The success of the conference was due to the hard work of many people. We want to thank the speakers for

their excellent talks, the program committee for their hard work in reviewing and selecting the scientific

program, and the steering committee of RECOMB-Seq for their support. Finally, we would especially

like to thank the organizing committee at University of Padua for making RECOMB-Seq a success despite

the difficult circumstances caused by the COVID-19 pandemic. As we reflect back on 10 years of RECOMB-

Seq and look forward to RECOMB-Seq 2021, it is certainly clear that the need for algorithm development

for massively parallel sequencing data is as pressing and important as ever and that the RECOMB-Seq com-

munity continues to rise to this challenge.
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Equi, M., Mäkinen, V., and Tomescu, A.I. (2020).
Graphs cannot be indexed in polynomial time for
sub-quadratic time string matching, unless seth
fails. arXiv. https://arxiv.org/abs/2002.00629.

Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore,
J.M., Roy, J., Blumenstiel, B., Higgins, J.,
DeFelice, M., Lochner, A., Faggart, M., et al.
(2002). The structure of haplotype blocks in the
human genome. Science 296, 2225–2229, https://
doi.org/10.1126/science.1069424. https://
science.sciencemag.org/content/296/5576/2225.

Gilbert, J.A., Jansson, J.K., and Knight, R. (2014).
The earth microbiome project: successes and
aspirations. BMC Biol. 12, 69.

Glaus, P., Honkela, A., and Rattray, M. (2012).
Identifying differentially expressed transcripts
from RNA-seq data with biological variation.
Bioinformatics 28, 1721–1728.

Haghshenas, E., Asghari, H., Stoye, J., Chauve, C.,
and Hach, F. (2020). HASLR: fast hybrid assembly
of long reads. iScience, 101389, https://doi.org/
10.1016/j.isci.2020.101389. http://www.

http://refhub.elsevier.com/S2589-0042(20)31153-6/sref1
http://refhub.elsevier.com/S2589-0042(20)31153-6/sref1
http://refhub.elsevier.com/S2589-0042(20)31153-6/sref1
http://refhub.elsevier.com/S2589-0042(20)31153-6/sref1
https://doi.org/10.1101/2020.01.10.901728
https://www.biorxiv.org/content/early/2020/06/22/2020.01.10.901728
https://doi.org/10.1101/2020.01.10.901728
https://doi.org/10.1093/bioinformatics/btz867
https://doi.org/10.1093/bioinformatics/btz867
https://doi.org/10.1126/science.aba7721
https://doi.org/10.1126/science.aba7721
https://doi.org/10.1101/2020.11.12.380378
https://www.biorxiv.org/content/early/2020/11/13/2020.11.12.380378
https://www.biorxiv.org/content/early/2020/11/13/2020.11.12.380378
https://doi.org/10.1101/2020.11.12.380378
https://doi.org/10.1126/science.1231143
https://doi.org/10.1126/science.1231143
https://science.sciencemag.org/content/339/6121/819
https://science.sciencemag.org/content/339/6121/819
https://www.biorxiv.org/content/early/2019/05/24/648097
https://www.biorxiv.org/content/early/2019/05/24/648097
https://doi.org/10.1101/648097
https://doi.org/10.1093/bioinformatics/btz640
https://doi.org/10.1093/bioinformatics/btz640
https://doi.org/10.1016/j.isci.2020.101126
https://doi.org/10.1016/j.isci.2020.101126
http://www.sciencedirect.com/science/article/pii/S2589004220303114
http://www.sciencedirect.com/science/article/pii/S2589004220303114
http://www.sciencedirect.com/science/article/pii/S2589004220303114
https://doi.org/10.1126/science.1258096
https://doi.org/10.1126/science.1258096
https://science.sciencemag.org/content/346/6213/1258096
https://science.sciencemag.org/content/346/6213/1258096
https://arxiv.org/abs/2002.00629
https://doi.org/10.1126/science.1069424
https://doi.org/10.1126/science.1069424
https://science.sciencemag.org/content/296/5576/2225
https://science.sciencemag.org/content/296/5576/2225
http://refhub.elsevier.com/S2589-0042(20)31153-6/sref13
http://refhub.elsevier.com/S2589-0042(20)31153-6/sref13
http://refhub.elsevier.com/S2589-0042(20)31153-6/sref13
http://refhub.elsevier.com/S2589-0042(20)31153-6/sref14
http://refhub.elsevier.com/S2589-0042(20)31153-6/sref14
http://refhub.elsevier.com/S2589-0042(20)31153-6/sref14
http://refhub.elsevier.com/S2589-0042(20)31153-6/sref14
https://doi.org/10.1016/j.isci.2020.101389
https://doi.org/10.1016/j.isci.2020.101389
http://www.sciencedirect.com/science/article/pii/S2589004220305770


ll
OPEN ACCESS

iScience
Perspective
sciencedirect.com/science/article/pii/
S2589004220305770.

Hie, B., Cho, H., DeMeo, B., Bryson, B., and
Berger, B. (2019). Geometric sketching compactly
summarizes the single-cell transcriptomic
landscape. Cell Syst. 8, 483–493.

Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., and
McVean, G. (2012). De novo assembly and
genotyping of variants using colored de Bruijn
graphs. Nat. Genet. 44, 226–232.

Jain, C., Rhie, A., Zhang, H., Chu, C., Walenz, B.P.,
Koren, S., and Phillippy, A.M. (2020). Weighted
minimizer sampling improves long read
mapping. Bioinformatics 36, i111–i118, https://
doi.org/10.1093/bioinformatics/btaa435.

Jones, D.C., Ruzzo, W.L., Peng, X., and Katze,
M.G. (2012). A new approach to bias correction in
rna-seq. Bioinformatics 28, 921–928.

Kovaka, S., Zimin, A.V., Pertea, G.M., Razaghi, R.,
Salzberg, S.L., and Pertea, M. (2019).
Transcriptome assembly from long-read RNA-
seq alignments with StringTie2. Genome Biol. 20,
1–13.

Kozi�nska, A., Seweryn, P., and Sitkiewicz, I. (2019).
A crash course in sequencing for amicrobiologist.
J. Appl. Genet. 60, 103–111.

Kucherov, G. (2019). Evolution of biosequence
search algorithms: a brief survey. Bioinformatics
35, 3547–3552, https://doi.org/10.1093/
bioinformatics/btz272.

Langmead, B., and Salzberg, S. (2012). Fast
gapped-read alignment with Bowtie 2. Nat.
Methods 9, 357–359.

LaPierre, N., Alser, M., Eskin, E., Koslicki, D., and
Mangul, S. (2020). Metalign: efficient alignment-
based metagenomic profiling via containment
min hash. Genome Biol. 21, 242.

Leary, N.A.O., Wright, M.W., Brister, J.R., Ciufo,
S., Haddad, D., McVeigh, R., Rajput, B.,
Robbertse, B., Smith-White, B., Ako-Adjei, D.,
et al. (2015). Reference sequence (RefSeq)
database at NCBI: current status, taxonomic
expansion, and functional annotation. Nucleic
Acids Res. 44, D733–D745, https://doi.org/10.
1093/nar/gkv1189.

Li, B., Ruotti, V., Stewart, R.M., Thomson, J.A., and
Dewey, C.N. (2010). RNA-Seq gene expression
estimation with read mapping uncertainty.
Bioinformatics 26, 493–500.

Li, H. (2018). Minimap2: pairwise alignment for
nucleotide sequences. Bioinformatics 34, 3094–
3100, https://doi.org/10.1093/bioinformatics/
bty191.

Li, H., and Durbin, R. (2009). Fast and accurate
short read alignment with Burrows–Wheeler
transform. Bioinformatics 25, 1754–1760, https://
doi.org/10.1093/bioinformatics/btp324.

Love, M.I., Hogenesch, J.B., and Irizarry, R.A.
(2016). Modeling of RNA-seq fragment sequence
bias reduces systematic errors in transcript
abundance estimation. Nat. Biotechnol. 34, 1287.

Mäkinen, V., Cazaux, B., Equi, M., Norri, T., and
Tomescu, A.I. (2020). Linear time construction of
indexable founder block graphs. In 20th
International Workshop on Algorithms In
Bioinformatics (WABI 2020), Volume 172 of
Leibniz International Proceedings In Informatics
(LIPIcs), C. Kingsford and N. Pisanti, eds. (Schloss
Dagstuhl–Leibniz-Zentrum für Informatik),
pp. 7:1–7:18, https://doi.org/10.4230/LIPIcs.
WABI.2020.7. https://drops.dagstuhl.de/opus/
volltexte/2020/12796.

Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M.,
DiCarlo, J.E., Norville, J.E., and Church, G.M.
(2013). RNA-guided human genome engineering
via cas9. Science 339, 823–826, https://doi.org/
10.1126/science.1232033. https://science.
sciencemag.org/content/339/6121/823.

Mandric, I., Hill, B.L., Freund, M.K., Thompson,
M., and Halperin, E. (2020). BATMAN: fast and
accurate integration of single-cell RNA-seq
datasets via minimum-weight matching. iScience
23, 101185, https://doi.org/10.1016/j.isci.2020.
101185. http://www.sciencedirect.com/science/
article/pii/S2589004220303709.

Minkin, I., and Medvedev, P. (2020). Scalable
pairwise whole-genome homology mapping of
long genomes with bubbz. iScience 23, 101224,
https://doi.org/10.1016/j.isci.2020.101224.
http://www.sciencedirect.com/science/article/
pii/S2589004220304090.

Munger, S.C., Raghupathy, N., Choi, K., Simons,
A.K., Gatti, D.M., Hinerfeld, D.A., Svenson, K.L.,
Keller, M.P., Attie, A.D., Hibbs, M.A., et al. (2014).
RNA-Seq alignment to individualized genomes
improves transcript abundance estimates in
multiparent populations. Genetics 198, 59–73.

Patro, R., Mount, S.M., and Kingsford, C. (2014).
Sailfish enables alignment-free isoform
quantification from RNA-seq reads using
lightweight algorithms. Nat. Biotechnol. 32, 462.

Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and
Kingsford, C. (2017). Salmon provides fast and
bias-aware quantification of transcript
expression. Nat. Methods 14, 417.

Pellow, D., Probst, M., Furman, O., Zorea, A.,
Segal, A., Mizrahi, I., and Shamir, R. (2020).
SCAPP: an algorithm for improved plasmid
assembly in metagenomes. bioRxiv. https://doi.
org/10.1101/2020.01.12.903252. https://www.
biorxiv.org/content/early/2020/04/04/2020.01.
12.903252.

RECOMB-Seq. (2020). RECOMB-seq 2020
YouTube Channel. https://www.youtube.com/
channel/UCI_DNmSqGvJcdba_F0ZjbaA.

Rice, E.S., and Green, R.E. (2019). New
approaches for genome assembly and
scaffolding. Annu. Rev. Anim. Biosci. 7, 17–40,
https://doi.org/10.1146/annurev-animal-020518-
115344.

Roberts, A., and Pachter, L. (2013). Streaming
fragment assignment for real-time analysis of
sequencing experiments. Nat. Methods 10,
71–73.

Roberts, A., Trapnell, C., Donaghey, J., Rinn, J.L.,
and Pachter, L. (2011). Improving RNA-Seq
expression estimates by correcting for fragment
bias. Genome Biol. 12, 1–14.

Sirén, J., Garrison, E., Novak, A.M., Paten, B., and
Durbin, R. (2019). Haplotype-aware graph
indexes. Bioinformatics 36, 400–407, https://doi.
org/10.1093/bioinformatics/btz575.

Svensson, V., da Veiga Beltrame, E., and Pachter,
L. (2019). A curated database reveals trends in
single-cell transcriptomics. Bioinformatics 36,
400–407.

Trapnell, C., Williams, B.A., Pertea, G., Mortazavi,
A., Kwan, G., Van Baren, M.J., Salzberg, S.L.,
Wold, B.J., and Pachter, L. (2010). Transcript
assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching
during cell differentiation. Nat. Biotechnol. 28,
511–515.

Tung, L.H., Shao, M., and Kingsford, C. (2019).
Quantifying the benefit offered by transcript
assembly with Scallop-LR on single-molecule
long reads. Genome Biol. 20, 1–18.

Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-
Liggett, C.M., Knight, R., and Gordon, J.I. (2007).
The human microbiome project. Nature 449,
804–810.

Turro, E., Su, S.-Y., Gonçalves, Â., Coin, L.J.,
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