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Summary We tested the efficacy of coronavirus-like particles (VLPs) for protecting mice
against severe acute respiratory syndrome coronavirus (SCoV) infection. Coexpression of SCoV
S protein and E, M and N proteins of mouse hepatitis virus in 293T or CHO cells resulted in
the efficient production of chimeric VLPs carrying SCoV S protein. Balb/c mice inoculated with
a mixture of chimeric VLPs and alum twice at an interval of four weeks were protected from
SCoV challenge, as indicated by the absence of infectious virus in the lungs. The same groups
of mice had high levels of SCoV-specific neutralizing antibodies, while mice in the negative
control groups, which were not immunized with chimeric VLPs, failed to manifest neutralizing

antibodies, suggesting that SCoV-specific neutralizing antibodies are important for the suppres-
sion of viral replication within the lungs. Despite some differences in the cellular composition
of inflammatory infiltrates, we did not observe any overt lung pathology in the chimeric-VLP-
treated mice, when compared to the negative control mice. Our results show that chimeric VLP
can be an effective vaccine stra
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tegy against SCoV infection.
served.

ntroduction
evere acute respiratory syndrome (SARS) is a newly
merged disease caused by SARS coronavirus (SCoV). SARS
riginated in Southern China in 2002 and spread to five dif-
erent continents causing >8000 infection and >700 deaths
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efore its apparent eradication as a human infection in 2004
1]. Healthcare systems in affected areas were severely
tressed and additional economic costs in trade and travel
ere very high. It is not known if the virus will be

eintroduced into the human population but ancestral coro-
aviruses are widely distributed in bats and are thought to
ave adapted to civets and then to humans in recent time
eriods [2,3]. Because emerging viruses tend to reemerge as
onditions change [4], it is highly desirable to develop safe
nd efficacious vaccines and/or antivirals to prevent SCoV
nfections.

All coronaviruses, including SCoV, carry four structural
roteins: nucleocapsid (N) protein and three envelope
roteins, namely spike (S) protein, a type I transmem-
rane glycoprotein; envelope (E) protein; and membrane
M) protein, which has three membrane-spanning domains.
oronavirus S protein is responsible for virus adsorption to
usceptible cells through a specific virus—receptor interac-
ion and induces membrane fusion between viral envelope
nd host cell membrane [5]. S protein is a main player
or determining coronavirus tissue tropism, host specificity
nd viral pathogenicity [6—12]. Because most coronavirus
eutralizing antibodies recognize S protein [1,13], it is not
urprising that most of the current SCoV vaccine candidates
re either the S protein subunit itself or those carrying S
rotein [14—19]. Furthermore, prophylactic administration
f monoclonal antibodies directed at the SCoV S protein pro-
ects animals against subsequent SCoV challenge [20—23].
hese studies point out that neutralizing antibodies that rec-
gnize SCoV S protein are sufficient to prevent or decrease
he morbidity and mortality associated with SCoV infec-
ion by primarily suppressing replication of the challenge
irus.

Coronavirus-like particles (VLPs) are produced from the
ells coexpressing the S, M, and E proteins [24]; expres-
ion of the latter two proteins are sufficient for VLP
roduction [24]. M protein plays a central role in virus
ssembly, while S protein is assembled into coronavirus
articles through S protein—M protein interaction [25—28].
urther, interactions of the M protein with the RNA pack-
ging signal of the viral RNA [29] and with N protein
29—32] drive incorporation of the helical nucleocapsid
omplex, which consists of the viral genome and N pro-
ein, into virus particles. Vaccinia virus and/or alphavirus
eplicons have been used to express coronavirus proteins
o enable generation of VLPs [33—35], while we have
eported production of SCoV VLPs from 293T cells that are
o-transfected with four eukaryotic pCAGGS-based expres-
ion plasmids, each of which encodes SCoV S, M, N and

proteins [36]. Others have also reported production of
CoV VLP from insect cells [37,38] and mammalian cells
39].

During our studies of coronavirus assembly, we found
n efficient production of chimeric VLPs carrying SCoV S
rotein and murine coronavirus (mouse hepatitis virus or
HV) M, N and E proteins from cells coexpressing those
roteins. In mice immunized with the chimeric VLPs, the

resent study describes elicitation of antibodies that neu-
ralized SCoV and suppressed challenged SCoV replication
n the lungs. These findings suggest that the use of chimeric
LP is an effective vaccine strategy against SCoV infec-
ion.
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aterials and methods

ells and virus

ero E6 cells, 293T cells and CHO cells were grown in
ulbecco’s modified minimum essential medium (DMEM)
upplemented with penicillin (100 units/ml), streptomycin
100 �g/ml), 0.2% sodium bicarbonate and 10% fetal bovine
erum (FBS). The Urbani strain of SCoV was obtained from
.G. Ksiazek at the Centers for Disease Control and Pre-
ention (Atlanta, GA), and a working stock of this virus
as prepared by serially passaging a portion of the seed
irus twice in Vero E6 cells. The culture fluid from infected
ells was clarified by low-speed centrifugation and was fil-
ered using a 0.45 �m filter, portioned, and frozen at −80 ◦C.
edium from uninfected Vero E6 cells was similarly treated
nd processed.

lasmid construction

he plasmids, pCAGGS-MHV-A59/S, pCAGGS-MHV-A59/E,
CAGGS-MHV-A59/M, and pCAGGS-A59/N, were constructed
y inserting the entire region of MHV structural proteins, S,
, M and N, respectively, into a chicken beta-actin promoter-
ased expression plasmid, pCAGGS-MCS; plasmid pMH54 [40]
as obtained from Paul Masters and used as a template

or PCR amplification of MHV structural genes. Construction
f plasmids, pCAGGS-S expressing SCoV S protein, pCAGGS-
expressing SCoV E protein, pCAGGS-M expressing SCoV
protein, and pCAGGS-N expressing SCoV N protein, was

escribed previously [36].

reparation and purification of VLPs

or preparation of MHV VLPs, subconfluent 293T cell cultures
n 100-mm tissue culture dishes were cotransfected with
4 �g of pCAGGS-MHV-A59/S, 0.4 �g of pCAGGS-MHV-A59/E,
.5 �g of pCAGGS-MHV-A59/M, and 14 �g of pCAGGS-A59/N
sing TransIT-293 reagent (Mirus). At 3 days posttransfec-
ion, the culture media were collected, centrifuged at
550 × g for 10 min and filtered through a 0.45-�m filter
o remove cell debris. The MHV VLPs were pelleted down
hrough 20% sucrose cushion at 26,000 rpm for 3 h by using
Beckman SW 28 rotor. After the pellets were suspended

n NTE buffer (100 mM NaCl, 10 mM Tris—HCl, pH 7.0, 1 mM
DTA), the VLPs were centrifuged using a Beckman SW 28
otor at 26,000 rpm for 3 h on a discontinuous sucrose gra-
ient consisting of 60, 50, 30, and 20% sucrose. The VLPs at
he interface of 30 and 50% sucrose were collected, diluted
nd further purified on a discontinuous sucrose gradient con-
isting of 60, 50, 30, and 20% sucrose at 26,000 rpm for 18 h.
urified and concentrated VLPs at the interface between
0 and 30% sucrose were collected, diluted and pelleted
hrough a 20% sucrose cushion at 26,000 rpm for 2 h. The
ellets were suspended in NTE buffer and kept at −80 ◦C

ntil further use. For preparation of SCoV VLP, a mixture of
.8 �g of pCAGGS-S, 13.2 �g of pCAGGS-E, 1.4 �g of pCAGGS-
, and 2.8 �g of pCAGGS-N was cotransfected into 293T
ells grown on a 100-mm tissue culture plate. Chimeric VLPs
ere generated by transfecting 293T cells or CHO cells in a
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100-mm tissue culture plate with 14 �g of pCAGGS-S, 0.4 �g
of pCAGGS-MHV-A59/E, 3.5 �g of pCAGGS-MHV-A59/M, and
14 �g of pCAGGS-A59/N. SCoV VLPs and chimeric VLPs were
purified using the same procedure as described for the MHV
VLP purification.

Quantitation of VLP amounts

The total protein concentration of VLPs was quantitated by
Bio-Rad DC protein assay according to the manufacturer’s
instructions (BIO-RAD, CA).

Western blot analysis

Western blotting was performed as described previously
[36]. For detection of MHV S, M and N proteins, we used
anti-MHV serum, which was produced by immunizing rabbits
with a purified JHM strain of MHV, kindly provided by Susan
Baker, Loyola University of Chicago. For detection of SCoV S
protein, a mixture of purified rabbit polyclonal anti-SCoV S
protein antibody (ABGENT, cat. no. AP6000a) and polyclonal
rabbit anti-SCoV S protein antibody (IMGENEX, cat. no. IMG
541) was used. SCoV N protein was detected by using rabbit
polyclonal anti-SCoV N protein antibody (IMGENEX, cat. no.
IMG 548), and SCoV M protein was detected by using a mix-
ture of SCoV PUPM antibody-N-terminal (ABGENT, cat. no.
AP6008a), SCoV PUPM antibody C-terminal (ABGENT, cat. no.
AP6008b) and anti-SCoV M antibodies (ProSci, cat. no. 3527P
and cat no. 3529P).

Colloidal Coomassie blue staining

After washing the gel with water, proteins in the gel were
stained by soaking the gel with Bio-Safe Coomassie Stain
(BIO-RAD) with gentle agitation for 1 h. The gel was rinsed
extensively with water overnight.

Electron microscopic analysis of chimeric VLP

Carbon-coated, 200-mesh copper grids were floated on
drops of chimeric VLP for 10 min. After washing the grids
with water three times, negative staining was performed
using 2% phosphotungstic acid (pH 7.0) for 1 min. After air
drying of the grids, the sample was examined under a Philips
201 transmission electron microscope, and pictures were
taken at 60 kV.

Animals

Six- to 8-week-old, female Balb/c mice (Charles River labo-
ratory, Wilmington, MA) were housed in cages covered with
barrier filters in an approval biosafety level 3 animal facil-
ity maintained by the University of Texas Medical Branch

at Galveston, Texas. All of the mouse experiments were
performed using experimental protocols approved by the
University of Texas Medical Branch Investigational Animal
Care and Use Committee; all of the experiments were car-
ried out following National Institutes of Health and United
States Department of Agriculture guidelines.
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rocedures for immunization and SCoV challenge

HV VLPs, chimeric VLPs or influenza virus vaccine
ere adjusted to twice their desired final concentration

�g/0.1 ml) and then mixed with an equal volume of phos-
hate buffered saline (PBS) or alum adjuvant (Imject alum,
ierce, cat. no. 77161). At day 0, they were administered
ntramuscularly (i.m.) using 1-ml tuberculin syringes (Norm-
ect, Tuttingen, Germany) and 26-g, 3/8-in. beveled needles
Becton Dickinson, cat. no. 305110). In control groups, mice
ere inoculated i.m. with Vero E6 cell culture fluid, a mix-

ure of influenza vaccine and alum, or alum alone, or they
ere left untreated. Mice were inoculated on day 0 and, as

ndicated in the body of the paper a second injection was
iven on day 28 in most experiments. SCoV was inoculated
irectly into the nares of mice (40 �l) that were lightly anes-
hetized with isoflurane (IsoFlo; Abbott Laboratories; North
hicago, IL). Mice that were inoculated with 1 × 106 TCID50

f SCoV at day 0 to provide post-infection immunity did not
ndergo a second inoculation. In most of our experiments,
mmunized mice were challenged by intranasal (i.n.) inoc-
lation of 1 × 106 TCID50 of SCoV at day 56 and they were
uthanized at day 58, while in some experiments mice were
noculated with SCoV at day 28 and they were euthanized
t day 30. Day 2 post inoculation was chosen because of
eports that peak titer occurs at that time [23] and this was
onfirmed in our laboratory.

itration of SCoV-specific neutralizing antibodies

ice were anesthetized with isoflurane and then bled from
he retro-orbital sinus plexus. After heat inactivation at
6 ◦C for 30 min, sera were stored at 4 ◦C. The assay for virus-
pecific neutralizing antibodies was performed on serial
-fold diluted samples of each serum beginning at a dilution
f 1:5 using 2% FBS-DMEM as the diluent in 96-well tissue
ulture plates (Falcon 3072); the final volume of the serially
iluted samples in each well was 60 �l. After addition of
20 TCID50 of SCoV in 60 �l into each well, the samples were
ncubated for 45—60 min at room temperature. Then 100 �l
f these mixtures, containing 100 TCID50 of SCoV, were trans-
erred into duplicate wells of confluent Vero E6 cells grown
n 96-well microtiter plates. After 72 h incubation, when the
irus control wells exhibited advanced virus-induced CPE,
he neutralizing capacity of individual serum samples was
ssessed by determining the presence or absence of virus-
nduced CPE. SCoV-specific neutralizing antibody titers were
xpressed as the reciprocal of the last dilution of serum that
ompletely inhibited virus-induced CPE.

ollection of lungs, histology,
mmunohistochemistry, and virus titration

wo days post SCoV challenge, mice were euthanized and
heir lungs were removed. Lung lobes, including right mid-
le lobe, right lower lobe, accessory lobe and left lobe, were

emoved and placed in 10% buffered formalin for subse-
uent histological examination and immunohistochemistry
IHC) as described previously [41]. For virus titration, the
emaining lobes of the lungs were weighed and frozen at
80 ◦C before being homogenized in PBS/10% FBS solution
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Figure 1 Characterization of VLPs. (A) SCoV VLPs, MHV VLPs
and chimeric VLPs, all of which were produced from 293T cells,
were independently purified by sucrose gradient centrifugation
and 5 �g of purified VLPs were applied to each lane of SDS-
PAGE. Colloidal Coomassie blue staining (CCB) and Western blot
(WB) analysis of purified SCoV VLPs, MHV VLPs and chimeric VLPs
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sing the TissueLyser (Qiagen; Retsch, Haan, Germany). The
omogenates were then centrifuged, and SCoV titers in the
larified fluid were determined in a TCID50 assay in quadru-
licate wells of Vero E6 cells in 96-well plates. Titers of virus
n lung homogenates were expressed as TCID50/gram of the
ungs (log10) and the minimal detectable level of virus was
.3 log10 TCID50/g.

Formalin-fixed and paraffin-embedded tissue sections
ere subjected to the standard hematoxylin and eosin and

HC staining for evaluating histopathology and detecting
CoV antigen, respectively [41].

tatistical analysis

y using a statistical program Instat, (version 3, Graph-
ad Software, Inc., San Diego, CA), we performed the
ruskal—Wallis non-parametric analysis of variance (ANOVA)
est to compare arithmetic mean SCoV lung titers and neu-
ralizing antibody titers; undetectable virus titers were
ssigned a value of 1.8 (the minimal detection limit being
.3 log10/g lung) and undetectable virus-specific neutralizing
iters were assigned a value of 10.

esults

roduction and characterization of chimeric VLPs

e have previously reported the successful production of
CoV VLPs from 293T cells cotransfected with four pCAGGS-
ased plasmids, each of which encodes SCoV S, M, N or E
roteins [36] without using exogenous viruses for protein
xpression. In the study reported here we varied the amount
f each plasmid for cotransfection and were able to gener-
te approximately 1.3 �g of SCoV VLPs from 2 × 107 293T
ells. Colloidal Coomassie blue staining and Western blot
nalysis identified SCoV S, N and M proteins in the purified
CoV VLPs (Fig. 1A). Likewise, transfection of four pCAGGS-
ased plasmids, each of which encoded MHV S, E, M or N
roteins, resulted in production of MHV VLPs (Fig. 1A). After
ptimization, we obtained approximately 22.3 �g of purified
HV VLPs from 2 × 107 293T cells, demonstrating that the
fficiency of MHV VLP production was substantially better
han that of SCoV VLP production. Because M and E pro-
eins drive VLP assembly and release [24], and coronavirus
protein is incorporated into VLPs through M—S interaction

25,27,28,42], these data indicated that MHV M and E pro-
eins resulted in more efficient VLP production than did SCoV

and E proteins.
We next tested whether coexpression of SCoV S protein

nd MHV E, N and M protein could result in the effi-
ient production of chimeric VLPs which would contain high
oncentrations of the SCoV S protein. If SCoV S protein
nteracts with MHV M protein, then the robust VLP pro-
uction machinery driven by MHV M and E proteins, could
esult in efficient chimeric VLP production. Chimeric VLP
roduction, indeed, occurred from 293T cells that were

otransfected with plasmids, each of which expressed SCoV
protein, MHV N protein, MHV M protein or MHV E pro-

ein (Fig. 1A). Colloidal Coomassie blue staining and Western
lot analysis of purified chimeric VLP showed the presence
f SCoV S, MHV N and MHV M proteins in chimeric VLPs,

c
o
p
t
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re shown. (B) Negative staining of a chimeric VLP. Arrowheads
ndicate peplomers. Bars = 100 nm. Courtesy of Dr. Vsevolod L.
opov.

ith only a low level of host protein contamination. Neg-
tive staining of chimeric VLP revealed a typical spherical
oronavirus structure with peplomers (Fig. 1B). After opti-
ization, approximately 8.7 �g of purified chimeric VLPs
as produced from 2 × 107 293T cells; the efficiency of
himeric VLP production was about 8 times better than that
f SCoV VLPs.

We next tested efficiencies of chimeric VLP production
rom Vero and CHO cells, both of which have been used for
he preparation of human vaccines [43—47]. By using vari-
us DNA transfection reagents and combinations of different
oncentrations of each plasmid for transfection, the effi-
iencies of chimeric VLP production from Vero cells were
bout 10 times lower than those from 293T cells (data not
hown). We found that when we used TransIT-293, the pro-
uction of chimeric VLPs from CHO cells was about one-third
f those from 293T cells in repeated experiments (data not
hown). Prolonged incubation of transfected 293T cells and
HO cells for more than 4 days posttransfection did not

mprove the accumulation of chimeric VLPs in the super-
atant (data not shown).

erum neutralizing antibody titers and lung SCoV
iters in the mice immunized once with chimeric
LPs

or assessing the usefulness of chimeric VLPs as a SCoV vac-
ine candidate, we first tested the effects of immunization

f mice with chimeric VLPs on serum neutralizing antibody
roduction and inhibition of SCoV replication in the lung. Six-
o 8-week-old female Balb/c mice were inoculated i.m. once
ith a mixture of 2 �g of chimeric VLPs prepared from 293T
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Figure 2 SCoV-specific neutralizing antibody titers of immu-
nized mice at 28 days after immunization (A) and SCoV titers
in lungs of mice 2 days after intranasal challenge with 1 × 106

TCID50 of SCoV at day 28 (B). (A) Mean SCoV-specific neutraliz-
ing antibody titers of the mice at 28 days after i.n. inoculation
of SCoV or i.m. inoculation of placebo (medium from Vero E6
cells) or 2 �g chimeric VLP suspended in PBS or alum are shown.
The lengths of the bars indicate mean virus-specific serum neu-
tralizing antibody titers. The vertical dashed line demarks the
minimal antibody detection level in this assay (i.e., 10). (B) Mice
were independently inoculated i.m. with placebo (medium from
Vero E6 cells), a mixture of 2 �g chimeric VLP and PBS or a mix-
ture of 2 �g chimeric VLP and alum or i.n. with 1 × 106 TCID50 of
infectious SCoV. After 28 days, these mice were challenged with
1 × 106 TCID50 of SCoV. Two days later, mice were sacrificed and
the virus titers in the lungs were determined as shown in the
graph. The lengths of the bars indicate mean pulmonary virus
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titers in each indicated group (log10/lung). The vertical dashed
line denotes the minimal virus detection level in this assay (i.e.,
2.3 log10/lung). Number of animals/group = 5.

cells and PBS or 2 �g of chimeric VLP mixed with alum. As
a placebo, mice were inoculated i.m. with Vero E6 cell cul-
ture fluid, while another group of mice were inoculated i.n.
with 1 × 106 TCID50 of SCoV to produce solid post-infection
immunity. Twenty-eight days later, the mice were bled for
determining the serum neutralizing antibody titers (Fig. 2A).
Subsequently, the mice were challenged i.n. with 1 × 106

TCID50 of SCoV and the lung virus titers at 2 days post SCoV
challenge were determined (Fig. 2B). No SCoV-specific neu-
tralizing antibodies were detectable in the sera of the mice
inoculated i.m. with placebo. Minimal or no virus-specific
neutralizing antibodies were evident in mice inoculated with

chimeric VLPs mixed with PBS (mean titer 10 ± 0). The mean
serum neutralizing titers for the groups of mice inoculated
with live virus (70 ± 20) or chimeric VLP administered with
alum (60 ± 23) were not statistically different from each
other, but were statistically significantly higher (p < 0.05)
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han those of the mice immunized with a mixture of chimeric
LPs and PBS and the placebo group. After challenge, the
ice immunized with Vero E6 cell culture fluid (placebo) or
ith a mixture of 2 �g chimeric VLP and PBS had high mean
irus titers of 6.5 log10/lung and 5.2 log10/lung, respectively.
n contrast, no virus was detectable in the lungs of the
ice previously administered either live SCoV or 2 �g of

himeric VLP mixed with alum. The SCoV titers in the lungs
f these mice two days post virus challenge were inversely
roportional to their serum virus-neutralizing antibody
iters.

ffects of chimeric VLP amounts on neutralizing
ntibody titers and inhibition of challenged SCoV
eplication in the lungs

o study the immunogenicity of chimeric VLPs, three groups
f mice were inoculated i.m. with 0.5, 1, or 2 �g mixed with
lum. Other groups of mice received a mixture of 2 �g of
himeric VLPs and PBS, 2 �g of MHV VLPs and alum, 1 �g
f Influenza A virus vaccine and alum, Vero E6 cell culture
uid, live SCoV, or alum alone, or the mice received no treat-
ent. Mean neutralizing titers at 28 days post inoculation in
ice receiving 0.5, 1, or 2 �g chimeric VLPs with alum were

0 ± 10, 84 ± 75, and 110 ± 60, respectively (Fig. 3A). In the
bsence of alum, 2 �g chimeric VLPs induced a lower but sig-
ificant neutralizing antibody response of 12.5 ± 5. The mice
nfected with SCoV had the neutralizing titer of 70 ± 20. The
ice inoculated with 2 �g of MHV VLP had no detectable

irus-specific neutralizing antibodies, demonstrating that
HV S protein did not elicit neutralizing antibodies against
CoV. The neutralizing antibody titers at 28 days post inocu-
ation were not investigated in the groups of mice inoculated
ith Influenza vaccine and alum, alum alone, or in those

eceiving no treatment.
At day 28, these mice, except for those untreated and

hose that had been inoculated with live SCoV, were boosted
ith the same material. Then the neutralizing antibody

iters at day 56 were determined (Fig. 3B). Mice injected
ith chimeric VLPs and alum had no increase in titer at

he lowest dose, but 1- and 2-�g doses resulted in marked
ooster responses. Animals receiving the highest dose devel-
ped titers of 200 ± 97.7, while those infected with SCoV
ad the neutralizing titer of 97 ± 60. A second inoculation
f a mixture of 2 �g chimeric VLPs with PBS efficiently
oosted median neutralizing antibody titers to 57 ± 21,
hich was higher than the titer following 0.5 �g of chimeric
LP mixed with alum (15 ± 5.7). No neutralizing antibod-

es were detected at the lowest dilution tested in groups
eceiving MHV VLP, influenza vaccine and alum, alum alone,
r placebo or in those left untreated.

All mice were challenged i.n. with live SCoV on day 56
nd sacrificed 2 days later. As expected, maximal pulmonary
irus titers were detected in the groups of mice inoculated
ith placebo (6.9 log10 ±0.7), MHV VLPs (6.2 log10 ±0.4),

nfluenza vaccine and alum (7.5 ± 0.1), alum alone (7.3 ± 0),

nd in those left untreated (8.5 ± 0) (Fig. 3C). Partial pro-
ection was obtained in groups of mice inoculated twice
ith 0.5 �g chimeric VLP mixed with alum (5.5 log10 ±0.6),
�g chimeric VLPs and PBS (3.9 log10 ±1.1) or 1 �g chimeric
LPs mixed with alum (3.1 log10 ±0.5). Notably, no virus
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Figure 3 SCoV-specific neutralizing serum antibody titers in
the immunized mice and SCoV titers in lungs of mice 2 days
after intranasal challenge with SCoV at day 56. On day 0, mice
were either left untreated or were inoculated i.n. with 1 × 106

TCID50 of SCoV or injected i.m. with placebo (medium from Vero
E6 cells), a mixture of 2 �g MHV VLPs and PBS, a mixture of 2 �g
chimeric VLP and PBS, a mixture of 2 �g chimeric VLP and alum,
a mixture of 1 �g chimeric VLP and alum, a mixture of 0.5 �g
chimeric VLP and alum, a mixture of 1 �g influenza virus vaccine
and alum, or alum alone. (A) The graph represents virus-specific
serum neutralizing antibody titers at 28 days post inoculation.
Number of animals/group = 5. (B) At 56 days blood samples
were collected, and then the mice, excluding those inoculated
with live SCoV and left untreated, were re-inoculated with
the same material. The graph represents virus-specific, serum-
neutralizing antibody titers at 56 days after initial inoculation.
The vertical dashed lines in (A) and (B) denote the minimal anti-
body detection level in this assay (1/10 dilution). (C) Mice were
inoculated with 1 × 106 TCID50 of SCoV at day 56. After 2 days,
mice were euthanized, and the lung virus titers were deter-
mined. The vertical dashed line in (C) denotes the minimal virus
detection level in this assay (2.3 log10 TCID50/g lung). The data
from two independent experiments were combined and are rep-
resented in (B) and (C). The number of mice used for (B) and (C)
were: 7 for placebo, SCoV, and 2 �g chimeric VLP with PBS; 6 for
2 �g chimeric VLP with alum; 5 for MHV VLP with alum and 1 �g
chimeric VLP with alum; 4 for 0.5 �g chimeric VLP with alum;
and 3 for all other groups.
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as detectable in the lungs of any of the mice given live
irus i.n. or two doses of 2 �g chimeric VLP mixed with
lum. The mean lung virus titers for the latter two groups
ere statistically different from the mean pulmonary SCoV

iter seen in the placebo control group when these means
ere compared using a non-parametric ANOVA test (both
values being <0.01). Overall, the virus levels in these

nimals generally correlated inversely with those of SCoV-
pecific neutralizing antibodies present in the sera of the
ice.

istopathological examination and IHC of the lungs
f the immunized mice after SCoV challenge

istopathological examination of the groups of mice that
either produced neutralizing antibodies nor suppressed
CoV replication in the lungs (i.e., mice treated with Vero
6 cell culture fluid, inoculated with a mixture of influenza
irus vaccine and alum, and with alum alone, as well as
hose left untreated), revealed moderate interstitial pneu-
onia (Fig. 4A and B). The bronchial epithelium appeared

o be the main affected target with prominent cellular cyto-
lasmic swelling and blebbing. Extensive accumulation of
ellular debris and necrotic epithelial cells, accompanied
y inflammatory infiltrates, occurred in some bronchioles
Fig. 4A). We also observed a moderate infiltration of
ononuclear cells around peribronchiolar and perivascular

egions of infected tissues and a mild-to-moderate thick-
ning of the bronchiolar interstitial tissues and alveolar
alls with mononuclear cell infiltration (Fig. 4B). IHC stain-

ng demonstrated the presence of SCoV N protein within
ronchiolar epithelial cells, but not within cells of alveo-
ar lining (Fig. 4C). In contrast to the prominent pathology
nd viral replication in the lungs of the control animals,
ild interstitial pneumonia was found, upon viral challenge,

n the mice previously immunized with mixtures of either
himeric VLP and PBS, or chimeric VLP and alum, and in
hose infected with live SCoV (Fig. 4D, E, G, H). Specifi-
ally, cytopathology, i.e., swelling and blebbing, was rarely
bserved in bronchiolar epithelial cells, despite the pres-
nce of some desquamated cells within the airway lumen.
dditionally, the thickening of bronchiolar interstitial tis-
ues and the alveolar wall and cellular infiltration were less
rominent when compared with those of the control groups.
here was no big difference in the lung pathology between
ice inoculated with VLP and PBS and those inoculated with
LP and alum. We noticed that inflammatory mononuclear
ells seemed to be the main, if not only, cellular compo-
ent of the cellular infiltrates around the peribronchiolar
nd perivascular regions of mice initially primed with live
CoV.

In addition to inflammatory mononuclear cells, we
bserved the infiltration of neutrophils and eosinophils
round the bronchioles and blood vessels of mice inoculated
ith a mixture of chimeric VLPs and PBS and that of chimeric
LPs and alum (Fig. 4D and E); counting of the infiltrating

ells at the five fields of each mouse’s lung tissues revealed
hat infiltrating eosinophils represented 13.2 ± 9.6% and
2.2 ± 9.9% of all the infiltrating cells in mice inoculated
ith a mixture of chimeric VLP and PBS and in those inocu-

ated with chimeric VLP and alum, respectively. In contrast,
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Figure 4 Lung histopathology and immunohistochemistry of the control placebo and immunized mice at 2 days post SCoV chal-
lenge. Mice (n = 5 for all groups) were inoculated with VeroE6 cell culture fluids twice at days 0 and 28 (A—C), immunized with a
mixture of chimeric VLPs and PBS at days 0 and 28 (D and G), chimeric VLPs and alum (E and H) at days 0 and 28, or live SCoV at day
0 only (F and I). These mice were challenged with SCoV at day 56 and sacrificed at day 58. (A) Bronchiolar epithelial cells showed
swelling and blebbing of the luminal cytoplasm, and extensive cellular debris comprised of necrotic epithelium and inflammatory
cells in the airway lumen. Moderate peribronchiolar mononuclear inflammatory cell infiltrates are also present (hematoxylin and
eosin staining) (magnification, ×200). (B) Thickening of the bronchiolar interstitial tissues and alveolar walls with mononuclear cell
infiltration (magnification, ×200). (C) SCoV N antigen was distributed in bronchiolar epithelial cells, as determined by immunohisto-
chemistry (magnification, ×400). (D—F) Bronchiolar epithelial cells showed rare swelling and blebbing of the luminal cytoplasm, and
the rare presence of cellular debris in airways (magnification, ×200). The peribronchiolar mononuclear, neutrophil and eosinophil

wer
infiltrates (D, inset) (magnification, ×400). (G—I) SCoV antigens
mice (magnification, ×400).
infiltrating eosinophils represented merely 1.42 ± 1.42%, 0%,
0% and 0.77 ± 0.33% of all infiltrating cells in mice inocu-
lated, respectively, with Vero E6 cell culture fluid, a mixture
of influenza virus vaccine and alum, alum alone, and in those
left untreated.

D

T
o
n

e not detected by immunohistochemistry in the lungs of these
iscussion

he present study tested the efficacy of immunization
f mice with chimeric VLPs for elicitation of anti-SCoV-
eutralizing antibodies, suppression of SCoV replication in
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he lungs, and SCoV-mediated lung cytopathology. Although
arious strategies for SCoV vaccines, including expression
f SCoV S protein in other viruses [18,48,49], inactivated
CoV particles [50—53], DNA vaccines [17,54], recombinant
protein [55,56] and other approaches [57,58], have been

eported, to our knowledge this is the first report test-
ng VLPs propagated in mammalian cells as SCoV vaccine
andidates. It appears that chimeric VLPs produced from
ammalian cells in this study were more immunogenic than
ere SCoV VLPs produced by using a baculovirus-expression

ystem [38]; immunization of the mice four times with
00 �g of the baculovirus-derived SCoV VLPs in each immu-
ization elicited neutralizing antibody titers that were no
onger higher than those obtained in the present study.
se of inactivated SCoV as a SCoV vaccine is a similar
accine strategy that was explored in the present study.
thers reported that immunizing mice twice with 1 �g of
ouble-inactivated SCoV with alum elicited high titers of
eutralizing antibodies [50]. A major negative aspect of the
se of inactivated SCoV vaccines is that extreme care must
e taken to completely inactivate infectious SCoV in the vac-
ine preparations. In contrast, a VLP-based vaccine strategy
liminates this safety concern.

Accumulated data suggest the importance of the compat-
bility of the S protein endodomain (or a cytoplasmic tail)
nd M protein for assembly of S protein into coronavirus or
LPs [40,59,60]; in past reports, S protein assembly occurred

f these two regions are derived from the same virus, but
ot from different coronaviruses. Accordingly, we were sur-
rised to find the efficient production of chimeric VLPs
arrying SCoV S protein and MHV-derived N, M and E proteins.
he present data suggest that the endodomain of SCoV S
rotein interacted efficiently with MHV M protein and assem-
led into VLPs. The endodomain of coronavirus S proteins
as two partially overlapping sub-regions, a N-terminal,
18-residue-long, cysteine-rich region and a C-terminal,
27-residue-long, charge-rich region (Fig. 5). MHV lacking

he very C-terminal 12-amino-acid segment of the S pro-

ein endodomain is viable and replicates well in cell culture,
uggesting that the removal of 12 carboxy-terminal residues
oes not inhibit interactions between the mutant S protein
nd the M protein [25,26]. In contrast, replication is severely

m
w
n
w

igure 5 Amino acid sequences of endodomains of SCoV, MHV and
rotein sequences of SCoV (strain Urbani, GenBank accession no. AY
nd FIPV (GenBank accession no. AY994055). The transmembrane do
egion are indicated. Charge-residues in the membrane proximal re
oxes. Asterisks represent identical residues.
K.G. Lokugamage et al.

mpaired in MHV mutants lacking the very C-terminal 22
mino acids or 25 amino acids of the S protein endodomain,
.e., constituting the majority of the charge-rich region [26].
urthermore, a single point mutation of a charged amino
cid to alanine in the charge-rich region of the endodomain
as no detectable effect on the incorporation of a heterol-
gous protein containing MHV S endodomain into virions,
hereas mutants containing multiple charged residues-to-
lanine significantly reduce the incorporation of the protein
nto virions [26]. These data suggest that the charge-rich
egion of the endodomain plays a key role in the selective
nclusion of the S protein into the virion. We noted that
here were 6 charged residues between the transmembrane
omain and the C-terminal 12 amino acids in both SCoV and
HV, while only 3 charged residues are found in feline infec-

ious peritonitis virus (FIPV) (Fig. 5). FIPV S protein is not
ssembled into VLPs or viruses that carry MHV M, N and E
roteins [25]. Accordingly, the presence of the same num-
er of charged residues at the region of the endodomain,
hich is considered to be important for S protein assem-
ly into virus particles, in both SCoV and MHV implies that
oth viruses had a similar structure in this portion of the
ndodomain, allowing them to interact with MHV M pro-
ein.

Inoculation of mice with a mixture of chimeric VLPs and
lum, but not that of MHV VLPs and alum, induced antibod-
es that neutralized SCoV (Fig. 3). The lack of heterologous
rotection confirmed that the SCoV S protein is the rele-
ant constituent of the chimeric VLPs. As has been observed
n other VLP systems [61,62], the particles themselves are
mmunogenic after 1 or 2 injections and provided protec-
ion when challenge was carried out after the second i.m.
njection of only 2 �g. Addition of alum adjuvant enhanced
nduction of neutralizing antibodies, and indeed titers
eached those post-infection after two injections of 2 �g.
ll VLP groups had significant protection as evidenced by
eduction in lung viral titers 2 days after virulent virus chal-
enge, the optimum time to detect replication in the Balb/c

ouse [23]. Higher neutralizing antibody titers correlated
ith lower virus content, and the 2 �g plus alum groups had
o detectable virus. Overall, our data were in agreement
ith past reports revealing the importance of SCoV-specific

FIPV. A CLUSTALW alignment [80] of the carboxy-terminus of S
278741), MHV (strain A59, GenBank accession no. NC 001846),
main, cytoplasmic domain, cystein-rich region, and charge-rich
gion are shaded. Twelve residues near C-terminal region are in
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neutralizing antibodies, most of which recognize S protein,
for curbing SCoV replication in the lung [21,63—67].

Immunization of mice with Venezuelan equine encephali-
tis virus replicon particles encoding SCoV N protein induced
an enhanced immunopathology, that included infiltrating
eosinophils in the lungs, following SCoV challenge [68],
implying the possibility that a SCoV vaccine lacking N pro-
tein expression may be desirable, as it would reduce the
potential risk of immunopathological changes primed by
immunization. In this regard, chimeric VLPs carrying MHV N
protein or those lacking N protein (unpublished data) could
eliminate the possible induction of SCoV N protein-induced
immunopathology. The efficient production of chimeric VLP
from CHO cells as we report in this study is promising as
a new strategy for preparing VLP-based SCoV vaccine from
mammalian cells; its suitability for preparing large quan-
tities of VLP-based vaccine against SCoV remains to be
determined. Further improvements of chimeric VLP pro-
duction, e.g., codon-optimization of the SCoV S gene and
MHV N, M and E genes in the expression plasmids and
development of an inexpensive transfection reagent and/or
procedure, would be required for the substantial enhance-
ment of chimeric VLP production.

Accumulated data suggest that antibodies against the
FIPV S protein fail to protect cats from FIPV chal-
lenge and enhance virus replication in the host through
antibody-dependent enhancement (ADE) [69—73]. It has
been reported that antibodies that neutralize most human
SCoV isolates enhance entry of a SCoV isolate from the civet
in the cell culture level [74], but it is unclear whether ADE
occurs in animals that are immunized with SCoV vaccine can-
didates. We did not observe signs of ADE in our study; the
mice that were immunized with chimeric VLPs or initially
inoculated with SCoV efficiently suppressed challenged SCoV
replication. S protein in chimeric VLPs was derived from a
SCoV Urbani strain, which was also used as the challenge
virus, and VLPs induced antibodies that readily neutralized
SCoV in vitro. In this regard, it is worth noting that immu-
nization of mice with a Venezuelan equine encephalitis virus
replicon carrying S protein of the Urbani strain showed only
limited protection against heterologous SCoV that contained
S gene from the human GD03 isolate [68].

Subbarao et al. reported mild and focal peribronchiolar
mononuclear inflammatory infiltrates and SCoV antigens in
bronchiolar epithelial cells in the lungs of BALB/c mice at
2 days post SCoV inoculation [23]. Staining with SCoV mon-
oclonal antibody to N protein, we also found SCoV antigen
within bronchiolar epithelial cells after challenge of unim-
munized mice. Consistent with the SCoV titers in the lungs,
no viral antigen was detected in the lungs of the mice inoc-
ulated with chimeric VLPs. The absence of SCoV antigen in
the lungs of VLP-immunized mice or mice pre-exposed to live
virus, as indicated by the results of IHC staining (Fig. 4B),
strongly argue for the efficacy of chimeric VLPs in protecting
against SARS-CoV infection. SCoV-induced histopathologi-
cal changes that were detected in unimmunized mice in
our study appeared to be similar or slightly more severe,

especially with respect to the changes in the bronchioles,
than those described in the report of Subbarao et al. [23].
After SCoV challenge, the mice immunized with chimeric
VLPs showed mixed peribronchiolar inflammatory infiltrates
and a slight thickening of the peribronchiolar interstitium
e with SCoV 805

nd alveolar walls. These lesions in immunized mice were
ilder than seen in unimmunized mice, demonstrating the

ffects of chimeric VLP immunization in suppressing SCoV-
nduced cytopathological changes in the lungs. The mice
mmunized with a mixture of chimeric VLP and alum had
igher neutralizing antibody titers than did those immunized
ith a mixture of the chimeric VLP and PBS, while both
roups of the mice showed similar levels of SCoV-induced
ung cytopathology, suggesting neither alum nor neutraliz-
ng antibody titers were sole determinant of the severity of
nflammatory responses. Possible cellular immune responses
gainst chimeric VLP proteins were suggested by the obser-
ation that the mice inoculated with a mixture of chimeric
LPs and PBS and that of chimeric VLPs and alum, but not
ther groups of mice, showed infiltration of neutrophils and
osinophils around the bronchioles and blood vessels. In
ontrast, it has been reported that immunization of mice
ith a mixture of inactivated SCoV with adjuvant MF59
rimary elicited humoral immune response [75]. Further
nvestigation, using not only Balb/c mice but also other
CoV susceptible mice [41,76,77] and other animal models
78,79], will be necessary to evaluate the implications and
mpact of cellular immune activities, including pulmonary
nfiltration of neutrophils and eosinophils, as well as the
tility of chimeric VLPs as a SCoV vaccine.
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