
ORIGINAL RESEARCH
published: 12 July 2018

doi: 10.3389/fnagi.2018.00212

Frontiers in Aging Neuroscience | www.frontiersin.org 1 July 2018 | Volume 10 | Article 212

Edited by:

Javier Ramírez,

Universidad de Granada, Spain

Reviewed by:

Tonio Ball,

Translational Neurotechnologie Labor,

Albert-Ludwigs-Universität Freiburg,

Germany

Nicola Amoroso,

Università degli studi di Bari Aldo

Moro, Italy

*Correspondence:

Hongyoon Choi

chy1000@snu.ac.kr

Dong Soo Lee

dsl@plaza.snu.ac.kr

†Data used in preparation of this

article were obtained from the

Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database

(adni.loni.usc.edu). As such, the

investigators within the ADNI

contributed to the design and

implementation of ADNI and/or

provided data but did not participate

in analysis or writing of this report. A

complete listing of ADNI investigators

can be found at: http://adni.loni.usc.

edu/wp-content/uploads/

how_to_apply/

ADNI_Acknowledgement_List.pdf

Received: 20 March 2018

Accepted: 22 June 2018

Published: 12 July 2018

Citation:

Choi H, Kang H and Lee DS for the

Alzheimer’s Disease Neuroimaging

Initiative (2018) Predicting Aging of

Brain Metabolic Topography Using

Variational Autoencoder.

Front. Aging Neurosci. 10:212.

doi: 10.3389/fnagi.2018.00212

Predicting Aging of Brain Metabolic
Topography Using Variational
Autoencoder
Hongyoon Choi 1*, Hyejin Kang 1 and Dong Soo Lee 1,2,3*, for the Alzheimer’s Disease

Neuroimaging Initiative †

1Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea, 2Department of

Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul

National University, Seoul, South Korea, 3 Korea Brain Research Institute, Daegu, South Korea

Predicting future brain topography can give insight into neural correlates of aging and

neurodegeneration. Due to variability in the aging process, it has been challenging to

precisely estimate brain topographical change according to aging. Here, we predict

age-related brain metabolic change by generating future brain 18F-Fluorodeoxyglucose

PET. A cross-sectional PET dataset of cognitively normal subjects with different age

was used to develop a generative model. The model generated PET images using age

information and characteristic individual features. Predicted regional metabolic changes

were correlated with the real changes obtained by follow-up data. This model was applied

to produce a brain metabolism aging movie by generating PET at different ages. Normal

population distribution of brain metabolic topography at each age was estimated as well.

In addition, a generative model using APOE4 status as well as age as inputs revealed a

significant effect of APOE4 status on age-related metabolic changes particularly in the

calcarine, lingual cortex, hippocampus, and amygdala. It suggested APOE4 could be

a factor affecting individual variability in age-related metabolic degeneration in normal

elderly. This predictive model may not only be extended to understanding the cognitive

aging process, but apply to the development of a preclinical biomarker for various brain

disorders.
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INTRODUCTION

Understanding the normal aging change in the brain is essential to investigate neural correlates
of cognitive aging and various neurodegenerative diseases including Alzheimer’s disease (Jagust
et al., 2009). In particular, the brain metabolism which can be measured by 18F-fluorodeoxyglucose
(FDG) PET has been regarded as a key biomarker for neurodegenerative disorders. Identifying
brain metabolic topography associated with aging could give insight into the neural basis of age-
related cognitive decline and help differentiate normal aging from neurodegenerative disorders.

Although the relationship between cerebral glucose metabolism and aging has been repeatedly
studied, there has been controversy about which brain regions show significant age-related
metabolic decline (Duara et al., 1984; Loessner et al., 1995; Moeller et al., 1996; Petit-Taboue et al.,
1998; Yanase et al., 2005). Individual genetic background and healthy status as well as underlying
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brain disease give rise to the individual variability in age-related
metabolic change (Raz et al., 2005; Grady, 2012). Due to this
variability, we have not been able to predict individual aged
brain understandably. Instead of consideration of individual
variability, previous studies have focused on the trend of overall
aging changes using cross-sectional imaging data with statistical
models such as linear regression. Even though this statistical
analysis could provide overall brain metabolic changes, it was
difficult to individually apply to estimate how far a given subject’s
brain metabolism is from the normal population at the same age.
This individual evaluation of brain metabolism can be extended
to the differentiation between normal and abnormal aging
process. It requires normal population distribution database of
all ages, however, it has been challenging to build a database of
the population distribution of normal brain metabolism for each
age from the limited cross-sectional data with subjects of various
age distribution.

Here, we develop a model for predicting future brain
metabolic topography by generating brain PET image. In this
study, we utilize variational autoencoder (VAE), a type of
unsupervised learning methods, which can generate images
from some representations (VAE) (Kingma and Welling, 2013).
We applied it to predicting FDG brain PET at different
ages. Each FDG PET image combined with the subject’s
current age information was represented by low-dimensional
features and then PET images corresponding different ages
were generated. We also generated population distribution
data of normal brain metabolic topography at different ages,
which represented variability in individual metabolic activity
at each age. As an application of our approach to discovering
factors that potentially affect brain aging, we further investigated
whether APOE4 status impacted on the age-related metabolic
change by using a generative model that uses age and APOE4
information.

MATERIALS AND METHODS

Subjects
In this study, the data included subjects recruited in Alzheimer’s
Disease Neuroimaging Initiative (ADNI) with FDG PET images
(http://adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD, VA Medical Center and University
of California San Francisco. ADNI recruited subjects from over
50 sites across the US and Canada. The primary purpose of
ADNI has been to test whether serial imaging and biological
markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD. For
up-to-date information, see http://www.adni-info.org. Written
informed consent to cognitive testing and neuroimaging prior to
participation was obtained, approved by the institutional review
boards of all participating institutions. Three hundred and ninety
three cognitively normal subjects without Alzheimer’s dementia
or mild cognitive impairment performed baseline FDG PET
(Age: 73.7 ± 5.9, range 56.1–90.1). These PET data and their
age information were used for developing the model. All subjects
underwent the clinical and cognitive assessment at the time of

acquisition. APOE genotyping was performed on DNA samples
obtained from blood. For detailed information on DNA sample
preparation and genotyping, see http://www.adni-info.org. For
393 subjects, 113 (28.8%) were APOE4 carriers and 280 (71.2%)
were APOE4 non-carriers.

FDG PET Preparation
All the PET images were downloaded from ADNI database.
FDG PET images were acquired 30 to 60min and the images
were averaged across the time frames and standardized to
have same voxel size (1.5 × 1.5 × 1.5mm). PET images
were acquired in the 57 sites participating in ADNI, scanner-
specific smoothing was additionally applied (Jagust et al.,
2015). PET images were spatially normalized to the Montreal
Neurological Institute (MNI) space using statistical parametric
mapping (SPM8, www.fil.ion.ucl.ac.uk/spm). Each PET image
was divided by mean FDG uptake of the cerebellum for
normalization.

Variational Autoencoder for PET Volumes
We utilized VAE model to generate virtual PET data according
to age information. VAE-based PET image generation is
summarized in Figure 1A. VAE is a type of unsupervised
learning methods which could represent the high-dimensional
data to low-dimensional features. The major strength of the
VAE is to generate virtual data from latent features. VAE
consisted of two components, encoder and generator. The
encoder reduces the dimension of data by compressing them to
latent features and the generator produces the data from any
values of latent features. The generator of VAE is a probabilistic
generator which assumes that the data were generated from
some conditional distribution and an unobserved variable
z in latent space. Thus, the probabilistic generator can be
defined by pθ (x|z). θ represents the parameters of generator.
The posterior distribution pθ (z|x) can be obtained by prior
distribution p(z), pθ (z|x) ∼ p (z) pθ (x|z). Variational Bayes
learns both parameters, pθ (x|z) and an approximation qφ(z|x)
to the intractable true posterior pθ (z|x). This is achieved by the
loss function,

L (φ, θ) = −Ez∼qφ(z|x)(log pθ (x|z))+ KL(qφ (z|x) ‖ pθ (z))

where KL is Kullback-Leibler divergence between the
learnt latent distribution and the prior distribution pθ (z),
acting as a regularization term (Kingma and Welling,
2013). The first term represents reconstruction loss of
autoencoder.

In this study, we applied VAEwith age information to generate
PET image, so used VAE conditioning on another description of
the data, y (i.e., age information). This model is aimed to generate
data from the conditional distribution as well as latent features z.
Thus, the probabilistic generator and the encoder can be defined
by pθ (x|y, z) and qφ(z|x, y), respectively. The loss function is
changed to,

L (φ, θ) = −Ez∼qφ(z|x,y)(log pθ (x|y, z))+ KL(qφ

(

z
∣

∣x, y
)

‖

pθ (z))
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FIGURE 1 | Metabolic change prediction by generating future brain PET. (A) VAE model which consists of encoder and generator was trained by PET images of

cognitively normal subjects. The encoder represents input PET images to 10 latent features. The generator generates virtual PET image from any values of latent

features and age information. (B) The VAE-based model could generate future brain PET individually using baseline PET image. A subject’s brain PET was encoded

into latent features. We hypothesized that these latent features were unchanged across age. Future brain PET was generated by entering future age and the latent

features. (C) Predicted individually generated PET was compared with real follow-up data. For comparison, delta maps obtained by subtracting baseline from

prediction or follow-up images were generated. (D) Representative cases follow-up PET and individually predicted PET. According to the follow-up data, there was

comparable individual variability in metabolic change. A subject showed globally decreased metabolism (left) while another subject showed increased metabolism in

the frontotemporal cortex (right). Predicted future PET could also reflect the individual variability.

To train VAE, data X and age information y were encoded
into parameters in a latent features Z, and decoder
network reconstructs data from the latent features and
y assuming latent features have normal distributions
around encoded feature z. In practice, generator input
was resampled by the encoded latent features z assuming
normal distribution:zresampled = zencoder + zsd × ε, where

ε represents a random variable (Kingma and Welling,
2013).

Network Architecture and Training
To encode 3-dimensional PET volume, we used multiple
3D convolutional layers for encoding. Specific parameters for
network architecture are summarized in Supplementary Figure 1.
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After the multiple convolutional and pooling layers, 3D feature
volumes are changed to 1-dimensional features. These features
are merged by age information of each subject and additionally
connected to hidden layers and, finally, connected to 10 latent
features. Accordingly, initial PET volume with 79×95×68 matrix
is compressed into 10-dimensional features. Conversely, the
generator consists of convolutional and upsampling layers.
Upsampling simply repeats each dimension of the data. Input
variables of the generator include 10 latent features and age
information. The generator decodes these inputs to PET volume.

This conditional VAE model was trained by gradient descent
algorithm (Adadelta) (Zeiler, 2012) and took 50 epochs for
the training. The VAE was implemented using a deep learning
library, Keras (ver. 1.2.2) with Theano (ver. 0.9.0) backend
(Bastien et al., 2012). Ten percentage of all PET data were
used for the validation set to determine epoch number and
hyperparameters for the neural network architecture.

Estimation of Metabolic Activity in Brain
Regions
The regional metabolic activity of brain regions was obtained
using predefined volume-of-interests (VOI), automated
anatomical labeling (AAL) template. As all PET images were
spatially normalized to MNI template, mean metabolic activity
value of each brain region was simply obtained by masking
specific brain region.

Prediction of Future PET and Comparison
With Follow-up PET
Four-year follow-up FDG brain PET scans were obtained in
26 cognitively normal subjects who underwent baseline PET
scans. Five-year follow-up FDG brain PET scans were acquired
in 11 cognitively normal subjects. Longitudinal change in brain
metabolism was evaluated in these subjects. Using baseline PET
images of the subjects and age, we generated future PET images.
To generate individual future PET image, firstly, baseline PET
image was represented into latent features using the encoder.
We hypothesized that these latent features were unchanged
regardless of subject’s age. Ten latent features of a subject and
future age (i.e., baseline age + 4 or 5) were used for the
generator. We compared real follow-up PET and predicted PET
by using delta maps. To measure similarity between predicted
and real metabolic changes, voxelwise correlation coefficient was
calculated. Similarity measurements were individually obtained.
We statistically tested whether other variables including baseline
age, gender, APOE4 status, Mini-Mental State Examination
(MMSE) and follow-up diagnosis affected the prediction of
metabolic changes. The similarity measurements, correlation
coefficients, of the group according to the APOE4 status,
gender and follow-up diagnosis were statistically compared
using independent t-test. They were correlated with continuous
variables (age and MMSE) using Pearson correlation. We also
additionally evaluated the overall accuracy of predicted image
using mean absolute percentage error (MAPE). MAPE between
predicted and real follow-up PET image was calculated for each
subject.

In addition, overall predicted and real regional changes
were calculated by AAL map. The overall regional metabolic

change was calculated by mean value across all subjects. The
correlation between regional metabolic changes of predicted and
real follow-up PET across brain regions was tested by Pearson
correlation. For visualizing the similarity between predicted and
real metabolic changes, Bland-Altman plots were drawn. Ninety
percentage confidence interval for error of predicted regional
metabolic change was calculated.

Generation of Age-Related Metabolic
Change Movie
The overall age-related metabolic change pattern was evaluated
by the generator model. Firstly, PET data of all subjects were
represented by 10 latent features using the encoder. The mean
feature values were entered into the generator with different age
information between the age of 50 and 100. Thus, we could obtain
representative PET image of each age. To visualize age-related
metabolic change, we generate subtraction map. Generated PET
images with different age were subtracted by a representative
brain PET generated by age of 50. These subtraction maps were
also visualized by an animation.

Population Distribution of Regional
Metabolic Activity at Each Age
We estimated population distribution of regional metabolic
activity by resampling generated PET images. Ten latent features
were randomly resampled assuming each latent feature has
normal distribution. Mean and standard deviation of each latent
feature were determined by the feature values of all subjects.
One Thousand resampled brain PET images were generated and
regional metabolic activity was obtained. Population distribution
of metabolic activity of each region was drawn by histograms and
age-related changes with confidence intervals were drawn.

Metabolic Topography According to Latent
Features
To assess the relationship between latent features and brain
metabolic patterns, brain PET images were generated by
changing values of the latent features. Mean values of latent
features were used for generating PET except for two features for
estimating effects on brain metabolism. These two features were
changed from −2.0 to 2.0 and generated virtual PET images for
plotting.

Variability in Age-Related Metabolic
Change According to the APOE4 Status
To evaluate age-related metabolic change patterns according to
the APOE4 status, another VAE model was trained. Conditional
VAE with age and APOE4 status information was used,
so, conditional variable, y, includes age and APOE4 status
as different dimensions. The training process and network
architectures were same with conditional VAE with age
only.

The overall age-related metabolic change patterns according
to APOE4 status was evaluated as population distribution
estimation. Randomly resampled latent features and different
age values were entered into the generator with each APOE4
status respectively. PET images of each age and APOE4 status
were generated and regional metabolic activity was obtained by
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predefined regions. Population distribution of regional metabolic
activity was estimated for APOE4 carriers and non-carriers. To
find statistically different regions, we calculated the difference
between regional metabolic activity generated by APOE4 carriers
and non-carriers using randomly resampled latent feature values.
To define statistical significance, p-values were computed by the
distribution of the difference. The null hypothesis was that the
regional metabolic difference between APOE4 carriers and non-
carriers is 0. Thus, the statistical significance could be directly
calculated by the proportion of the generated samples where the
difference was lower or higher than 0. Brain regions with different
metabolic activity were found at each age. The difference with
uncorrected p-value < 0.05 was regarded as significant brain
regions which show different metabolism according to APOE4
status.

RESULTS

Prediction of Future Brain Metabolic
Change
The VAE-based model was designed to represent FDG PET
images and corresponding subjects’ age to latent features
(Figure 1A). The posterior part of this model, the generator
component, could produce PET images from any values of the
latent features and age information.

To generate future brain PET images, we firstly obtained
latent features of a subject’s baseline PET image using the
encoder. We assumed that these were not changed according
to aging as characteristic individual features. The features of a
subject were entered into the generator with any age, which
could generate the subject’s virtual brain PET at different
ages (Figure 1B). The model was tested by cognitively healthy
subjects who underwent both baseline and follow-up PET. The
predicted metabolic change was compared with corresponding
real metabolic change computed by follow-up PET data. Each
predicted future brain PET and real follow-up PET was
subtracted from corresponding baseline PET for the comparison
(Figure 1C). As a result, delta maps, the future brain PET
subtracted by the baseline, obtained from real follow-up PET
showed individual variability. Corresponding predicted future
brain PET also showed those variable patterns (Figure 1D).
A subject showed prominently decreased metabolism in the
cerebral cortices, while another showed relatively increased
metabolism in the frontal cortex (Figure 1D). The delta map
obtained by real follow-up was positively correlated with that
obtained by prediction (Supplementary Figure 2).

To compare predicted future brain PET and real follow-up
PET quantitatively, mean metabolic changes of 116 predefined
brain regions across all subjects were calculated. Averaged
predicted changes in regional metabolism was significantly
correlated with the real changes obtained by real follow-up
data (r = 0.59, p < 0.001 and r = 0.59, p < 0.001 for 4-
year and 5-year follow-up, respectively; Figures 2A,B). Bland-
Altman plots showed the difference between predicted and real
regional metabolic activities (Figures 2C,D). The 95% confidence
interval of the prediction error of regional metabolic activity
was −0.027 to 0.027 for 4-year follow-up and −0.027 to 0.048

for 5-year follow-up. In addition, individually predicted and
real metabolic changes were compared. To show how individual
prediction of metabolic change was similar to the real change,
voxelwise correlations of individual delta maps obtained by
follow-up and prediction were calculated. We could find a
trend of high correlation between the two delta maps of the
same subject, even though the prediction of metabolic change
was failed in some subjects (Supplementary Figure 3). The
similarity between predicted and real metabolic change was not
significantly affected by subjects’ age, gender, follow-up diagnosis,
APOE4, and baseline MMSE. As a global measurement of overall
accuracy for predicting future brain PET, we obtained MAPE
by comparing predicted PET with real follow-up PET. MAPE
was 7.8 ± 2.1 and 8.3 ±1.5% for 4-year and 5-year follow-
up, respectively. Notably, MAPE calculated by baseline PET and
reconstructed PET using VAE was 6.6± 1.4% (Figure 2E).

Generating Overall Brain Metabolism
Aging Movie
We applied our model to the assessment of overall regional
metabolic changes. To investigate overall patterns of age-related
brain metabolism, representative brain images were generated
by using different age and mean value of each latent feature
across all subjects (Figure 3A). The representative FDG brain
PET generated from the age of 50 to 90 is presented in Figure 3B.
To visualize the age-related change definitely, the generated FDG
PET with different age was subtracted by the generated PET of
the age of 50 (Figures 3C,D, Supplementary Figure 4). As we
generated brain metabolic topography at all ages, overall age-
related patterns were also visualized by movies (Supplementary
Movies 1, 2).

Figure 3D showed that age-related metabolism decline was
mainly found in the cingulate cortex. Using predefined brain
regions of interests, the metabolic activity of each brain region
was extracted according to aging (Figure 3E). Red dotted lines
represent estimated metabolic decline using the generated PET
obtained by entering mean latent features. Solid lines represent
real metabolic decline obtained by 4-year (Blue) and 5-year
(Green) follow-up data (Figure 3E). The curves estimated by
the VAE model explained that overall metabolic decline with
aging was non-linear. Approximately before 75, the age-related
metabolic decline was steep in the posterior cingulate and caudate
and then the decline became slower after 75.

Distribution of Regional Metabolic Activity
at Each Age
Most brain imaging data including our subjects consist of
imaging with various ages. Thus, it has been challenging to
obtain population distribution of normal brain at each age.
Randomly resampled latent features could generate population
distribution of regional brain metabolic activity for all ages
(Figure 4A). Generated brain PET data from resampled latent
features provide the variety of regional metabolic activity.
Histograms of each brain region at different ages were drawn
(Figure 4B). As aforementioned representative brain metabolic
changes, histograms of posterior cingulate and caudate showed
a trend of left shifting according to aging. Distribution of
overall aging patterns of regional metabolism was also exhibited
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FIGURE 2 | Comparison of predicted metabolic change with real follow-up data. Regional metabolic change from baseline was averaged across subjects for

predicted and follow-up data. Averaged predicted and real changes across the brain regions were significantly correlated for 4-year follow-up images (r = 0.59, p <

0.001) (A) and 5-year follow-up images (r = 0.59, p < 0.001) (B). Bland-Altman plots were drawn for the comparison of predicted and real regional metabolic activity

for 4-year (C) and 5-year PET images (D). The 95% confidence interval of the error of predicted regional metabolism was −0.027 to 0.027 for 4-year follow-up and

−0.027 to 0.048 for 5-year follow-up. Mean absolute percentage error (MAPE) was 1.07% for 4-year follow-up and 1.76% for 5-year follow-up. (E) As a global

measurement of accuracy for predicting future brain PET, MAPE was 7.8 ± 2.1% for 4-year follow-up and 8.3 ±1.5% for 5-year follow-up. MAPE calculated by

baseline PET and output of VAE with baseline age was 6.6 ± 1.4%.

(Figure 4C, Supplementary Figure 5). Dotted lines represent 95%
confidence intervals of regional metabolic activity.

We found individual variability in regional brain metabolism
at different ages. The individual variability was determined by
the distribution of latent features. To show how each latent

feature affects brain metabolism, PET images were generated

by changing latent features. Brain metabolic patterns were

changed according to latent features as shown in Figure 5. As
an example, increased feature 1 was associated with decreased
brain metabolism in the posterior temporal and occipital cortices

and increased feature 2 was associated with increased frontal
metabolism.

APOE4 Status and Age-Related Metabolic
Change
Because clinical variables affect age-related metabolic change
and its variability, we further investigated whether APOE4
status impacts on metabolic changing patterns. Another VAE
model was trained using two conditions, age and APOE4
status (Figure 6A). This model can generate virtual brain
PET images according to the age and APOE4 status. Thus,
age-related metabolic change according to APOE4 can be
estimated by inputting APOE4 positive and negative states,
respectively (Figure 6A). We identified that APOE4 could affect
the variability of age-related metabolic change. The FDG PET
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FIGURE 3 | Overall brain metabolism aging movie by generating representative PET of each age. (A) Using VAE-based model, representative FDG PET images of

different age were generated to identify overall age-related metabolic pattern. Mean latent feature values across all trained subjects were entered into the generator for

representative PET images. (B) Using mean latent features, representative PET images were generated according to aging. (C) Compared with the representative PET

of age of 50, subtraction images were generated. (D) Surface visualization of the subtraction map revealed that age-related decline was mainly found in the cingulate

cortex. (E) Age-related metabolic change in specific brain regions was plotted. Solid lines represent real metabolic change data for 4-year follow-up (blue) and 5-year

follow-up (green). Red dotted lines represent regional metabolic changes estimated by virtually generated PET images.
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FIGURE 4 | Estimating population distribution of brain metabolism at each age. (A) Population distribution of brain metabolic topography was estimated by

resampling latent features. Generated brain PET was repeatedly generated by random latent feature values sampled from the normal distribution. Distribution of

regional metabolism was estimated for all ages. (B) Histograms of distribution of metabolic activity were drawn for putamen, caudate, posterior cingulate, anterior

cingulate, and precuneus at different ages. (C) Confidence intervals of metabolic changes could be estimated by the distribution. Dotted lines represent 95%

confidence interval of regional metabolic activity.

images generated by average latent features and APOE4 positive
and negative status at different ages were subtracted by the
generated PET of the age of 50 (Figure 6B). We found that
metabolic decline in occipital lobe was faster in APOE4 carriers.
Distribution of regional metabolism according to APOE4 status
was estimated (Figure 6C). Using distribution of the metabolic
difference between brainmetabolism generated by APOE4 status,
the significance of the difference in regional metabolism was
estimated (Supplementary Figure 6). The regional metabolic

activity of the calcarine and lingual cortex was significantly higher

in APOE4 carrier than APOE4 non-carrier before 60, while

that of the hippocampus and amygdala was significantly lower

in APOE4 carrier at 50 (Figure 6D). The regional metabolic
activity of posterior cingulate, precuneus and caudate, where
the rapid age-related metabolic decline was found, did not
show a significant difference in accordance with APOE4 status.
Metabolic change in APOE4 carriers and non-carriers of all
brain regions was represented with 95% confidence intervals
(Supplementary Figure 7).

DISCUSSION

In this study, we predicted aging of brain metabolic topography
by using a generative model. Brain metabolic changes are
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FIGURE 5 | Brain metabolic topography according to latent features. As the encoder of VAE compressed PET image into 10 latent features, variability in brain

metabolism is determined by these 10 features. To assess metabolic patterns determined by latent features, brain PET images were generated according to different

latent feature values. An example of the two latent features, increased first latent feature (x-axis) was associated with decreased metabolism in posterior temporal and

occipital cortices. Increased second latent feature (y-axis) was associated with increased metabolism in the frontotemporal cortices at age of 50.

highly variable as aging process and cognitive changes are
affected by several individual factors. Our model aimed at
generating PET images according to the age trained by cross-
sectional PET image data combined with different ages. The
model could provide predicted future metabolic decline and
was validated by real follow-up data. Our results estimate
population distribution of normal brain metabolism at each age.
This approach was extended to investigate the effect of APOE4
status on the variability of regional brain metabolism at different
ages.

Our generative model could find population distribution of
brain metabolic topography for each age as well as predict
age-related metabolic change. Cognitive aging and the age-
related functional decrease are accompanied by increased
individual variability (Ylikoski et al., 1999). This individual
variability is affected by several factors including life experience,
genetic backgrounds, and susceptibility to neuropathology
(Shammi et al., 1998). Furthermore, cognitive variability
in individuals across time tends to occur mainly after

the age of 60 (Wilson et al., 2002). Increased individual
variability in aging has been supported by several functional
neuroimaging studies (Glisky et al., 2001; D’esposito et al.,
2003; Burzynska et al., 2015). Nonetheless, age-related brain
metabolism change has been briefly estimated by observing an
overall correlation between age and metabolism (Duara et al.,
1984; Loessner et al., 1995; Moeller et al., 1996; Petit-Taboue
et al., 1998; Yanase et al., 2005). This previous approach could
not consider individual variability in age-related metabolism
(Ylikoski et al., 1999; Knopman et al., 2014). Furthermore, it
has been difficult to estimate age-dependent normal population
distribution of brain image data as the data consist of subjects
with different ages. A conventional linear regression model
based on overall metabolic changes estimated by all baseline
scans only estimated same decline patterns for all subjects
by calculating a voxelwise linear regression based on the
population.

According to our model, the individual variability of brain
metabolism was represented by the latent features. The latent
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FIGURE 6 | APOE4 status and age-related brain metabolic change. (A) We investigated whether APOE4 status affect age-related metabolic change patterns. A

conditional generative model was developed using APOE4 status as well as age. PET images according to different ages were generated for APOE4 carrier and

non-carrier, respectively. Resampled features provide distribution difference of brain metabolic topography between APOE4 carriers and non-carriers. (B) Delta maps

were generated by subtracting 50-year-old generated images. Metabolic decline was relatively faster in occipital regions of APOE4 carrier. (C) Histograms of regional

metabolic activity were drawn for APOE4 carriers and non-carriers. Before 60, metabolism of calcarine, lingual cortex, hippocampus, and amygdala was different

according to APOE4 status. (D) Age-related regional metabolic activity changes were plotted. Red dots represented APOE4 carriers and blue dots represented

APOE4 non-carriers. Bars represented standard deviations calculated by the distribution. Non-parametric testing revealed the statistical significance. Asterisks

represent uncorrected p < 0.05.
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features determine age-related metabolism patterns because the
generator used only the latent features and age as inputs.
We could indirectly know whether the VAE model uses age
information for generating PET images. Firstly, the generator of
VAE model uses age information in that different metabolism
distributions are shown by different age inputs and same latent
feature values. Furthermore, we compared our VAE model with
another VAE model without age information, which encodes
latent features regardless of age and generates PET from latent
features without age inputs. As a result, the VAE model without
age information extracts more age-dependent latent features
than the VAE model with age information (Supplementary
Figure 8). It suggests that the VAE model without age
information is prone to extract age-dependent image features
with unsupervised manner because age-related changes largely
contribute to the variability in brain metabolism. On the other
hand, our model extracts individual characteristic image features
relatively independent of age by using age information for
the encoder. Each latent feature represented specific metabolic
topography patterns which could be indirectly identified by
generating images according to different feature values as shown
in Figure 5. In this regard, random resampling of the latent
features generated variable brain metabolic topography, which
could be used for estimating population distribution. Our result,
population distribution of brain metabolism at each age can
be applied to quantitatively define regional abnormality in
individuals. Using this distribution, we can define how far a
given individual brain PET is from the normal population. Thus,
this distribution may help to develop quantitative biomarker
which represents abnormal aging process of individual brain
metabolism.

Our model could predict regional patterns of individual
future brain metabolic change, while future prediction of
metabolic change was incorrect in quite a few cases. As shown
in Supplementary Figure 3, the predicted delta maps were
not correlated with real delta maps in individuals at right-
lower portions of the matrix. Individual age-related changes
measured by PET could be the sum of biologic metabolic
change and statistical random errors in FDG PET. The statistical
variability in brain metabolism could affect prediction accuracy
of metabolic changes. Nonetheless, overall regional metabolic
changes obtained by the prediction were highly correlated
with those of real follow-up data as shown in Figure 2. That
was because VAE eventually extracted age-associated metabolic
topography patterns from overall variation of brain metabolism
in the training samples. In other words, because of the high
variability in age-related brain metabolic changes, VAE-based
model generated future brain PET image by approximating
global age-related patterns of training samples. It is closely
related to the limitation of VAE which tends to generate
averaged and blurry images and lack of variety in generated
images (Dosovitskiy and Brox, 2016). Notably, though predicted
overall regional metabolic changes in 5-year follow-up were
significantly correlated with real follow-up data, they tend
to underestimation in the regions with high metabolism and
overestimation in those with low metabolism (Figure 2D).
MAPE of 5-year follow-up was higher than 4-year follow-up

as well as reconstructed images, which suggested the prediction
accuracy could be affected by follow-up intervals. It could be due
to long follow-up interval which could cause more non-aging
factors affecting brain metabolism. Not only aging but several
cognitive, healthy, and nutritional factors affect brain metabolic
patterns (Belanger et al., 2011; Cunnane et al., 2011). Because
of the multiple factors affecting brain metabolism, accurate
individual prediction, particularly for long-term prediction, is
substantially difficult. In this study, we simply assumed that other
factors of future brain PET except age are unchanged. Asmultiple
factors could determine metabolic topography, the generative
model with multiple conditions such as cognitive score may
improve future PET prediction.

Combination of another generative model such as generative
adversarial model may improve the prediction accuracy
(Goodfellow et al., 2014). Briefly, the generative adversarial
model is another generative model using two networks,
generator and discriminator. The generator is trained to
synthesize images from latent features which cannot be
discriminated from the training data, while discriminator is
trained to discriminate real images from generated images.
This type of model also can be combined with conditions such
as aging information. The generative adversarial model can
generate more realistic images compared with VAE, however,
according to our experiments, 3-dimensional PET images
were hard to generate using it. A further modification will be
required to train the model and to generate more accurate
future brain images. In addition, parameters including the
number of latent features, model architectures and optimization
methods could be modified to obtain better results. Although
we tested several models, methods to develop optimized
neural network architectures will be required as a future
work.

Population distribution of metabolic topography revealed that
APOE4 carriers showed higher metabolism in the calcarine and
lingual cortex, while lower metabolism in the hippocampus
and amygdala before 55. The difference in these regions was
not found after 60, which suggested that age-related metabolic
changes of these regions were greater in APOE4 carriers
than non-carriers. The relationship between APOE4 and brain
metabolism in normal elderly has been investigated in previous
studies as well (Oh et al., 2014). The regions which showed
difference metabolism in accordance with APOE4 status were
partly different as the previous study showed that metabolic
decline was faster in composite region-of-interests including
posterior cingulate, precuneus, and lateral parietal cortices
(Oh et al., 2014). Besides, another study using functional
MRI showed APOE4 status affected the differentiation of
functional networks including hippocampal and visual networks
though they used different modality (Trachtenberg et al., 2012).
Structural MRI study showed that APOE4 carriers tended to
have thicker cortex in temporooccipital areas and a steeper
age-related decline in cortical thickness (Espeseth et al., 2008).
Although the regions related to APOE4 were partly different
according to the studies, our result supports APOE4 carriers
could affect functional brain aging patterns. Additionally, by
estimating population distribution, we could identify regional
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metabolic difference at all ages. Our approach can be extended
to the investigation of the association between other clinical
variables and age-related changes. It can eventually help
find the factors that determine the individual variability in
aging.

To our knowledge, this is the first report that applies
a generative model to estimate aging of high dimensional
medical data. As an extended application of our approach,
PET data according to interpretable features, such as sex and
cognitive scores, can be generated by using conditional VAE
which aimed at synthesizing virtual data from the conditional
distribution (Kingma et al., 2014; Sohn et al., 2015). This
conditional generative model can be used for various problems
in neuroimaging analyses. For example, the model may be
used for predicting several task-specific functional brain images
from a single image data. Virtual task-related brain images
can be predicted by inputting tasks as conditional inputs
of VAE model. Furthermore, this approach would improve
conventional statistical voxelwise analyses of neuroimaging data.
An important limitation of the voxelwise analysis is the presence
of multiple covariates (Friston et al., 1994; Petersson et al.,
1999). So far, covariates such as subject’s age and brain volume
have been handled as nuisance variables using general linear
model. Instead, virtual neuroimaging data in same conditions
can be generated by this approach. For instance, we can
compare brain images of different groups by generating virtual
data with controlled covariates such as same age and brain
volume.

As a deep generative model may be able to precisely predict
high dimensional data, the future application will be extended to
various medical implications. Recently, generative models have
been used in various biomedical fields as well as neuroimaging
data. A generative model was applied to generating novel
molecular fingerprints as an artificial intelligence drug discovery
framework (Kadurin et al., 2017). As a recently developed
application to medical image processing, a generative model was
used for automatic lesion segmentation (Alex et al., 2017).

In our study, we predict aging of metabolic topography
by generating PET images. In spite of individual variability
in age-related change, future regional metabolic changes were
precisely predicted. Population distribution of normal brain
metabolism at different ages was estimated. It revealed that
regional metabolic decline was different according to the APOE4
status. This brain metabolic change prediction method can
provide a plausible explanation of individual variability in
cognitive aging. Furthermore, we expect that this approach will
be extended to the development of a preclinical biomarker for
several neurodegenerative disorders as well as defining abnormal
brain aging.
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