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The main part of each white blood cell (WBC) is its nucleus which contains chromosomes. Although white blood cells (WBCs)
with giant nuclei are the main symptom of leukemia, they are not sufficient to prove this disease and other symptoms must be
investigated. For example another important symptom of leukemia is the existence of nucleolus in nucleus. The nucleus contains
chromatin and a structure called the nucleolus. Chromatin is DNA in its active form while nucleolus is composed of protein and
RNA, which are usually inactive. In this paper, to diagnose this symptom and in order to discriminate between nucleoli and chro-
matins, we employ curvelet transform, which is a multiresolution transform for detecting 2D singularities in images. For this
reason, at first nuclei are extracted by means of K-means method, then curvelet transform is applied on extracted nuclei and the
coefficients are modified, and finally reconstructed image is used to extract the candidate locations of chromatins and nucleoli. This
method is applied on 100 microscopic images and succeeds with specificity of 80.2% and sensitivity of 84.3% to detect the nucleolus
candidate zone. After nucleolus candidate zone detection, new features that can be used to classify atypical and blast cells such as
gradient of saturation channel are extracted.

1. Introduction

White blood cells (WBCs) or leukocytes play a significant
role in the diagnosis of different diseases such as leukemia
and different types of infections [1]; therefore, extracting
information about them is valuable for hematologists. How-
ever, there are a few complications in extracting information
from WBCs due to wide variation of these cells in shape, size,
edge, and position. Generally, the WBCs are clustered in two
major groups of myelogenic and lymphogenic [1] (Figure 1).

Leukemia is divided into two different categories of
myeloblast and lymphoblast. These two groups are also di-
vided into acute and chronic types. All leukemic cells are
weak and cannot cooperate in the body defense procedure.
By this form of clustering we have four types of leukemia
which are called acute myelogenic leukemia (AML), chronic
myelogenic leukemia (CML), acute lymphogenic leukemia
(ALL), and chronic lymphogenic leukemia (CLL).

Clinically, these types have some common symptoms
such as high nucleus to cytoplasm ratio (NCR), the size of
nucleus, and existence of nucleolus, which is non-membrane
bound structure inside nucleus, in nucleus [1].

The use of image processing techniques in hematology
has been developed rapidly in the last years, which helps
hematologists to detect diseases automatically using blood
smear images. These techniques can provide information
about ratio of nucleus versus cytoplasm to identify and clas-
sify different types of WBCs such as neutrophile, basophile,
lymphocyte, and so forth [3]. Many efforts have been done
in the area of general segmentation of WBCs by means of
methods such as edge and border detection, region growing,
filtering, mathematical morphology, and watershed clus-
tering [3]. Ritter and Cooper [4] presented an automatic
method which segments and identifies the objects in a blood
smear image. However their work has some restrictions like
inability to find overlapped objects which is the reason why
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Figure 1: Different classes of human blood cells [2].

most of the detailed information has been lost in the images.
Ongun et al. [5] segmented the objects in a microscopic
image based on morphological preprocessing followed by
iteration algorithms like snake edge detection. Jiang et al. [6]
proposed WBCs segmentation by different methods like
snake and watershed in color space. Dorini et al. [7] en-
hanced the segmentation accuracy by using scale-space oper-
ators. The automatic morphological method of Scotti [8]
was based on the morphological analysis of WBCs and shape
of normal cells. Their proposed system extracts the morpho-
logical indexes (lymphocytes). Kumar et al. [9] used Teager
energy operator for nucleus segmentation with edges, which
are detected effectively by Teager energy operator, but it was
restricted because of low contrast between the gray level of
cells and background [3]. For cytoplasm segmentation, they
used a simple morphological method. Cseke used multilevel
segmentation method [10], which used Otsu thresholding
algorithm [11]. Recently, Ko et al. have used the gradient
vector flow and snakes method which is based on probability
density function estimated from samples of WBCs nuclei and
the other parts of the images [12]. Moreover, many attempts
on image enhancement have been done in this area to show
the WBCs nucleus better; as a sample, Halim et al. used a
global contrast stretching technique in order to increase the
nucleus image quality in the HIS color system [13].

Another work, which was done on the fluorescence in situ
hybridization images, was reported by Jeong et al. [14]. They
used a threshold, which was estimated using a Gaussian mix-
ture model and maximizing the likelihood function of the
grey values for the cell images, to segment the cell nuclei from
the background; then the overlapped and isolated nuclei are
classified to facilitate a more accurate nuclei analysis. In order
to do this pipeline, the morphological features of the nuclei,
such as their compactness, smoothness, and moments, are
extracted and applied to Bayesian networks for training [14].
As an illustration which used evolutionary methods, Yi et al.
[15] have used online trained neural network as a classifier
for segmentation of WBCs from the image and applied par-
ticle swarm optimization (PSO) algorithm for training their
classifier in order to converge the training procedure faster
[15]. Jiang and his colleagues have reported a novel segmen-
tation which was based on watershed technique. This water-
shed clustering has been done in 3D HSV (hue-saturation-
volume) color system. They use HSV color system because of
low correlation between its different channels [16].

RGB color 
microscopic image

Median filter for R 
and G channels

into 3 classes

Morphological 
filter

Build a mask

RGB Luv

K-means clustering

Figure 2: Nucleus segmentation procedure.

Although the mentioned methods are able to generally
segment WBCs, more advanced techniques are required for
exploring inside WBCs. For example, beside giant nucleus as
the main symptom of leukemia, another important symptom
for this disease is the existence of nucleolus in nucleus. If
we could extract nucleolus candidate zone, then we will be
able to classify blast cells and atypical cells by additional
processing steps. In fact atypical leukocytes have chromatins,
with empty space and low saturation, which can be wrongly
detected as nucleolus. The key point to classify blast cells and
atypical ones is the answer of this question: “How much the
texture of candidate zone for nucleoli is more hyper-chromic
than the texture of nucleus?” [14]; that means the smaller the
gradient, the more chance of it being a blast cell. The main
reason is that blast cells have nucleoli that contain liquid; so,
their saturation is not far from texture of nucleus [1, 14].

In this study, at first, nuclei are extracted by clustering
the microscopic images into three color clusters in Luv color
system using K-means method [15, 16]. To extract candidate
zone for nucleoli (the zone of both nucleoli and chromatins
in nucleus), the curvelet transform [17] is applied on ex-
tracted nucleus. Curvelet transform is an appropriate trans-
form for detecting detailed information in images due to its
optimality for extraction of 2D singularities. This property
makes this transform a near-optimal tool for extraction of
2D singularity-based features (such as curves in images)
especially in case of investigating very small and detailed
features (such as nucleoli in WBC images). So, after image
reconstruction based on modified curvelet coefficients using
a similar thresholding criterion suggested in [18] and some
postprocessing steps the nucleolus candidate zone is ex-
tracted. After extraction of these regions, we find the color
saturation gradient of nucleus texture and suggest a new fea-
ture for discrimination between atypical and blast cases. This
feature guides us to classify the lymphoblast cells and atypical
lymphoma cells.
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Figure 3: (a) A sample RGB microscopic image; (b) R channel; (c) G channel; (d) B channel.

(a) (b)

(c) (d)

Figure 4: (a) Main R component; (b) output of applying median filter on R; (c) main G component; (d) output of applying median filter
on G.

The rest of this paper is organized as follows. In Section 2,
the segmentation algorithm for nucleus extraction is ex-
plained. In Section 3, the proposed curvelet-based method
for nucleolus detection is described. Section 4 is dedicated to
results, and finally, the conclusions are drawn in Section 5.

2. Nucleus Segmentation

The aim of nucleus segmentation is separating the nucleus
from the other parts of a cell and a microscopic blood smear

image. A typical peripheral blood smear image consists of
four components: red cells (unnucleated cells), white blood
cells nucleus, cytoplasm, and background which contains
platelets and even spot noise. Usually WBCs appear in a dif-
ferent color from red cells and the other parts of a peripheral
blood smear images. In this section by using color informa-
tion, after applying several preprocessing steps, nuclei are
extracted by means of K-means method [19–21]. Till now,
several methods have been reported for color image seg-
mentation. For example in [19] a self-organizing map-based
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(a) (b) (c)

Figure 5: (a) Main RGB image; (b) enhanced RGB image; (c) Luv color system of enhanced RBG image.

(a) (b)

(c) (d)

Figure 6: (a) Original image; (b) class 1 from color clustering; (c) class 2 from color clustering; (d) class 3 from color clustering.

K-means method is proposed. In this paper we use a simple
technique such as proposed method in [20]. Figure 2 shows
the WBCs nucleus segmentation procedure.

At first, the microscopic image is separated into R, G, and
B components. The median filter is applied only on R and G
to decrease spot noise and maintain the edge quality as much
as possible. As shown in Figure 3, B channel has no specific
data on nucleus. Because it has approximately same gray level
of RBCs and background, the processing is continued only
on R and G channels.

The results of applying median filter and grayscale
histogram equalization on R and G channels are shown
in Figure 4. After that, the RGB image is reconstructed by

filtered R and G components and the main B component.
In this case, the the nucleus keeps its own color but the back-
ground of the image and RBCs become brighter. Now, we
need some color system which can predominant the color of
nucleus from the color of background and RBCs. This color
system can be Luv color system which has three independent
channels [22]. It has been shown that this color system
specify the nucleus from the other objects of the image [23].
The dependency of color channels is decreased in LUV
system rather than RGB because of more Euclidean distances.
Figure 5 shows the enhanced image and its LUV color system.

It is clear from Figure 5 that this image representation
system can discriminate the WBC nucleus from the other
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Figure 7: A comparisons between the results of applying K-means in RGB and Luv domains.

objects of image. Now, we can classify the colors of LUV sys-
tem into 3 classes which can be done by applying a simple K-
means clustering method on Luv color system and mapping
this clusters again to RGB color system. These three classes
are shown in Figure 6 in RGB color system. Note that ap-
plying K-means clustering method in RGB domain does not
lead to an acceptable result (Figure 7).

To specify which image (in Figures 6(b), 6(c), and
6(d)) indicates the nucleus, the mean value of R channel is
calculated for each image and the image with minimum value
would be the candidate of nucleus. Then, the mask of nucleus
is made by thresholding in grayscale image and after hole
filling, we have a mask with extra white objects which must
be omited from the nucleus mask. To eliminate the extra
objects detected as nucleus, morphological opening (with
2 pixels diameter disk) and closing (with 8 pixels diameter
disk) and area filters, which omit the white objects with
area less than 5000 pixels, are applied. The area elimination
number (5000 pixels) is chosen by trial and error due to this
fact that any healthy or blast lymphocytes have a restricted
size [24]. The results of these steps are shown in Figure 8.
Figure 9 shows the extracted nucleus of WBCs obtained by
applying the extracted mask on Figure 8.

Note that this method can also be applied to the images
with more than one nucleus which is illustrated in Figure 10.

In addition, in some cases such as the case where the edge
of nucleus be more transparent than other regions in nucleus,
a bad segmentation result may be obtained.

3. Extraction of Candidate Zone of Nucleolus

In this section at first we introduce a method for detection of
candidate zone that shows the candidate regions for either
chromatins or nucleoli. In the next step we suggest a new
feature based on the gradient of saturation channel by which
we try to distinguish between chromatins and nucleoli. The
results of this step can be used as a new feature for classifica-
tion of blast and atypical cells.

3.1. Candidate Zone Detection. To extract nucleolus, the
curvelet wrapping transform is applied to the extracted
nucleus image (in previous section). In this level, the main
image is decomposed to different subbands with different
resolutions. To apply curvelet transform, the proposed algo-
rithm in [25, 26] is used. This algorithm decomposes an
N ×N image as follows:

f
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where cJ(x, y) shows the lowpass coefficients of image and
wj are the detail coefficients of the image in scale of 2− j . The
output of this algorithm is composed of J+1 subbands by the
size of N ×N .

In this study, wrapping curvelet transform [25] in 4
levels and 8 angles is applied on the extracted nucleus (using
proposed method in previous section and using grayscale
image) and then the coefficients are modified using the fol-
lowing modified threshold suggested in [25]
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where yc(x, σ) is the value of coefficient of output curvelet
transform, p is the parameter of nonlinearity, and s is the
dynamic range of each subband. m is a parameter which de-
pends on the curvelet coefficient in each subband and is
calculated by (3)

m = lMc, (3)
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(a) (b)

(c) (d)

Figure 8: (a) The extracted nucleus region by applying K-means clustering; (b) the extracted binary mask from (a); (c) hole-filled binary
mask of nucleus; (d) the final mask of the nucleus after applying area filters.

(a) (b)

Figure 9: (a) Main image; (b) the result of applying extracted mask (in Figure 8) for nucleus extraction.

where Mc is the maximum of each subband and l is between
0 and 1. In this study, the proposed parameters are n = 10,
l = 0.01, c = 5, p = 2, and s = 10. It is considerable that these
values are obtained experimentally and optimized by trial
and error. After modification of details subbands, the coarse
subband is multiplied to 10 in order to enhance the low-
resolution information in the image and then the image is
reconstructed. Then a simple grayscale stretching and Otsu
grayscale thresholding [11] are applied on the image to make
a mask of details of nucleus. Figure 11 shows the results of
these steps for extracted nucleus in previous step, and Figure
12 shows the results of applying extracted mask (in Figure 11)

on main image. Note that in [25], the curvelet coefficients
smaller than cσ are replaced with a constant. This constant
can be the same for all of the subbands or be adaptive with
the coefficients. As it has been shown in Figure 13, the “power
ten” criterion used in this paper is able to extract the nucleo-
lus candidate zone while using the constant criterion cannot.
The main reason is that using “power ten” criterion we would
be able to reduce low-frequency component and attenuate
the soft area that leads to domination of details including
nucleolus candidate zone.

Note that the mentioned method detects all of the fine
edges. To omit the edge of nucleus, a simple edge detection
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(a) (b)

(c) (d)

Figure 10: (a, c) Main image; (b, d) the result of applying extracted mask for 2 and 3 nucleus extraction.

method like canny method is applied on the mask, and then
this part of image is omitted by labeling to remove false
detected nucleoli (Figure 14).

In Figure 15 the results of applying our candidate zone
extraction algorithm on several images have been shown.

3.2. A New Feature Based on the Gradient of Saturation Chan-
nel. By applying the extracted mask from candidate zone ex-
traction step on S channel (in HSI color system), the gradient
of color saturation (G) can be defined as follows:

G = minnucleus texture f
(
i, j
)−maxcandidate zone f

(
i, j
)
.

(4)

In (4), where f (i, j) is the value of S channel, the minimum
value of S channel is subtracted from the maximum value
of nucleoli saturation. The mean saturation level of each
candidate zone of nucleoli is illustrated in Figure 16 (the
maximum saturation value of each pixel is 255). Note that in
this figure we have 14 distinct candidate regions whose mean
gradient measure is calculated by averaging gradient measure
of each region. As leukemic cells have usually fine nucleus
texture [2], in this type of cells G is far from zero, but in
atypical lymphoma cells this value is nearer to 0. The main
reason is that nucleoli contain liquid in and their color is
darker than chromatins created by different methods of
chromosome folding [1, 27]. So, this parameter helps us to
discriminate the chromatins from nuclei. Figure 16 shows

some detailed results for extraction of gradient vectors, and
Table 1 illustrates the final gradient values.

Our simulations show that mean of gradient (of satura-
tion channel) is not an appropriate feature in all cases for
distinguishing between atypical and blast cells and other
features obtained from gradient measure, and/or other ex-
tracted information from the cell can be more useful for final
blast cell detection. For example as shown in Table 1, the
average of calculated gradient for an atypical cell is far from
the maximum gradient measure; however this value (the
difference between average and maximum gradient, namely,
“maximum standard error”) is lower in blast cells. In other
words, the maximum gradient of saturation channel of nu-
cleoli candidate zones is near to average gradient of all can-
didate zones of nucleus, and this parameter can be also used
for nucleus detection.

4. Results

In this section, the final results of nucleolus candidate zone
detection are presented. This algorithm was tested on 100
microscopic images of size 768 × 576 captured with a simple
light microscope with three ocular lenses and an analog
video CCD which is coupled to a Pinnacle to digitize the
captured images (these images are available on http://misp
.mui.ac.ir/data/microscopic-image-data.html). The specificity

http://misp.mui.ac.ir/data/microscopic-image-data.html
http://misp.mui.ac.ir/data/microscopic-image-data.html
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(a) (b)

(c)

Figure 11: (a) Reconstructed image after modification of curvelet coefficients; (b) enhanced grayscale of (a) using stretching; (c) binary
thresholding of (b).

(a) (b)

Figure 12: (a) Main image, (b) Extraction of candidate zone.

(a) (b)

Figure 13: (a) Extracted candidate zone (black area) using “power ten” criterion; (b) extracted candidate zone (black area) using constant
criterion in [25].
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Table 1: Extracted nucleoli and their gradient value and delta measure.

Cell type Mean gradient feature Maximum gradient feature Maximum standard error Images

Atypical lymphoid −45.3077 −53.0000 7.6923

Lymphoblast −67.3788 −72.0000 4.6212

(a) (b)

Figure 14: (a) All edges of Figure 11(c); (b) after removing false detected nucleoli from (a).

(a) (b) (c)

Figure 15: (a) Main image; (b) nucleus detection; (c) candidate zone detection.
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Table 2: Sensitivity and specificity of proposed algorithm in this paper for nucleus and candidate zone of nucleolus detection.

Parameter Sensitivity Specificity

Nucleus detection 90.4% 82.7%

Candidate zone detection 84.3% 80.2%

(a) (b)

(c)

Figure 16: (a) Minimum saturation value of nucleus texture for an atypical cell (left images) and blast cell (right images); (b) maximum
saturation of some candidate zones; (c) the gradient measure for some regions.

and sensitivity of this method is calculated using the fol-
lowing formula:

sensitivit y = TP
TP + FN

,

specificit y = TN
TN + FP

,

(5)

where TP, FP, FN, and TN stand for true positive results,
false positive results, false negative results, and true negative
results.

For nucleus detection, TP is the common area between
regions extracted by algorithm and regions detected by the
pathologist. FP is the area that does not belong to nucleus but
our algorithm detects it as nucleus. TN is the area which does
not belong to nucleus and our algorithm also does not detect
that region as a part of nucleus. FN is the area that belongs
to nucleus but our algorithm is not able to detect it as a part
of nucleus. Figure 17 shows a comparison between extracted
regions as nucleus by our algorithm and detected regions by
pathologist. In this figure, the area determined by pathologist
is indicated with green line, and the detected region by our
algorithm is surrounded by black area.

Similarly for nucleolus candidate zone detection, TP is
the area detected as candidate zone of nucleolus by our
algorithm and pathologist and TN is the area not detected as
candidate zone of nucleolus by our algorithm and patholo-
gist. FP is the area detected as candidate zone of nucleolus by
our algorithm but this area is not candidate zone of nucleolus

Figure 17: Comparison between extracted regions as nucleus by
our algorithm (29838 pixels) and detected regions by pathologist
illustrated by green edge (28346 pixels).

based on pathologist’s decision. Finally, FN is the area not
detected as candidate zone of nucleolus by our algorithm but
this area is candidate zone of nucleolus based on pathologist’s
decision. These results are shown in Figure 18 for nucleolus
detection. In this figure the candidate regions detected
by our algorithm are indicated by black line and expert
diagnosed regions are shown by green line. The sensitivity
and specificity for both nucleus and nucleolus candidate zone
detection methods for all 100 images are shown in Table 2.



Computational and Mathematical Methods in Medicine 11

(a) (b)

Figure 18: A comparison between candidate regions detected by pathologist (3052 pixels) and extracted area by our algorithm (3611 pixels).
(a): extracted nucleoli by expert; (b): the results of our algorithm for nucleolus detection.

5. Conclusion

In this paper we introduced an algorithm for detection of
candidate zone of nucleoli located in nuclei as a new tool for
automatic exploring inside WBCs. This method is based on
curvelet transform that is an appropriate tool for extraction
and amplification of detailed information of cells such as
nucleoli.

The nucleolus candidate zone detection makes the blast
cells diagnosis easier, and we tried to introduce a new feature
to discriminate chromatins and nucleoli by means of gradi-
ent measure between candidate zones and texture of nucleus.
Although the existence of nucleolus is a main symptom of
blast cell, other features such as NCR, roundness factor, and
absolute size of cells are also other important symptoms
[1, 2, 28]. Based on this, the final results for automatic blast
cell detection can be obtained by extraction of these features
and using an appropriate classifier.
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