COMMENTARY

SIRT1 Takes a Backseat to AMPK in the Regulation of
Insulin Sensitivity by Resveratrol

Morgan D. Fullerton and Gregory R. Steinberg

esveratrol is a polyphenol that is enriched in the

skins of red grapes. Although scientists specu-

lated for decades about the French paradox in

which red wine appeared to protect against
heart disease, the mechanisms mediating these effects re-
mained a mystery. In 2003 Sinclair and colleagues (1) iden-
tified that resveratrol activated the nicotinamide adenine
dinucleotide (NAD+)-dependent histone deacetylase, SIRT1,
whose yeast homolog (Sir2) was previously shown to en-
hance longevity in response to calorie restriction (2). Over
the past several years studies in rodents have confirmed the
powerful antiaging effects of resveratrol, which have been
shown to range from improved exercise performance to
correction of age- and obesity-induced dyslipidemia, cardio-
vascular dysfunction, and insulin resistance (3-5). Whereas
SIRT1 has a diverse range of substrates, many of its meta-
bolic actions are believed to be mediated by deacetylation
and activation of peroxisome proliferator—activated receptor
v coactivator-a (PGCla), which is a master regulator of
mitochondrial biogenesis (4). These studies have suggested
that resveratrol and SIRT1 may be the panacea for preventing
the development of age-onset diseases.

Resveratrol, like other polyphenols, also increases the
activity of the AMP-activated protein kinase (AMPK)
(3,6,7. AMPK is activated by cellular stress, including
fasting and exercise, and is also regulated by circulating
hormones and nutrients (8). The activation of AMPK
increases fatty acid oxidation, an effect which may involve
phosphorylation and inhibition of acetyl-CoA-carboxylase
(ACC), reduced levels of malonyl-CoA, and increased
mitochondrial fatty acid flux via carnitine palmitoyltrans-
ferase-1 (Fig. 1). At the same time, AMPK also phosphor-
ylates and activates PGCla, resulting in the upregulation
of mitochondrial biogenesis (9). The acute activation of
AMPK by resveratrol appears to be independent of SIRT1
(10) and is potentially mediated by AMP because resvera-
trol inhibits the mitochondrial F1 ATPase (11). However,
more chronic treatments with resveratrol have suggested
that SIRT1 may be upstream of AMPK (12). This idea is
supported by the findings that SIRT1 gain of function
increases AMPK activity (13), an effect which may be
mediated by SIRT1 deacetylation/activation of the up-
stream AMPK kinase, LKB1 (14).

Although it has recently become appreciated that both
SIRT1 and AMPK are evolutionary-conserved metabolic
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stress sensors whose functions are complementary (15),
the finding by Um et al. (16) in this issue of Diabetes
suggests that these two pathways are even more inextri-
cably linked than previously appreciated. Using AMPK-a1
and -a2—-double-null mouse embryonic fibroblasts, Um et
al. demonstrate that resveratrol fails to increase PGCla
target genes. These studies were surprising because
reseveratrol was first identified as an activator of SIRT1
from cell-free assays in which AMPK was not present
(1). Unfortunately, Um et al. did not assess SIRTI1
activity directly by measuring in vitro activity or indi-
rectly by examining deacetylation of substrates other
than PGCla. Therefore, their findings leave us with one
of two possibilities: 1) that AMPK is required for SIRT1
activation, which based on previous reports seems
unlikely; or 2) that SIRT1 deacetylation of PGCla
independent of AMPK phosphorylation is insufficient to
regulate PGCla activity and mitochondrial biogenesis.
Future studies will need to examine whether the same is
true for other mutual substrates of AMPK and SIRTI,
such as forkhead box class O, and potentially other
pathways, such as those regulating longevity.

Um et al. (16) expand on these exciting in vitro studies by
feeding wild-type or AMPK-al and -a2-null mice with a
high-fat diet plus or minus resveratrol over a 12-week
period. They find that the effects of resveratrol on mito-
chondrial biogenesis, exercise performance, and whole-
body insulin sensitivity are completely dependent on the
presence of either AMPK isoform (Fig. 1). Improvements
in insulin sensitivity with resveratrol are then linked with
reductions in intramuscular diacylglycerol and ceramides,
suggesting that resveratrol increased fatty acid oxidation
in wild-type but not AMPK-a—null mice (Fig. 1). Consistent
with an impaired activation of fatty acid oxidation, Um et
al. demonstrate that resveratrol fails to increase the NAD-
to-NADH ratio or reduce PGCla acetylation in skeletal
muscle of AMPK-a—null mice, findings that are similar to
those of Canto et al. (15), who showed that fatty acid
oxidation by AICAR was essential for increasing SIRT1
activity. However, given that previous studies have failed
to show inhibition of resting or AICAR-stimulated fatty
acid oxidation rates in mice with drastically reduced
muscle AMPK activity (17), it seems surprising that the
effects of resveratrol on fatty acid oxidation, and therefore
the production of NAD equivalents, would be completely
eliminated in the AMPK-a—null mice.

An interesting finding from these studies is that both
AMPK-al and -a2-null mice prevented the induction of
mitochondrial biogenesis in muscle and white adipose
tissue to an equal degree. This was an unexpected finding
given the known expression profiles of the AMPK-a iso-
forms, where AMPK-al is found in all tissues and is
predominate in neurons and adipose tissue, whereas the
AMPK-a2 isoform is found in skeletal muscle and the
heart. Therefore, given that there is <10% reduction in
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FIG. 1. A schematic representation of the proposed mechanisms by which resveratrol improves insulin sensitivity. Working through the
energy-sensing AMPK, resveratrol (RSV) may act to increase mitochondrial B-oxidation, which in turn increases the NAD+-to-NAHD ratio,
triggering the activation of SIRT1 and the deacetylation of PGC-1la and resulting in mitochondrial biogenesis. AMPK-al and -a2-dependent
increases in fatty acid oxidation and mitochondrial capacity decrease reactive lipid intermediates such as diacyglycerol (DAG) and ceramides,
thereby improving insulin-stimulated glucose disposal. Ac, acetylation; ACC, acetyl-CA carboxylase; Akt, protein kinase B; CPT-1, carnitine
palmitoyl transferase; IKK, inhibitor of k kinase; FA, fatty acid; IRS-1, insulin receptor substrate-1; JNK, Jun NH,-terminal kinase; GCN5, histone
acetyltransferase GCN5; P, phosphate; PP2A, protein phosphatase 2A; PDK, 3-phosphoinositide-dependent kinase; PKC, protein kinase C; TAG,

triacylglycerol.

total skeletal muscle AMPK activity in AMPK-a1 mice (18)
and AICAR-stimulated glucose uptake (18) and mito-
chondrial biogenesis (19) are normal, it is astonishing
that the effects of resveratrol in muscle are so depen-
dent on the AMPK-al isoform. The same scenario also
applies to the examination of mitochondrial biogenesis in
white adipose tissue, where >95% of total AMPK activity is
attributable to the AMPK-al isoform (20). These data
suggest that resveratrol- and AMPK-dependent regulation
of metabolism may be cell autonomous. In agreement with
this possibility are the findings that resveratrol (5) and
SIRT1 activation (21) reduce inflammation. Future inves-
tigations using tissue-specific AMPK-double-null mice
should help elucidate the primary mechanism(s) by which
resveratrol improves insulin sensitivity.

One of the most important questions that remains
unanswered is that despite the Internet advertisements
touting the health benefits of resveratrol, it is not known
whether resveratrol and/or SIRT1 activation is effective in
improving insulin sensitivity in humans. If effective, such a
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therapy would also undoubtedly be highly sought after by
endurance athletes looking to enhance performance. How-
ever, based on the findings of Um et al., it will also be
critical to test whether the new breed of recently devel-
oped specific SIRT1 activators (22,23), which do not
directly activate AMPK, have a requirement for AMPK in
mediating their metabolic and insulin-sensitizing effects.
The findings from these studies will be important because
they may imply that therapies designed to directly target
AMPK, rather than indirectly via SIRT1, may be a more
efficacious means to improve insulin sensitivity.
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