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Abstract: Recently, more and more attention has been paid to the development of eco-friendly solid
sorbents that are cost-effective, noncorrosive, have a high gas capacity, and have low renewable
energy for CO2 capture. Here, we claimed the fabrication of a three-dimensional (3D) film of hollow
nanocones with a large surface area (949.5 m2/g), a large contact angle of 136.3◦, and high surface
energy. The synthetic technique is based on an electrochemical polymerization process followed
by a novel and simple strategy for pulling off the formed layers as a membrane. Although the
polymer-coated substrates were reported previously, the membrane formation has not been reported
elsewhere. The detachable capability of the manufactured layer as a membrane braked the previous
boundaries and allows the membrane’s uses in a wide range of applications. This 3D hollow
nanocones membrane offer advantages over conventional ones in that they combine a π-electron-rich
(aromatic ring), hydrophobicity, a large surface area, multiple amino groups, and a large pore volume.
These substantial features are vital for CO2 capturing and storage. Furthermore, the hydrophobicity
characteristic and application of the formed polymer as a CO2 sucker were investigated. These results
demonstrated the potential of the synthesized 3D hollow polymer to be used for CO2 capturing with
a gas capacity of about 68 mg/g and regeneration ability without the need for heat up.

Keywords: hollow nanocones membrane; contact angle; CO2 sucker; energy storage; polypyrrole;
gas sensor

1. Introduction

Modern civilization needs extensive use of fossil fuels, hence increases greenhouse
gas emissions and CO2 gas. This is an urgent challenge worldwide because of its effects
on global warming [1,2]. CO2 gas is emitted from different sources, including power
plants, transportation fuels, and other industries such as petrochemicals, iron, steel, and
cement [3,4]. The International Panel on Climate Change (IPCC) reported that the av-
erage level of CO2 would rise to 570 ppm in 2100, which will cause raising the global
average temperature by ≈2 ◦C [2,5]. Among the different techniques for reducing the
CO2 level, capturing CO2 using solid sorbents is a promising technique [6] because it
is eco-friendly, cost-effective, noncorrosive, has high gas capacity, and has lower regen-
eration energy advantages [7,8]. Several solid adsorbents were used for CO2 capture,
including activated carbons zeolites [9–12], pillared clays, mesoporous silica [13], and
metal–organic frameworks (MOFs) [14–17]. However, the rapid decline in the adsorption
capacities of these adsorbents limited their use. Furthermore, mesoporous silica/amino
organic materials [18,19] were applied to capture CO2 based on the interaction between
primary/secondary amines and the acidic CO2 molecules. This interaction results in the
formation of a carbamate ion [20,21]. Thus, the development of new materials with high
CO2 capture efficiency is urgently needed.
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Conducting polymers is characterized by a π-conjugated system with promising
physicochemical properties. Thus, they have potential applications including biosensors,
batteries, corrosion inhibitors, energy storage, solar cells, light-emitting diodes, and electro-
chemical supercapacitors [22–25]. Conducting polypyrrole (PPy) showed many advantages,
including (i) excellent electric conductivity, (ii) good chemical and thermal stability, (iii)
ease of preparation, (iv) good biocompatibility, (v) low-cost effect, and (iv) eco-friendly na-
ture [26–28]. Thus, PPy has been widely used as a cell-based sensor [29,30], as a functional
material in energy storage [31–33], in drug delivery [34,35], as an electroactive material for
sensors [36,37], in actuators [38], in artificial muscles [39], in corrosion inhibitors [40], and
in solar cells [41,42].

To control the PPy structure’s morphologies, hard porous membranes were used as
a hard template for preparing hollow PPy (hPPy) [43,44]. However, several limitations
included the high cost, the risk of damage during the hard templates’ removal process, and
the complex preparation process. Thus, more effort has been given to the template-free
preparation of micro-/nanostructured hPPy film-modified substrates based on the electro-
chemical technique during the last decade [45–50]. The electrochemical polymerization
has various advantages, such as a one-step preparation technique, no need to remove
the template after the polymerization, and the morphology/properties of the prepared
membrane being easy to control [51–53]. Although these studies have successfully reported
the fabrication of the hPPy nanocone coated layer, it still needed several materials (i.e.,
surfactants in strongly alkaline media) and complicated synthesizing steps. A simple,
in situ, one-step, and controllable template-free electrochemical technique has not been
developed to fabricate the hPPy membrane.

Recently, Ag/hPPy/Ag-nanocomposites-modified Au electrodes were reported as
surface-enhanced Raman spectroscopy platform for caspase-3 detection [54]. Here, we
reported the fabrication of a three-dimensional (3D) hPPy nanocone membrane for the first
time, which showed a significantly larger surface area (949.5 m2/g) than any previously
reported data for hPPy yet. The developed method is simple, in situ, one-step, and
controllable template-free electrochemical technique for fabricating the hPPy membrane
without a strong alkaline circumstance. The chemical composition and morphology of the
prepared membrane were investigated. This membrane was used for CO2 capturing that
showed a high affiant and hydrophobic characteristic that avoids moisture adsorption.

2. Materials and Methods
2.1. Materials

Au-coated glass substrates (50 nm of Au/2 nm of Cr/glass wafers) were purchased
from G-mek (Korea). Pyrrole and phosphate buffer saline (PBS) (pH 7.4, 10 mM) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Lithium perchlorate (LiClO4) was
purchased from Janssen Chimica. All other chemicals were obtained commercially as
reagent-grade and used without any further purification.

2.2. Fabrication of Hollow PPy Nanocone Membrane

Au-coated glass substrates (20 mm × 10 mm, width × length) were cleaned using
acidic piranha solution (3:7, H2O2:H2SO4) at 70 ◦C for 5 min. Then, the substrate was rinsed
with deionized water (DIW) and ethyl alcohol and dried under N2 gas. Electropolymeriza-
tion of pyrrole to form hPPy membrane was achieved in 0.1 M of the pyrrole containing
0.1 M of LiClO4. The cyclic voltammetry (CV) was applied within a potential range from
−0.8 V to +1.2 V at a scan rate of 100 mV/s vs. Ag/AgCl electrode [54]. The active area
for the electrochemical polymerization of pyrrole to form hPPy nanocones over the Au
electrode was 10 mm × 10 mm. However, substrates with larger sizes were also used
for some experiments. Furthermore, different concentrations of pyrrole monomer were
used to study the effect of the monomer concentrations on the morphology of the result-
ing polymer. Here, we have shown the effect of three pyrrole concentrations, 0.001, 0.01,
and 0.1 M. The DTG-60 Simultaneous Thermogravimetry/Differential Thermal Analyzer
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(Shimadzu) was used to study the thermal gravimetric analysis (TGA) under air atmo-
sphere. The X-ray diffraction (XRD) of the hPPy polymer was obtained using X-ray PW
1710 control unit Philips anode material Cu (40 K.V, 30 M.A) Optics (Flex Ltd., Friesland,
Netherlands): Automatic divergence slit. Furthermore, the Fourier transform infrared
spectroscopy (FTIR) spectrum of the prepared polymer was measured using Nicolet 6700
Thermo Fisher Scientific USA spectrophotometer, using the KBr pellet technique.

2.3. Electrochemical Polymerization

The hPPy was prepared based on electrochemical polymerization using a potentiostat
(CHI-660a, CH Instruments, Austin, TX, USA) controlled by Nova software. The elec-
trochemical measurements were performed using a homemade three-electrode system
consisting of a bare Au electrode as a working electrode, a platinum wire as the counter
electrode, and an Ag/AgCl reference electrode at a scan rate of 100 mV/s. The morpholo-
gies of the hPPy films were studied using field emission scanning electron microscopy
(FESEM). The FESEM images were recorded using the ISI DS-130C instrument (Akashi
Co., Tokyo, Japan). For better capturing the SEM images of samples, the substrates were
fixed on the SEM stage with carbon tapes. Pt films were deposited onto the surface of the
substrate at room temperature. The sputtering deposition was performed for 15 s under a
constant deposition rate. Then, the substrates were being placed into the FESEM chamber.
For the cross-section image, a 45-degree stage was used.

2.4. CO2 Capture Performance

The CO2 capture efficiency of the hPPy membrane was studied using thermogravi-
metric analysis (TGA) in the presence of pure CO2 gas at 50 ◦C. Typically, the platinum
sample pan of the TGA was charged with 10 mg of hPPy and kept the temperature at 50 ◦C
for 30 min under pure N2 gas to remove any moisture from the hPPy. The CO2 adsorption
was performed by switching the gas from N2 to CO2 (99.9%) for a further 60 min. Then,
it was switched back to N2 to achieve the desorption process at the same temperature for
60 min. The CO2 uptake capacity was determined based on the sample’s weight change
during the sorption/desorption processes measured using TGA.

3. Results and Discussion
3.1. Subsection

Recently, hPPy film-modified substrates were reported in the presence of a soft tem-
plate in strongly alkaline media based on the electrochemical polymerization process [52,53].
Furthermore, we have reported on the fabrication of hPPy-modified Au electrodes without
any linker or template as a surface-enhanced Raman spectroscopy platform for caspase-3
detection [54]. Here, we have prepared hPPy films based on a one-step and easy method
using electrochemical polymerization without any surfactants followed by a pull off the
film, as shown in Figure 1a. In this schematic diagram, nanocones were growing with the
increasing cyclic number of electropolymerization. Figure 1b showed the CV behavior for
the pyrrole electropolymerization process for 20 cycles. From the CV data at the beginning
of the polymerization process, the CV showed a cathodic peak at about −0.28 V and an
anodic peak at +0.0 V. These redox peaks disappeared, and a new cathodic peak at about
−0.5 V and anodic peak at about +0.1 V were observed during the polymerization process,
combined with increasing background potential. These results mean that progress poly-
merization of hPPy was correlated to electrical conductivity. Figure 1c–e showed the SEM
images of the hPPy film formed after 5 cycles using 0.001 M, 0.01 M, and 0.1 M of pyrrole,
respectively. The results demonstrated the fabrication of a layer of mono-laps (nanospheres)
with varying sizes diameters based on the monomer concentrations. Increasing the cyclic
numbers result in more laps and nanocone structures being formed, as shown in Figure 1f–i.
These results confirmed that the nanocones were fabricated based on a lap-over-lap tech-
nique that included growing the first stage as hollow nanospheres (first lap). Then, another
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lap was repeatedly developed over the previous one with each cycle to form nanocones
structures.

Figure 1. (a) Schematic diagram for growing polymer hollow nanocones, (b) electrochemical polymer-
ization of PPy, (c–e) SEM images of polymer nanocones growing based on monomer concentration
(0.001 M, 0.01 M and 0.1 M), and (f–i) effect of the number of cycles on the morphology of polymer
nanocones.

The morphology of the membrane’s bottom was investigated using SEM images,
as shown in Figure 2a–c, which confirmed that the cones are opened from both sides.
These results illustrated that this polymer layer did not form as a single domain of hollow
nanostructures. Numbers of domains were created in which each one was surrounding
with a channel or connection. Furthermore, hollow structures (spheres or cones) were also
formed over these channels or connections as shown in Figure 2d–g.

This contrasts with the previous studies for the synthesis of hollow polymer-modified
substrates [52–54], which assumed that these polymers have a large surface area. However,
it is not measurable because it was obtained only as a film on a solid substrate. Here, the
formed hPPy polymer film possesses an exciting advantage that concerns its detachable
advantage on an easy pull-off technique, as shown in Figure 2h,i and Video S1. Therefore,
the surface area of the resultant polymer membrane was measured based on the N2 adsorp-
tion/desorption technique (Figure 3a). The Brunauer–Emmett–Teller (BET) method was
used to calculate the surface area of the prepared materials. The obtained hollow nanocone
polymer membranes show a large surface area of about 949.5 m2/g. Table 1 listed the
previously reported surface area of hPPy compared to that of the present polymer. This
data confirmed that the present polymer has the greatest surface area than the reported
surface areas for hPPy [55–59]. The adsorption hysteresis (Figure 3a) exhibits type IV
isotherm [60–62], which confirmed the presence of mesoporous material. The isotherm
exhibits hysteresis loops which are attributed to the presence of mesopores in the obtained
materials. This H1 hysteresis loop (IUPAC classification), which implies the presence of
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porous materials consisting of well-defined cylindrical-like pore channels or agglomerates
of approximately uniform spheres [60,61,63].

Figure 2. (a–c) SEM images of a cross-section of the hPPy membrane that showed the morphology
of polymer nanocones from the bottom, (d–g) SEM images of vertical nanocones and horizontal
channels (connections), and photography images hPPy nanocones membrane before (h) and after (i)
pull-off from Au substrate.

Figure 3. (a) N2 adsorption/desorption isothermal (surface area) of hPPy nanocones membrane, (b)
XRD pattern, (c) FTIR of hPPy nanocones membrane, and (d) TGA of hPPy nanocones membrane.
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Table 1. The surface area of reported polypyrrole and its composites.

Material Surface Area (m2/g) References

PPy 19.2 55
PPy 10.57 56

PPy/cellulose composite 57 57
Nanocellulose PPy membrane 80 58
PPy hydrogel/Au composites 26.2 59

hPPy 949.5 The present work

Furthermore, the bottom of the membrane’s morphology was investigated using the
SEM image (Figure 2a–c), which confirmed that the cones are opened on both sides.

The XRD and the FTIR techniques were used to investigate the chemical composition
of the developed hPPy membrane (Figure 3b,c), which show the characteristics peaks
for the hPPy. The FTIR spectrum showed several bands at the wavenumbers of 1460
and 1550 cm−1 (symmetric and asymmetric C–C stretching vibrations), 1300 cm−1 (C–N
stretching vibration), and 1050 cm−1 (bending vibration of the C–H bond). In addition to a
broadband in the range from 3000 cm−1 to 3500 cm−1 (the adsorbed H2O and N-H of the
pyrrole ring) [64]. X-ray diffraction spectra have shown that pure polypyrrole is amorphous
with a broad peak centered at around 2θ = 24.84◦ [65]. Furthermore, the appearance of
peaks at 32.68◦, 36.76◦, and 38.32◦ [JCPDS: 30-0751] confirmed the presence of LiClO4
inside the hPPy film [66].

The thermal stability of the prepared hPPy membrane was investigated using TGA
(Figure 3d). The results demonstrated that the membrane is degraded in two steps. The
first stage started from 35 ◦C to about 249 ◦C that showed a weight loss of about 10%,
which was related to the water loss from hPPy. The second stage ended at 600 ◦C, which
was attributed to the thermal degradation of the hPPY backbone.

To investigate the effects of various conditions on the resultant membrane morphology
and its different futures, various counterions, supported substrates, and different types
of monomers were used. Oxalic acid, HClO4, and sulfuric acid were used as counterions
instead of LiClO4. The SEM images of the hPPy membrane formed in the presence of
different counterions are represented in Figure 4, which demonstrated that the hollow
structures were obtained only when LiClO4 was used as a counterion. The effect of the
chemical composition of the used supporting substrate was investigated using different
substrates including indium tin oxide (ITO), Au-coated glass, Au/ITO, and stainless steel
(SS), as shown in Figure 5a. The SEM images of the hPPy layer on the different substrates
were represented in Figure 5b–e, which demonstrates that the hPPy layer has good adhesion
with Au, SS, and Au/ITO substrates. In contrast, it has a low adhesion with ITO substrate.
The morphology of the resulting polymer also depends on the substrate used. After
optimizing all the preparation conditions, the hPPy membrane was prepared on a large
scale of Au/glass substrate (3 cm × 10 cm), as shown in Figure 5f. The results revealed the
fabrication of hPPy over a 30 cm2 area. Hence, we applied the mass production technique
with a recyclable advantage for the used substrate numerous times after removing the
membrane.

In addition, electropolymerization was performed using the aniline monomer instead
of pyrrole. The SEM images of the resultant polymer were represented in Figure 6a,b. These
show a thin layer of the polymer with strong adhesion properties but no cone-like structures.
Based on these results for constructing the polymer nanocone membrane, pyrrole is the best
monomer in the presence of LiClO4 as a counterion with a supporting substrate such as
Au-coated glass. Interestingly, the formed hPPy membrane possesses a huge surface charge
that results in a repulsion force between the species of the hPPy membranes. Furthermore,
this surface charge causes an attractive force between the hPPy membrane and the plastic
materials, as shown in Videos S2–S4. Hence, the hPPy membrane could be moved using
this kind of attraction force, which opens the door for using this hPPy membrane to develop
artificial muscles.
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Figure 4. SEM images showed the morphology of hPPy that formed in the presence of (a) oxalic acid,
(b) HClO4, (c) H2SO4, and (d) LiClO4 as counterion ions.

Figure 5. (a) Photography images hPPy on different substrates (Au, ITO, Au/ITO, and stainless
steel substrates), (b–e) SEM images of hPPy on Au, ITO, Au/ITO, and stainless steel substrates,
respectively, and (f) photography image of a large scale of hPPy-nanocones-modified Au substrate.
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Figure 6. SEM images of (a) SEM images of PANI/LiClO4, (b) SEM images of Au/PANI-modified
Au substrate, (c) the contact angle of bare Au substrate, (d) the contact angle of hPPy-nanocones-
modified Au substrate in the presence of LiClO4, (e) the contact angle of hPPy-nanocones-modified
Au substrate in the presence of oxalic acid, (f) the contact angle of hPPy-nanocones-modified Au
substrate in the existence of HClO4, (g) the contact angle of hPPy-nanocones-modified Au substrate
in the presence of H2SO4, and (h) the contact angle of PANI/Au substrate.

The morphology of the prepared hPPy nanocones is like the lotus flowers. Hence,
it was expected that hPPy would show a high hydrophobic characteristic. Thus, the
contact angle between water and the hPPy-nanocones-modified Au substrates was stud-
ied. Figure 6c–h showed the images of the water contact angles with (i) different-hPPy-
layers-modified Au substrate formed in the presence of different counterion ions, (ii) the
Au/hPPy/Au-modified Au substrate, and (iii) PANI/Au substrate in comparison with the
bare Au substrate. These data indicated that hPPy nanocones/Au formed in the presence
of LiClO4 have the highest contact angle (136.3◦). Thus, it possesses a high hydrophobic
characteristic. This hydrophobic characteristic was decreased after Au deposition (60.6◦),
while the bare Au showed a contact angle of about 73.1◦.

3.2. CO2 Capturing

The CO2 adsorption/desorption capacity of the hPPy membrane, as shown in Figure 7,
indicated that the CO2 adsorption capacity is ≈68 mg/g. This high affinity of the hPPy is
related to the significant number of amino groups. It was reported that the CO2 molecules
could interact with primary and secondary amines to form carbamate, as represented in
Equations (1) and (2) [67–72].

CO2 + 2RNH2 → RNHCO2
− + RNH3

+ (1)

CO2 + 2R1R2NH→ R1R2NCO2
− + RR’NH2

+ (2)

On the other hand, the organic heterocyclic molecules that contain N atoms such as
pyrrole moiety to interact with CO2 through the Lewis acid–Lewis base interactions as well
as the hydrogen bonding between the positively charged N atoms of the pyrrole and the
negatively charged oxygen atoms of CO2 [73–77]. Therefore, the N atoms’ high density
within the polymer network increases its adsorbent efficiency toward CO2 molecules.
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Furthermore, the molar ratio of water in the ambient air is typically about 100 times the
CO2 content. Hence, the development of a selective adsorbent is urgently needed to avoid
water co-adsorption [78]. Here, the hydrophobicity characteristic of the hPPy membrane
plays a vital role in the CO2 adsorption efficiency due to its role to prevent wetting of
the membrane pores and thus increase the overall mass transfer coefficient [79]. Figure 7
showed increasing the adsorption of CO2 until the pseudoequilibrium was reached after
5 min at 68 mg of CO2 for each g of hPPy. The adsorption process was performed for 60 min.
Then, the desorption of CO2 from the hPPy was studied based on switching the gas flow
back into N2 at the same temperature. The results showed a linear decrease in the amount
of adsorbed CO2 until reaching complete desorption within 25 min. This behavior indicated
that this system has a completely reversible character. Hence, it showed the possibility of
hPPy regeneration without applying heat [77,80]. Furthermore, this regeneration of hPPy
could be indicated the existence of weak binding between hPPy and CO2. This is one of
the advantages during the development of an adsorbent in CO2 capture that results in
energy-saving regeneration tendency.

Figure 7. CO2 capture by 10 mg of hPPy sample.

4. Conclusions

We have developed a new polymer membrane with hollow nanocones morphology in
the present work that could be applied in different application fields, including biology,
chemistry, and environmental applications. One of the good advantages of this polymer is
the easily detachable layer that allows us to use it as a rigid template to fabricate different
nanostructures over different materials or as a membrane. Our results demonstrated that we
had made a breakthrough in the synthesis of porous conducting polymer membranes. The
fabricated polymer showed a large surface area (about 949.5 m2/g, the highest yet), a large
contact angle of 136.3◦, high surface energy, and a pull-off ability as a layer. Furthermore,
the fabricated membrane showed high efficiency as a CO2 sucker with a gas capacity
of about 68 mg/g with a regeneration ability without heat applying. That opens the
door for several applications, including biosensors, Li-ion batteries, as hard templates
for synthesizing different nanomaterials, drug delivery, membrane, artificial muscle, CO2
sucker, etc.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14010183/s1: Video S1: The movie showed the pull-off of
the hollow hPPy nanocones membrane; Video S2−S4: The movies showed the attraction between the
hPPy membrane that showed the surface energy.
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