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Serotonin, also known as 5-hydroxytryptamine (5-HT) is a signaling mediator that

regulates emotion, behavior, and cognition. Previous studies have focused more on the

roles of 5-HT in the central nervous system (CNS). However, 5-HT also shares a strong

relationship with the pathological cases of tumor, inflammation, and pathogen infection.

5-HT participates in tumor cell migration, metastatic dissemination, and angiogenesis. In

addition, 5-HT affects immune regulation via different 5-HT receptors (5-HTRs) expressed

immune cells, including both innate and adaptive immune system. Recently, drugs

targeting at 5-HT signaling were tested to be beneficial in mouse models and clinical trials

of multiple sclerosis (MS) and inflammatory bowel disease (IBD). Thus, it is reasonable to

assume that 5-HT participates in the pathogenesis of autoimmune diseases. However,

the underlying mechanism by 5-HT modulates the development of autoimmune diseases

has not been fully understood. Based on our previous studies and pertinent literature, we

provide circumstantial evidence for an essential role of 5-HT, especially the regulation of

5-HT on immune cells in the pathogenesis of autoimmune diseases, which may provide

a new point cut for the treatment of autoimmune diseases.
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INTRODUCTION

Serotonin, or 5-hydroxytryptamine (5-HT) was first discovered as a vasoconstrictor. It is mainly
distributed in the central nervous system (CNS), gastrointestinal (GI) tract, and platelets. About
95% of the 5-HT in our body is synthesized in enterochromaffin (EC) cells of the GI mucosa,
and the remaining 5% is produced by serotonergic neurons in the CNS (1). In peripheral tissues,
many cells such as adipocytes, pancreatic β cells, and osteoclasts synthesis 5-HT (2). Besides,
T cells and mast cells can also produce 5-HT (3). The synthesis pathway of 5-HT contains
two enzymatic steps, with tryptophan (Trp) being the primary precursor of 5-HT. Trp is first
transformed to 5-hydroxytryptophan (5-HTP) under the action of tryptophan hydroxylase (TPH),
including TPH1 and TPH2; most of the TPH1 is found in EC cells and TPH2 is located in
the central and enteric neurons. Then, with the present of aromatic amino acid decarboxylase
(AADC), 5-HTP is decarboxylated to produce 5-HT (1). Once released, 5-HT is stored and
transported in platelets via serotonin reuptake transporter (SERT) and formed the dense granules
through vesicular monoamine transporter 2 (VAMT2) and then released in the peripheral blood
upon stimulation (such as vascular injury or pathogens) (4). 5-HT can also be absorbed into
enterocytes and the vascular endothelial cells via SERT (5). Monoamine oxidase (MAO) degrades
5-HT to 5-hydroxyindoleacetic acid (5-HIAA) after its physiological function is completed (6). The
synthesis and transport of 5-HT is shown in Figure 1.
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FIGURE 1 | The synthesis and transport of serotonin (5-HT). Neurons and EC (enterochromaffin) cells release 5-HT in response to stimuli. Tryptophan (Trp) is first

converted to 5-hydroxytryptophan (5-HTP) via tryptophan hydroxylase (TPH). Then, aromatic amino acid decarboxylase (AADC) immediately converts 5-HTP to 5-HT.

The released 5-HT can be transported into neurons and platelets (PLT) via the serotonin reuptake transporter (SERT); most of it is stored in the dense granules of PLT

and transported to the peripheral blood. When the PLT are stimulated upon vascular injury or pathogen, the PLT are activated and release the 5-HT to participate

physiological reaction. In peripheral tissues, adipocytes, pancreatic β cells, and osteoclasts synthesis 5-HT through TPH1. Completed its physiological function, 5-HT

is degraded to 5-hydroxyindoleacetic acid (5-HIAA) by monoamine oxidase (MAO) and then excreted in the urine eventually.

5-HT works primarily by binding to its receptors; seven
families (including 15 distinct subtypes, 5-HT1-5-HT7) of 5-HT
receptors have been discovered according to their different
signaling mechanisms. 5-HT receptors are the G-protein coupled
receptor superfamily all but 5-HT3 receptor, which is the
Cys-loop ligand-gated ion channel family (7). 5-HT regulates
many physiological processes, such as behavior and cognition,
including sleep, mood, energy balance, platelet coagulation,
tissue regeneration, gastrointestinal function, and immunity
(3). The functions of 5-HT in the CNS have been extensively
studied, especially the pharmacological manipulations of 5-HT
receptors (8). Serotonergic drugs have already been used for
the treatment of several kinds of mental disorders such as
depression and obsessive-compulsive disorder (9). In addition
to its function in the CNS, 5-HT also plays a role in
other systems. Accumulating evidence points to the role of
5-HT in the immune system and almost all immune cells
express 5-HT receptors. Table 1 lists the 5-HT receptors on
different immune cells. 5-HT interacts with the innate as
well as the adaptive immune system. In the course of acute
inflammation, 5-HT recruits innate immune cells [immature
dendritic cells (DCs), monocytes, mast cells and eosinophils,
etc.] to the inflammatory site (14). In dextran sodium sulfate
(DSS)-induced colitis mice, 5-HT administration increases the

release of pro-inflammatory cytokines from macrophages (24).
In the collagen-induced arthritis (CIA) mouse, shortage of
5-HT leads to an imbalance of T helper (Th) 17 and T
regulatory cells (Tregs) and aggravation of the disease (25).
5-HT1A receptors are more highly expressed on CD4+ T
cells from multiple sclerosis (MS) patients, and these cells
produce more 5-HT than those in healthy individuals (26,
27). Thus, 5-HT is strongly associated with immune cells
in autoimmune diseases. This review intends to provide a
current understanding of the roles of 5-HT in different
autoimmune diseases.

DIGESTIVE SYSTEM DISEASES

Inflammatory Bowel Disease (IBD)
IBD is a complex inflammatory disorder involving immune
dysregulation for an imbalance between pro-inflammatory and
anti-inflammatory signaling. Ulcerative colitis (UC) and Crohn’s
disease (CD) are themajor types of IBD. However, the underlying
etiology of IBD remains poorly understood (28). The alterations
of 5-HT content in the chronic mucosa in both UC and CD
have been controversial. Some studies have reported a decrease
in 5-HT content, but other experiments have concluded opposite
results (29–31). This difference may be related to the degree of
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TABLE 1 | The expression of 5-HT receptors on immune cells.

Type Family and subtype References

Basophils unknown

B Cells 1A 2A 3 7 (10)

DC 1B 1E 2A 2B 3 4 7 (11, 12)

Eosinophils 1A 1B 1E 2A 2B 6 (13)

Mast cell 1A (14)

Macrophages 1A 1B 1E 2A 2B 2C 3 4 7 (15–17)

Monocytes 1E 2A 3 4 7 (17)

Neutrophils 7 (3)

NK 1A 2A 2B 2C (18, 19)

T Cells 1A 1B 2A 3 7 (20–22)

Platelets 2A 3 (23)

mucosal damage. The EC cell population is decreased in severe
UC samples compared with that in the non-severe UC group
and healthy controls, with there being no difference between
the non-severe group and healthy group. Moreover, 5-HT levels
are positively correlated with EC cell counts in colonic mucosa
biopsies of patients with UC (32). Thus, the changes in 5-
HT levels and EC cell numbers in the mucosa in IBD could
not be ascertained and depend on the severity of the mucosal
damage. These above studies clearly show changes in 5-HT and
EC cell levels in the mucosa during the inflammation in IBD;
however, it is unclear whether their alterations play any role in
gut inflammation.

5-HT may be critical for aggravating symptoms in IBD,
including diarrhea and abdominal pain (33). Intraperitoneal
administration of 5-HT significantly increases the expression of
interleukin (IL)-1β and IL-6 and the activity of myeloperoxidase
(MPO) by activating 5-HT3 and 5-HT4 receptors in colonic
mucosa of colitis mice, while blocking the signal can reduce
the pain (34). In TPH1 deficient colitis mice, the severity of
colitis and the level of IL-1β, IL-6, and tumor necrosis factor
(TNF)-α was clearly reduced, and reloading 5-HT increased the
severity of DSS-induced colitis (1). A further study reported that
5-HT increased the expression of IL-6, IL-8 and the production
of monocyte chemoattractant protein-1 (MCP-1), which lead
to the initial events of gut inflammation (35). Thus, 5-HT
increased pro-inflammatory cytokine levels in colitis mucosa and
exacerbated abdominal pain and colitis in DSS-induced mice. As
for the regulation of 5-HT in immune cells, a study by Khan
and Ghia demonstrated that 5-HT stimulates macrophages to
produce pro-inflammatory cytokines (24). 5-HT also activates
dendritic cells (DCs) to produce more IL-12p40 through the NF-
κB pathway in the colon of DSS-induced colitis mice, which
results in the sequentially increased production of IL-17 and
interferon (IFN)-γ by T cells (36). Therefore, 5-HT may play a
pro-inflammatory role in the gut which activates DCs, induces
T-cell proliferation, sustains immune-cell recruitment, and up-
regulates pro-inflammatory cytokine production. Conversely,
some studies have demonstrated that 5-HT works as an anti-
inflammatory molecule in the GI tract. It has been found that
administrating 5-HT4 receptor antagonist aggravates disease

severity in DSS-induced mice, and the histological damage in the
colons of 5-HT4 receptor-deficient mice is more severe than that
in the control group. The reason may be that the activated 5-HT4

receptors can increase epithelial proliferation, promote wound
healing, and improve resistance to oxidative stress-induced
apoptosis (37). Additionally, 5-HT2A receptors were upregulated
in the colons of DSS-induced mice, especially in macrophages.
A selective 5-HT2A receptor antagonist, ketanserin, inhibited
the expression of CD32 and production of inducible nitric
oxide synthase (iNOS) and IL-12 in LPS-macrophages upon LPS
challenge, whereas the expression of CD206 and production
of IL-10 was increased. This points out that ketanserin may
influence macrophages by promoting their anti-inflammatory
function and promoting the shift from M1 to M2 through 5-
HT2A receptors to exert a protective function (38). Besides, 5-
HT receptor antagonists can restrain the production of IL-1β
and IL-6 from DCs and alleviate the experimental intestinal
inflammation (39). Overall, activation of the 5-HT signaling
pathway in the gut has a pro-inflammatory effect and inhibition
has an anti-inflammatory effect, but each receptor has a different
effect. This functional difference in 5-HT may be due to the
diversity of receptors in the GI tract. 5-HT receptors (including
5-HT1, 5-HT2, 5-HT3, 5-HT4, and 5-HT7 receptors) have been
shown to be expressed in the gut (3). Additionally, the function of
one type of receptor expressed on different cells such as epithelial
or immune cells may be totally different. At the same time, there
is a shortage of studies involving the depletion or knockout of
a subtype of 5-HT receptor on different immune cells; hence,
the role of the 5-HT receptors on different immune cells in a
disease state cannot be defined. The pro-inflammatory and anti-
inflammatory roles of the 5-HT signaling pathway in IBD are
shown in Figure 2.

Type 1 Diabetes (T1D)
T1D is an autoimmune disease characterized by blood sugar
and insulin dysregulation caused by autoimmune damage to the
β cells of the pancreatic islets (40). In the non-obese diabetic
(NOD) mice, blood 5-HT levels are elevated at 6 weeks after T1D
onset and are maintained at high level at all time-points (41).
5-HT can be produced by pancreatic β cells, which complicates
the relationship between 5-HT and T1D (42). In T1D, the 5-HT
signaling pathway promotes the function and proliferation of β

cells. Notably, 5-HT increases the proliferation of the pancreatic
β cells in rat insulinoma, and inhibition of 5-HT synthesis blocks
β cell expansion (40). Aside from that, the roles of 5-HT in
pancreatic islets are diverse. 5-HT enhances β cells to secrete
more insulin by activating 5-HT2 receptors and 5-HT3 receptors.
However, the opposite effect of activating 5-HT1D receptors has
been reported in healthy human islets and cell lines of β cells,
which inhibits insulin secretion (42–44). Thus, the function of 5-
HT depends not only on its amount, but also on the receptors
it binds. In a hypermetabolic condition such as pregnancy,
the increase in β cell mass is due to the prolactin-dependent
pathway to induce the expression of TPH1 in β cells, leading to
increased production of 5-HT. Then 5-HT activates the intrinsic
5-HT2B receptors and 5-HT3 receptors on β cells by autocrine or
paracrine signals, leading to β cell proliferation (45, 46). Although
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FIGURE 2 | The pro-inflammatory and anti-inflammatory roles of 5-HT signaling pathway in the gut of inflammatory bowel disease (IBD). 5-HT released from EC

(enterochromaffin) cells directly or indirectly acts on immune cells (such as macrophages, dendritic cells, and T cells) as well as epithelial cells to produce more

proinflammatory cytokines to exasperate gut inflammation. Blocking the 5-HT signaling of macrophages and dendritic cells reduces the release of proinflammatory

cytokines and increases IL-10 production.

5-HT can interact with β cells directly, the connection between
5-HT and immune cells in T1D is very few. A selective 5-
HT2A receptor antagonist, sarpogrelate hydrochloride, reduced
macrophages infiltration and down-regulated the expression
of NOS2 and TNF-α in diabetes mice (47). Whether 5-HT
is associated with the release of pro-inflammatory cytokines
released from another immune cells that infiltrate the pancreas
in TID needs further study.

Type 2 diabetes (T2D) is a chronic metabolic disease
accompanied with insulin resistance and glucoregulatory,
usually associated with obesity (48). However, with the
further understanding of T2D, considerable evidences point
that T2D also had autoimmune components, such as IgG
antibodies related to insulin resistance and autoantibodies
against pancreatic islets (49, 50). In the early stage of obesity,
macrophages and T cells are elevated in adipose tissue.
Macrophages and the adaptive immune system are activated
even in the absence of pathogenic threat (51). Persistent
chronic inflammation in adipose tissue, which in turn promotes
inflammation of the systemic system and affects insulin function.
Infiltration of macrophages and T cells are found in the islets
of T2D (52, 53). To our knowledge, the treatment of SSRIs

increases the risk of T2D in depressed patients for SSRIs reducing
insulin secretion and increasing insulin dependence (54). A
study reported that SSRIs exposure increased ROS and oxidative
damage of β cells (55). These strongly suggest that alterations
in 5-HT signaling affect T2D disease progression. A Meta-
analysis revealed that the risk of T2D in adolescents treated with
SSRIs was significantly higher than that in healthy control and
psychiatric controls who have not been exposed to SSRIs (56).
However, a prospective clinical trial elucidated that T2D patients
with depression received sertraline (a type of SSRIs) had lower
body weight, body mass index, and waist circumference than
those who did not receive treatment (57). Thus, it is optimal to
balance the benefits of SSRIs therapy with the increased risk of
T2D. And routine indicators such as blood glucose and body
weight should be monitored regularly.

Primary Biliary Cholangitis
PBC is an immune-mediated bile duct destruction and
cholestasis, which ultimately leads to liver injury, fibrosis, and
cirrhosis. It’s the most common chronic cholestatic autoimmune
liver disease (58). In animal models of cholestasis with bile
duct ligation (BDL), chronic thrombocytopenia aggravates liver
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fibrosis caused by BDL. Since 5-HT is released by platelets, the
same effect can be seen with reduced plasma 5-HT levels (59, 60).
In detail, TPH1-deficient mice exhibit higher levels of serum
aspartate aminotransferase (AST), alanine aminotransferase
(ALT), bile salts, and hepatic necrosis than the WT mice
in BDL. But the bile salt reabsorption transporters Osta and
Ostb are up-regulated in the kidneys in TPH1-deficient mice.
5-HT is proposed to down-regulate Osta and Ostb in the
kidneys, causing a decrease in toxic bile salts in the plasma and
reducing liver injury (59). Another experiment demonstrated
that cholangiocytes express 5-HT receptors as well as TPH2.
Cholangiocytes produce 5-HT and inhibit their own growth, but
stimulate liver myofibroblasts to produce transforming growth
factor (TGF)-β1. Increased TGF-β1 suppresses cholangiocyte
growth by inhibiting TPH2 expression in an autocrine manner.
In BDL mice with incomplete TPH2 function display reduced
biliary 5-HT levels and excessive cholangiocyte proliferation,
accumulation of aberrant ductule and liver progenitors, andmore
severe liver fibrosis, indicating the modulation of cholangiocytes’
5-HT synthesis plays a crucial role in remodeling damaged
bile ducts (61). Overall, platelet-derived 5-HT can suppress
cholestatic liver injury and biliary fibrosis (59, 62). The number
of mast cells which release 5-HT is increased in the skin
of PBC (63). A study of BDL rats demonstrated that 5-HT
released by mast cells devoted to cholestasis pruritus and 5-
HT3A receptor antagonist ondansetron significantly relieved
itching symptoms (64). In addition, several clinical trials have
observed that ondansetron or SSRIs can be used to alleviate
cholestatic itching (65). In the early stage of PBC, NK cell
killing activity is enhanced, and monocytes and macrophages
have a high response to pathogen-associated antigens (66).
Then, Th1 cells and cytotoxic T lymphocyte are activated (67,
68). Furthermore, autoreactive B cells secrete large amount
of antimitochondrial antibodies (69). In the final phase, the
Th1 reaction shifts to Th17 (70). However, the modulation
of these immune cells in the pathological process by 5-HT
to exert influence on PBC progression is unknown and needs
further research.

RHEUMATIC DISEASES

Rheumatoid Arthritis (RA)
RA is a chronic autoimmune inflammatory disease with typical
characteristics of chronic inflammation and joint damage (71).
Activated platelets and increased serum levels of 5-HT have
been reported; high levels may be a negative predictor of
bone mineral density in RA for suppressing osteoblasts (72). It
has been demonstrated that 5-HT activates 5-HT1B receptors
on osteoblasts and inhibits their proliferation by activating
proteinkinase A and cAMP-response element binding protein
signaling pathway (73). Except for serum, 5-HT increases in RA
synovial fluid (74). In the general population, use of SSRIs is
related to a higher risk of fractures in patients with RA (75).
Therefore, there might be a strong connection between 5-HT
and RA. In the CIA mouse model, the content of 5-HT in the
paw is increased. Meanwhile, joint inflammation and erosion,
bone resorption and osteoclast differentiation, and release of

pro-inflammatory factors such as TNF-α, are all promoted in
Tph−/− CIA mice (25). In addition to the alteration in local
tissues, 5-HT also changes in the hippocampus in the CIA mice
because the SERT activity increases and the absorption of 5-HT
enhances (76).

Selective 5-HT3 receptor antagonists can alleviate arthritic
pain and inflammation. In the in vitro culture of macrophage-like
synovial cells from osteoarthritis (OA), tropisetron can absolutely
inhibit 5-HT-induced PGE2 release (77). In monocyte in vitro
cultures from the peripheral blood of healthy donors, the release
of TNF-α and IL-1β have been strongly suppressed by tropisetron
(78). These data might account for the anti-inflammatory effect
of 5-HT3 receptor antagonists. Further, the role of T cells in RA
has also been reported. Chabbi-Achengli and Comnan indicated
that the levels of TNF-α and IFN-γ were increased as well as the
level of IL-4 was decreased in TPH1-deficient CIA mice, thus
implying a stronger Th1 response. Moreover, the population of
Th17 cells increased while that of Tregs decreased in the lymph
nodes of CIA mice, and lack of 5-HT caused relative conversion
of Tregs to Th17 cells (25). Anti-TNF therapy has been effective
in RA, but the treatment of anti-TNF non-responders still
remains a challenge. Considering that 5-HT are able to regulate
the Th17/Tregs cell balance, the development of therapeutic
approaches targeting 5-HT or 5-HT receptors is expected to
be a potential prospect for modulating the immune response
to RA.

Systemic Sclerosis (SSc)
SSc is an autoimmune disease characterized by chronic,
progressive fibrosis, which affecting the skin and several internal
organs, accompanied by abnormal activation of the immune
system (79, 80). Plasma 5-HT content is increased in SSc has
been reported (81). Another study revealed that intraplatelet 5-
HT content is decreased in patients with diffuse SSc compared
with that in patients with limited SSc and normal individuals
(82). This indicates that the type of SSc also affects the
distribution of 5-HT. As previously reported, endothelial cell
injury, immune activation, and fibrosis were crucial points
in the pathogenetic process of SSc, and 5-HT signaling has
been reported to be involved in the pathogenesis of fibrosis,
especially the 5-HT/5-HT2B receptor signaling in skin fibrosis
(83). Evidently, TGF-β is the most crucial regulatory factor in
the pathological fibrosis process of SSc (84). Upon culturing
skin fibroblasts with 5-HT from healthy individuals and those
with SSc, it was found that 5-HT promoted extracellular
matrix proliferation in both conditions through the TGF- β-
dependent pathway by activating 5-HT2B receptors, whereas
dermal thickening was found to be attenuated with 5-HT2B

receptor signaling pathway inhibitors (83). The same conclusion
was made in another study. 5-HT administration up-regulated
profibrotic genes and collagen production, and treatment with
5-HT2 receptor and 5-HT2B receptor antagonists reversed the
attenuation of TGF-β1 associated gene expression and collagen
production (85).

In addition to the above findings, immune factors, including
T cells and B cells, also involve in SSc (86). Effector T
cells in SSc are thought to be skewed in a Th2 pattern and
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key profibrotic mediators (IL-4, IL-6, IL-13) secreted by Th2
cells are a major cause of the fibrosis in SSc (87). However,
whether 5-HT affects the course of the disease by affecting
immune cells has not yet been reported. Murine basophils
were found to participate in the Th2 polarization by instantly
secreting lots of IL-4, whereas 5-HT could downregulate this IL-
4 production by basophils in vitro and in vivo (88). Therefore,
we hypothesized that 5-HT might inhibit the polarization of
T cells to Th2 cells and play an anti-fibrotic role in SSc.
This could also explain why Th1 polarization is predominant
in most autoimmune diseases, whereas Th2 polarization is
predominant in SSc. Further validation by experimental studies
is needed.

Systemic Lupus Erythematosus (SLE)
SLE is an autoimmune rheumatic disorder characterized by
multi-system and multi-organ lesions. Inflammation invading
sites include the skin, joints, kidneys, and brain (89). The
function of 5-HT in the pathogenesis of SLE is currently unclear
in spite it’s considerable inflammatory effects. The involvement
of platelet activation and 5-HT released in SLE pathogenesis
has been confirmed (90). A previous study has suggested that
decreased platelet size is associated with disease activity in SLE,
as activated platelets release several soluble factors, including 5-
HT (91). In SLE patients, a study revealed that the 5-HT content
decreased in the platelets and increased in plasma, and that these
levels are correlated with severity of the disease (92). However,
Lood and Tydén demonstrated that the level of 5-HT in both
platelets and serum are decreased and no association is found
between serum 5-HT levels and clinical disease activity (90).
This difference may be related to the patients’ disease activity.
The recruited SLE patients in the latter study were very few and
there were in the inactive period at the time of blood sampling.
Also, it may be associated with the activity of indoleamine 2,3-
dioxygenase (IDO) (IDO can deprive the ability of Trp for 5-
HT synthesis in favor of kynurenine). To support this view, the
latter study found that plasmacytoid dendritic cells (pDC) induce
large amounts of INF-α, which can increase the expression of
IDO and cause the drop of 5-HT in SLE. As for the interaction
between 5-HT and immune cells, another study showed that
hypomethylation of the 5-HT1A receptor promoter region and
high expression of 5-HT1A receptors in the peripheral blood
lymphocytes increase the 5-HT level in plasma and lead to the
proliferation of T and B cells, which accounts for the process of
SLE (21). Similar to other rheumatic diseases, 5-HT is mainly
derived from platelets, which plays a role in SLE. But studies on 5-
HT in SLE have been limited. This may be related to the disease
characteristics of SLE itself. SLE is a disease involving multiple
organs, which is not limited to any one site, and is not mainly
manifested by the involvement of any one organ.

CENTRAL NERVOUS SYSTEM DISEASES

Multiple Sclerosis (MS)
MS is a multiple-site-affected and relapse-remitting alternating
disease of the CNS, characterized by myelin and axonal damage
(93). Its main features are increased physical disability, cognitive

impairment, chronic neuropathic pain, and depression (94).
An interesting study showed increased susceptibility of MS in
adulthood at high latitudes; it was discovered that the intake
of Trp is lower in the high-latitude area than in normal
conditions. Lower Trp leads to a decrease of 5-HT resulting
in an increased susceptibility of MS; this suggests a potential
link between 5-HT and MS (95). In experimental autoimmune
encephalomyelitis (EAE) mice, 5-HT content is lower than
that in the WT (96). Treating with SSRIs or increasing 5-HT
attenuates disease severity, and it is associated with impaired
T cell proliferation, lower inflammatory infiltration and IFN-γ
production (97). T cells, as wells as macrophages and DCs cells,
are generally accepted as the main effectors in MS pathogenesis
(26). Higher expression of 5-HT1A receptors in CD4+T cells has
been detected, which leadings to a 5-HT stimulated increase in
IL-10 production by CD4+T cells in MS patients (26, 27). In
vitro, 5-HT suppresses the release of IL-17 and IFN-γ by CD8+T
cells, both of which are neurotoxic in MS (27). Specifically, IL-
17 can induce local (microglia) and migrant (macrophages and
DCs) cells to produce more free radicals derived from oxygen
and metalloproteinase 9, all of which involved in the neuronal
demyelination (98). IFN-γ has been classically considered as the
pro-inflammatory cytokine indicating destructive autoimmune T
cell activity, including activation of the innate immune system
(99). The 5-HT3 receptor agonist appears to activate T cells
and selective 5-HT3 receptor antagonists attenuate disease; this
protective effect is related with both reduced in vitro IL-6 and
IL-17 production by CD4+T cells and lower demyelination of
the spinal cord (100, 101). In addition to T cells, 5-HT is able
to influence macrophage polarization in MS pathological process
(93). Through the 5-HT2B receptors and 5-HT7 receptors on
macrophages, 5-HTmakes macrophages prone to polarization to
M2 macrophage by inhibition of LPS-induced pro-inflammatory
cytokines and regulation of M2 and M1 polarization-related
genes (15, 93). Besides, DCs take in and store 5-HT from the local
environment and then activate T cells to play a pro-inflammatory
role in MS (102). The interactions between 5-HT and immune
cells in MS are shown in Figure 3.

Failure to properly control the expression of major
histocompatibility complex (MHC) class II on astrocytes
may also account to MS (103). In healthy individuals, MHC
class II and B7 molecules are not expressed on astrocytes, but
these two proteins are detected in the astrocytes at the edges of
active MS lesions. Further study has indicated that expressions
in astrocytes makes it act as a facultative APC to activate T
cells in the CNS (104). Moreover, activation of astrocytic 5-HT4

receptors increases the production of intracellular cAMP and
inhibits the expression of IFN-γ-mediated induction of MHC
class II and B7 co-stimulatory molecules of astrocytes in vitro
(105). In summary, MS occurs when the content of 5-HT is
reduced or its signaling pathway is inhibited in the CNS. A
previous study demonstrated that platelets are activated both in
the CNS and peripheral blood in MS, and they are recruited into
the CNS inflammatory lesions of EAE mice (106). Therefore, we
can rationally speculate that it may be the 5-HT reduction in
neuronal release or the alteration of SERT expression that affects
the MS process rather than the 5-HT released by platelets.
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FIGURE 3 | The interactions between serotonin (5-HT) and immune cells in

multiple sclerosis (MS). 5-HT released from neurons is reduced in the central

nervous system (CNS). 5-HT acts on T cells to produce less proinflammatory

cytokines and more IL-10. 5-HT promotes M2 macrophage polarization.

OTHERS

In addition to the diseases mentioned above, 5-HT has also been
studied in other autoimmune diseases. In Hashimoto’s thyroiditis
mice, IDO1 and SERT are upregulated, accompanied by reduced
frontal cortex 5-HT levels. This indicates that alterations in
5-HT signaling in the frontal cortex may be associated with
mood control in Hashimoto’s thyroiditis patients (107). In Balb/c
mice of experimental antiphospholipid syndrome, nervous or
mental abnormity such as cognitive deficits and hyperactivity
are confirmed to be linked with the up-regulation of 5-
HT1A receptors in the hippocampal and cortical regions (108).
Additionally, in the imiquimod-induced psoriasis model, mast
cells and keratinocytes synthesize 5-HT (109). Further, the
percentage of 5-HT-positive cells is significantly higher in skin
lesions of psoriasis patients compared to that in normal skin
and 5-HT recruits T cells to the inflammatory site of skin and
enhance the ability of macrophages as an APC activate T cells
(110).Meanwhile, systemic SSRIs treatment has been shown to be
beneficial to psoriasis patients from a retrospective cohort study
(111). Additionally, a better outcome with SSRIs treatment than
placebo from a randomized controlled trial in alopecia areata has
been reported (112). These evidences suggest that 5-HT plays a
role in various autoimmune diseases, but type of immune cells
and mechanisms need further research.

Interaction Between 5-HT and Th1 and Th2
Th1 cells are important for immunity to intracellular pathogens
while Th2 cells are responsible for humoral-mediated immunity.

Both of them participate in maintaining immune homeostasis
and the variation of them is found in the pathological process
of autoimmune diseases (113). 5-HT acted directly on Th1
cells to reduce their production of IFN-γ in MS patients
(27). A selective 5-HT2A receptor antagonist, sarpogrelate
hydrochloride, inhibited the production of IFN-γ by Th1
cells in a dose-dependent manner in vitro culture of mouse
spleen CD4+T cells, and this inhibition can be reversed by 5-
HT2A receptor agonist (22). In addition to the direct effect,
activation of 5-HT2B receptor inhibits the polarization of human
moDC-primed CD4+ T cells toward inflammatory Th1 effector
lymphocytes in inflammatory settings (114). How does 5-HT
regulate Th2 is poorly studied in autoimmune diseases. But in
allergic airway inflammation, lack of 5-HT leads to impaired
Th2 priming capacity of DCs (115). However, the alterations of
Th1 and Th2 in autoimmune diseases have not been uniformly
determined, which may be due to the different subsets playing a
leading role in different autoimmune diseases. CD, RA, MS, T1D
and Hashimoto’s thyroiditis are characterized by dominant Th1
responses while UC and SLE are a Th2-dominated response.

Interaction Between 5-HT and Th17 and
Tregs
The imbalance between Th17 and Tregs has been reported in
the literature on autoimmune disease (116–118). Tregs maintain
self-tolerance, thereby inhibiting autoimmunity, while Th17 cells
promote the induction and propagation of inflammation (116,
117). The balance between these two types of CD4+T cells—
one promoting inflammation, the other controlling the adaptive
immune responses play an important role in autoimmune
diseases (118). There is a strong association between 5-HT
and these two types of cells in autoimmune diseases. In EAE
mice, Th17 cells activate microglia to produce IL-6, IL-1β, and
TNF-α. Then, IL-6 inhibits the synthesis of 5-HT by reducing
tetrahydrobiopterin and TNF-α activates IDO, which breaks
down Trp to reduce 5-HT level in the brain (119). In the in vitro
culture of peripheral blood mononuclear cells isolated from MS
patients, 5-HT reduces the production of IL-17 and IFN-γ from
Th17 (27).

5-HT-deficient mice displayed a relatively, dampened
expansion of Tregs accompanied with an increased shift
toward a Th17 phenotype in arthritis (120). Similarly, in
Tph1−/− mice of CIA, the proportion of Tregs is reduced
(Foxp3+CD25highCD4+T cells, to be precise) and Th17 is
increased. Reloading 5-HT can reverse the polarization of T cells
to Th17 and reduce the production of IL-17 through 5-HT2A

and 5-HT2B receptors on the surface of T cells. Meanwhile,
5-HT activates the 5-HT2A receptors on CD4+ T non-Tregs to
promote Tregs proliferation (25). 5-HT upregulates regulatory
marker CD39 on the surface of CD4+T cells, increases IL-10
production, and enhances Tregs to inhibit T effector cells
proliferation (27). After ischemic stroke, 5-HT can promote the
proliferation of Tregs in the brain along with the expression of
Tregs surface markers and reduce neurological dysfunction; this
effect can be blocked by 5-HT7 receptor antagonists (121). In
addition to Th17 and Tregs, Treg 17 is a novel regulatory T cell
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FIGURE 4 | The interaction between 5-HT and T helper (Th) 17 and T

regulatory cells (Tregs). 5-HT induces T cell differentiation to Treg cells and

promotes the shift of Th17 cells to Tregs. 5-HT acts on Th17 to produce less

IFN-γ and IL-17 and elevates the release of IL-10 from Tregs.

subset that co-expresses IL-17 and IL-10. 5-HT up-regulates the
proportion of non-classical regulatory Th17 cells (27). Overall,
5-HT can inhibit Th17 differentiation and IL-17 production,
promote Tregs phenotypic expression, inhibitory capacity and
proliferation, and regulate the balance of Th17/Tregs to maintain
immune homeostasis in autoimmune disease and inflammatory
conditions. The interactions between 5-HT, Th17, and Tregs are
shown in Figure 4.

Interaction Between 5-HT and Macrophage
Polarization
Macrophage polarization plasticity is critical for maintaining
tissue homeostasis. 5-HT has been reported to involved in
macrophage polarization mechanisms (15). In vitro culture of
human monocytes, SSRIs inhibited the release of LPS-induced
pro-inflammatory cytokine. The same effect was observed
with activation of 5-HT4 and 5-HT7 receptor on monocytes
(122). Additionally, another study demonstrated that during
the generation of monocyte-derived macrophages, 5-HT had
this inhibitory capacity without affecting the output of IL-
10, and up-regulated the M2 polarization-related gene through
activating 5-HT2B and 5-HT7 receptors, which tended to express
on M2 macrophage (15). In DSS-induced colitis mice, 5-
HT2A receptor was higher expressed on intestinal macrophages.
With the treatment of a selective 5-HT2A receptor antagonist,
ketanserin, intestinal inflammation was alleviated, along with
M2 polarization, lower pro-inflammatory cytokine production,
and impaired migration of macrophage. Knockout of the 5-
HT2A receptor abrogated this anti-inflammatory effect and
inhibited the NF- κB pathway in macrophages. Therefore, 5-HT
may regulate macrophage polarization through 5-HTR2A/NF-
κB (38). Considering the capacity of 5-HT to promote M2
polarization of macrophages, inhibition of 5-HT may become

a new breakthrough point in the treatment of neuroendocrine
tumors (NETs). A clinical case report described telotristat
(TPH inhibitor) can play an antitumor role to significantly
relief the carcinoid syndrome symptoms and improve the
quality of life of NETs (123). Collectively, 5-HT regulates the
polarization of macrophages through multiple receptors and
pathways, including both activated and inhibitory signals. In
the inflammatory condition or tumor microenvironment, 5-HT
promoting M2-polarization of macrophages may become a new
treatment direction.

CONCLUSIONS

In spite of its recent discovery, there is accumulating evidence
that 5-HT plays significant roles in autoimmune diseases. The
effect of 5-HT on immune cells depends on the cell type, 5-
HT receptor subtype, as well as the disease itself. Due to these
factors, it is difficult to define the pro- or anti-inflammatory
roles of 5-HT. In this review, we build a framework linking 5-
HT alterations to autoimmune diseases through its effects on
the immune cells. It has been confirmed that 5-HT regulates
the balance of Th17/Tregs and promotes M2-polarization of
macrophages and has a direct or indirect regulatory effect on
traditional immunocytes such as T cells, macrophages, DC cells,
and NK cells. However, little research about the interaction of 5-
HT and some novel immune cells has been reported. Recently,
regulatory B cells have attracted widespread attention for their
function in autoimmune diseases such as IBD and MS (124,
125). Besides, innate lymphoid cells have been considered as
regulators of immunity, inflammation, and tissue homeostasis
(126). Therefore, there are several unanswered questions. For
example, is 5-HT associated with these new immune cells?
Are there any undiscovered 5-HT receptor subtypes? Is the
expression and distribution of 5-HT receptors on immune cells
comprehensive? In the same autoimmune disease, can 5-HT
acting on different immune cells have different or even opposite
roles? In autoimmune diseases, can 5-HT regulate immune cells
through other receptors or pathways, besides 5-HT receptors?
What are the differences in the mechanisms by which 5-HT
functions in the CNS and in other systems? Elucidating these
mysteries may provide a better understanding of the roles of
5-HT in autoimmune diseases.

The role of 5-HT as a neurotransmitter in the brain has been
widely studied. A range of 5-HTmodulating drugs such as SSRIs,
monoamine oxidase inhibitors (MAOI), tricyclic antidepressants
(TCA), and 5-HT norepinephrine reuptake inhibitors (SNRI)
are designed to treat neurological diseases. Additionally, these
drugs can also be applied in some autoimmune diseases. In
a large and robust cohort, depression increased the risk of
developing both CD and UC. The use of SSRIs or other
antidepressants protected against CD and UC (127). It has been
demonstrated that patients with IBD are more likely to suffer
depression, and that depression worsens the prognosis of IBD
(128). In addition to IBD, the clinical trial of fluoxetine has
been carried out in secondary-progressive MS (129). Therefore,
various evidences have shown that 5-HT and autoimmune
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diseases are inextricably linked. Targeting the 5-HT signaling
pathway may be a new potential prospect in the treatment of
autoimmune diseases.
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