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Abstract: Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) 

commonly coexist in smokers, and the presence of COPD increases the risk of developing 

LC. Cigarette smoke causes oxidative stress and an inflammatory response in lung cells, 

which in turn may be involved in COPD and lung cancer development. The aim of this 

study was to identify differential proteomic profiles related to oxidative stress response that 

were potentially involved in these two pathological entities. Protein content was assessed 

in the bronchoalveolar lavage (BAL) of 60 patients classified in four groups: COPD, 

COPD and LC, LC, and control (neither COPD nor LC). Proteins were separated into spots 

by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and examined by 
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matrix-assisted laser desorption/ionization time of flight mass spectrometry  

(MALDI-TOF/TOF). A total of 16 oxidative stress regulatory proteins were differentially 

expressed in BAL samples from LC and/or COPD patients as compared with the control 

group. A distinct proteomic reactive oxygen species (ROS) protein signature emerged that 

characterized lung cancer and COPD. In conclusion, our findings highlight the role of the 

oxidative stress response proteins in the pathogenic pathways of both diseases, and provide 

new candidate biomarkers and predictive tools for LC and COPD diagnosis. 

Keywords: bronchoalveolar lavage; lung cancer; screening; biomarker; inflammation; 

proteomics; ROS; oxidative stress 

 

1. Introduction  

Cigarette smoking has been recognized as the most important causative factor of COPD and it is 

associated with more than 90% of lung cancer cases [1]. Lung cancer accounts for 12% of all cancer 

diagnoses worldwide, making it the largest cause of cancer-associated death worldwide, accounting for 

more than one million casualties per year worldwide. COPD is also a major independent risk factor for 

lung carcinoma, among long-term smokers. In fact, the presence of COPD increases the risk of lung 

cancer up to 4.5-fold. Indeed, 50%–70% of patients diagnosed with lung cancer have spirometric 

evidence of COPD [2]. Cigarette smoke (CS) contains over 1014 free radicals per puff that include 

reactive oxygen species (ROS) [3]. Inhaled oxidants from smoke generate cellular damage by directly 

targeting proteins, lipids, and nucleic acids, and deplete the level of antioxidants in the lung, thereby 

overwhelming the oxidant/antioxidant balance of the lung, leading to increased oxidative stress [4]. 

ROS can lead to the activation of various cell signaling components. Examples include the 

extracellular signal regulated kinases (ERKs), c-jun N-terminal kinases (JNKs), p38 MAPKs, PKC, 

PI3K/Akt, and growth factor tyrosine kinases receptors pathways, all of which lead to increased 

inflammatory gene transcription. Indeed, oxidative stress in the lungs has been implicated in COPD 

severity and lung carcinogenesis [5]. This process is one of the mechanisms proposed in the common 

pathogenesis of lung cancer and COPD, along with inflammation, epithelial-mesenchymal transition 

(EMT), altered DNA repair, and cellular proliferation [6]. Proteins are important molecular signposts 

of oxidative damage. Different proteomic approaches have been developed and used for the detection 

and identification of ROS related proteins [7]. In the last few years, combined proteomics, mass 

spectrometry (MS), and affinity chemistry-based methodologies have contributed in a significant way 

to provide a better understanding of protein oxidative modifications occurring in various biological 

specimens under different physiological and pathological conditions. Bronchoalveolar lavage (BAL) is 

the clinical biofluid sampling of the soluble proteins contents of the airway lumen. A comparison 

between serum and BAL proteomes reveals that a certain number of proteins are present at a higher 

level in BAL than in plasma, suggesting that they are specifically produced in the airways. These 

proteins are, therefore, potential candidates for becoming lung-specific biomarkers [8]. 2D-PAGE is 

considered one of the best techniques for separation of complex mixtures of soluble proteins [9]. 

Several studies of BAL protein profiles obtained by 2D-PAGE analysis aimed at revealing the 
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differences between smokers and never smokers [10,11] as well as studies directed to determine the 

risk of developing COPD [12–14]. However, to the best of our knowledge, there are no 2D-PAGE 

studies in lung cancer using BAL. The 2D-PAGE studies of LC have been performed mainly in plasma 

and tissue. These analyses have focused on a better understanding of the molecular basis of cancer 

pathogenesis [15–17], as well as on the identification of new diagnostic, prognostic, and predictive 

markers for lung cancer [18,19]. In this regard, analyzing the protein composition of BAL mediated by 

a high-throughput technology, given its vicinity to tumor cells and enrichment in tumor-derived 

proteins, would be insightful. In this study, we have investigated the changes occurring in the 

proteome of BAL samples from lung cancer and/or COPD patients, and found a set of redox regulative 

proteins differentially expressed in each disease. 

2. Results 

2.1. Proteome Profiles of Comparison of LC and/or COPD 

The experiments were performed in BAL samples extracted from a cohort of 60 patients divided 

into four groups (control group and LC and/or COPD groups) whose characteristics are described in 

Table 1. The spots that showed significant increment or reduction of their expression compared to 

control group (neither COPD nor LC) were identified by MALDI-TOF/TOF-MS. The MS/MS data 

were acquired and compared to the Swiss-Prot database using MASCOT software. Candidate proteins 

were selected from each spot, taking into consideration several variables such as isoelectric point, 

molecular mass, matched peptides, and sequence coverage (Figure 1). A total of 123 protein spots 

were successfully identified. Of these, 40 proteins spots had consistent significant differences (>2-fold, 

p < 0.05) between lung cancer and/or COPD groups and the control group. Among them, a major 

group of 16 proteins were oxidative stress regulatory proteins (Table 2). The spots corresponding to 

this group of ROS regulatory proteins are marked on the representative gel 2D image in Figure 1. The 

rest of identified proteins were distributed in other variable groups such as inflammation, glycolysis 

and gluconeogenesis (Data not show).  

Table 1. Patients characteristics.  

 Controls n = 15 COPD n = 15 LC n = 15 LC&COPD n = 15 
Gender     
Male 100.0% (15) 100.0% (15) 100.0% (15) 100.0% (15) 

Female 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0) 
Average age (range) 61.3 (41–80) 61.5 (45–78) 60.7 (46–69) 60.7 (49–68) 

Smoking status     
Smokers 73.3% (11) 53.3% (8) 53.3% (8) 80.0% (12) 

Ex-smokers 26.7% (4) 46.7% (7) 46.7% (7) 20.0% (3) 
Packs-year 21.82 32.20 35.21 30.78 

COPD     
Mild - 20.0% (3) - 53.3% (8) 

Moderate - 33.3% (5) - 26.7% (4) 
Severe - 26.7% (4) - - 

Very severe - 20.0% (3) - 20.0% (3) 
Histology     

Adenocarcinoma - - 73.3% (11) 66.7% (10) 
Squamous cell carcinoma  - - 26.7% (4) 33.3% (5) 

Abbreviations: COPD: chronic obstructive pulmonary disease; LC: lung cancer. 
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Figure 1. 2D-PAGE from a representative patient sample. A representative 7 cm Sypro 

stained gel of proteins in the non-lineal pH range 3–11.  

 

Venn diagrams were used to display the differentially expressed proteins that were up- or  

down-regulated in each pathological group. Among these, two proteins from the LC patients group 

were found to be up-regulated (CTSD, ERZ,) in comparison with the LC/COPD and COPD groups 

(Figure 2). At the same time, the LC and LC/COPD groups shared one up-regulated protein (PPIA) in 

comparison with the COPD group (Figure 2). Similarly, the COPD and LC/COPD groups shared four 

up-regulated proteins (CAT, PRDX1, PRDX2, and PRDX5) in contrast with the LC group (Figure 2). 

Finally, the three pathological groups shared nine proteins, six of them up-regulated (TXN, CRP, GSR, 

IDH1, SERPINB1, and ARHGDIB), three down-regulated proteins (GSTA1, GSTA2, and GSTP) 

(Figure 2).  

The 15 identified proteins associated with ROS were subsequently analyzed with IPA, a software 

tool capable of mapping proteins and existing networks. Interestingly, the transcriptional factor NF-κB 

was found as a link between the proteins network involving ROS. NF-κB may reflect a functional role 

of this pathway in lung carcinogenesis (Figure 3). 

2.2. Western Blotting 

From the results obtained in the previous section, and taking into account the characteristics 

described in Table 2 for each protein, four proteins (TXN, GSR, GSTA1, and CAT) were selected for 

validation. The western blot of TXN, GSR, GSTA1, and CAT and the corresponding β-actin are 

shown in Figure 4. Validation was performed in three random samples from each study group. The 

results of the western blot experiments indicate that TXN and GSR present similar increment of 

expression between LC and/or COPD groups in comparison with the control group. The GSTA1 

protein showed a decrease of expression in the three pathological groups in comparison with the 

control group. These data confirm the results obtained from initial proteomic analysis. 
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Table 2. Protein spots searched by MASCOT software in database.  

Spot 

no 
Protein name 

Protein 

symbol 
Accession no 

Protein 

MW 

Protein 

PI 

Peptide 

count 

Protein 

score 

Score 

C.I. % 

Total 

ion 

score 

Ion 

C.I. 

% 

COPD LC 
LC/ 

COPD 

1 Catalase CAT gi|4557014 59946.8 6.90 13 310 100 234 100 Up 2.5 -  Up 2.8 

2 Cathepsin D preprotein CTSD gi|4503143 45036.8 6.10 8 135 100 95 100 -  Up 3.0 .  

3 Ezrin EZR gi|46249758 69312.7 5.94 18 250 100 175 100 -  Up 3.0 -  

4 Glutathione reductase GSR gi|119583848 61464.6 8.71 7 131 100 108 100 Up 2.8 Up 3.1 Up 2.0 

5 
Glutathione S-transferase A1 

subunit 
GSTA1 gi|163310943 25628.7 8.72 15 384 100 268 100 Down 3.0 Down 3.2 Down 3.8 

6 
Glutathione S-transferase A2 

subunit 
GSTA2 gi|257476 25589.6 8.81 7 105 100 70 100 Down 2.5 Down 3.0 Down 2.6 

7 Glutathione S-transferase P GSTP1 gi|4504183 23569.1 5.43 10 633 100 541 100 Down 2.2 Down 2.4 Down 2.5 

8 Isocitrate dehydrogenase 1 IDH1 gi|89573979 42091.0 6.19 8 62 100 29 100 Up 2.2 Up 2.1 Up 2.5 

9 Leukocyte elastase inhibitor SERPINB1 gi|13489087 42828.7 5.90 18 403 100 274 100 Up 2.7 Up 2.6 Up 2.5 

10 
Peptidylprolyl isomerase A 

(Cyclophilin A) 
PPIA gi|1633054 18097.9 7.82 10 260 100 159 100 -  Up 2.2 Up 2.6 

11 Peroxiredoxin 1 PRDX1 gi|55959887 19134.7 6.41 8 170 100 98 100 Up 5.0 -  Up 4.2 

12 Peroxiredoxin 5 PRDX5 gi|6166493 22261.6 8.85 11 638 100 537 100 Up 2.3 -  Up 2.4 

13 Peroxiredoxin-2 isoform a PRDX2 gi|32189392 22049.3 5.66 12 451 100 325 100 Up 3.0 -  Up 2.9 

14 Rho GDP-dissociation inhibitor 2 ARHGDIB gi|56676393 23030.6 5.10 7 215 100 170 100 Up 2.9 Up 2.6 Up 2.3 

15 Thioredoxin TXN gi|135772 12345.0 7.93 10 241 100 203 100 Up 2.4 Up 2.3 Up 2.1 
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Figure 2. Venn diagram showing the overlap of up-regulated and down-regulated proteins 

in each pathological group. The up-regulated proteins are represented in black and the 

down-regulated proteins are represented in grey.  

 

Figure 3. Ingenuity Pathway analysis of lung cancer and/or COPD versus controls 

revealed NF-κB as a major foundation. 
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Figure 4. Western blotting for TXN, GSR, GSTA1, and CAT. The different expressions 

are seen in each of the groups and for each of the proteins. TXN and GSR present a similar 

increment of expression in all pathological groups. GSTA1 show a decrease of expression 

in the three pathological groups in comparison with the control group. These differences 

are also illustrated below with a bar chart.  

 

3. Discussion 

In this study, we presented a 2D-PAGE proteomic evaluation of BAL fluid in patients with the two 

most relevant smoking related diseases, lung cancer and COPD. Our results indicate that the protein 

composition of BAL showed relevant expression differences among the groups, especially between the 

control group and the disease groups. In concrete, we have observed 15 differentially expressed 

proteins involved in ROS metabolism.  

ROS are involved in a large number of diseases, degenerative changes, leading to tissue 

degradation, a hallmark in carcinogenesis [20]. In a metabolically active cell, these redox system 

pathways maintain the balance between oxidant and antioxidant factors, by regulating the activation of 

specific transcription factors and the production of substances that neutralize oxidants [21,22]. 

However, in cancer settings, alterations in these redox pathways occur and the cell is no longer able to 

produce antioxidant substances to adjust the balance between oxidant and antioxidant factors, being 
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therefore unable to respond appropriately to the body’s needs. This is usually the reason why many 

anticancer agents, including radiation, are ineffective, because the cytotoxicity induced by them to 

make the cancer regress affects the antioxidant activity of the redox system pathways [23]. Alterations 

in the physiological pathways involved in the regulation of the redox system have been identified in 

tumors [24].  

The proteins TXN and PPIA (Cyclophilin A) were up-regulated in lung cancer BALs as compared 

to the other groups. TXN is a potent growth and cell survival factor, which activates specific 

transcription factors such as NF-κB, p53, HIFa, and AP-1. TXN regulates gene decoding for the 

production of substances that protect cells from oxidative stress induced by oxygen free  

radicals [25,26]. Its expression rises in several types of tumors [27,28] and it is generally related to 

tumor aggressiveness and inhibition of the immune system. TXN has also been evaluated as a 

biomarker and therapeutic target for cancer [29,30], and it is known that TXN levels can be used to 

indicate potential chemotherapy resistance [31]. Indeed, an increase in TXN1 levels has been 

associated with decreased survival in patients with tumors [32]. PPIA is secreted in response to ROS 

from vascular smooth muscle cells (VSMC) [33]. This protein is a chaperone protein that has several 

functions including protein trafficking, such as the nuclear translocation of ERK1/2 [34] and 

apoptosis-inducing factor (AIF) [35]. In addition, there is evidence that PPIA might be a valuable 

biomarker. Several studies evaluating the proteomic profile of different types of cancer as gastric, 

colorectal [36], and prostate have associated PPIA with a favorable outcome.  

The proteins GSTA1, GSTA2, and GSTP1 were down-regulated in pathological groups compared 

with control group. These proteins belong to GST family of proteins, which are Phase II detoxification 

enzymes that catalyze detoxifying endogenous reactions with reduced GSH and protect cellular 

macromolecules from damage caused by cytotoxic and carcinogenic agents [37]. 

A sub-network of interacting peroxiredoxins (PRDX1, PRDX2, and PRDX5) and catalase enzymes 

were up-regulated in the COPD groups. The overexpression of these proteins is protective to cells 

given that they increase life span and decreases injuries that arise from ROS generation [38,39]. In 

addition, the increased levels of PRDX1 in BAL were observed in patients with acute lung injury 

compared with normal subject [40].  

Finally, we have observed several deregulated proteins involved with the second line of defense 

against oxidative stress such as cathepsin D and ezrin. These proteins act when the first defense 

mechanism by non-enzymatic molecules and enzymatic scavengers, such as superoxide dismutases, 

catalase, and glutathione peroxidase, does not work properly against oxidative stress. Cathepsin D has 

been involved in the oxidative stress-induced apoptotic pathways. Furthermore, cathepsin D and ezrin 

are secreted aberrantly and excessively in various types of cancers [41,42], and are associated with 

increased cancer growth, invasion, and metastasis [41–45].  

The re-establishment of homeostasis within the physiological pathways of the redox and 

immunological system is an important therapeutic goal in oncology. For this achievement, the 

identification of adequate biomarkers and molecular targets is essential. One advantage of integrating 

our proteomic approach with network analysis is its potential ability to provide an insight into existing 

molecular mechanisms. The analysis of the proteins found in our study by Ingenuity System Pathway 

Analysis software, in order to identify any common links beyond oxidative stress, revealed NF-κB, an 

important transcription factor, which is a redox-sensitive transcription factor [46,47].  
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NF-κB regulated genes include cytokines, adhesion molecules, angiogenic factors, anti-apoptotic 

factors, and matrix metalloproteinases (MMPs), which are involved in different steps of 

carcinogenesis. It has been suggested that NF-κB promotes lung cancer mainly through mediating 

inflammatory cytokines secretion to establish a cancer-prone inflammatory microenvironment [48]. 

Similarly, NF-κB pathways play a crucial role in the pathogenesis/development of COPD by 

increasing the release of pro-inflammatory mediators leading to chronic inflammation in the lung. In 

bronchial biopsies of airway mucosa from patients with COPD, protein expression of the p65 subunit 

of NF-κB was increased compared with its expression in non-smokers, and correlated with airflow 

obstruction [49]. Our results suggest that oxidative stress induced in lung airways might alter redox 

detoxifying enzymes, which end up activating NF-κB node. This activation might contribute to cancer 

development and therapy resistance. Both chemo and radiation therapies induce NF-κB activation in 

cancer cells, which contributes to resistance to those same therapies [50]. Indeed, inhibition of NF-κB 

signaling by various approaches has been shown to augment the efficacy of chemotherapeutics and 

radiation in killing cancer cells in vitro and in vivo [51,52]. Some of the NF-κB inhibitors that 

enhanced lung cancer cell death induced by chemotherapeutics are genistein with cisplatin or 

docetaxel [53,54], embelin with paclitaxel [55], expression of IκBα mutant with cisplatin, 

gemcitabline, adriamicin and etoposide [56,57]. Increasing evidences shows that NF-κB plays a 

critical role in lung cancer development and suggests NF-κB as a target for lung  

cancer chemoprevention. 

In summary, this study in BAL suggests that cigarette smoking produces a free radical scavenging 

and oxidative stress response shared by the pathogenic pathways of lung cancer and COPD. 

Furthermore, the pivotal networking signaling is NF-κB. The proteins included in each specific disease 

signature may provide new biomarkers and predictive tools for LC and COPD. Additional validation 

of the identified proteins in independent patient cohorts is warranted. 

4. Materials and Methods 

4.1. Patients and Samples 

Samples were obtained from four groups of patients: control group (without COPD or LC), COPD 

group, LC group, and LC with COPD. A description of all included patients can be found on Table 1. 

From 2009 to 2011, a total of 60 patients who had required flexible bronchoscopy for diagnostic 

purposes, were chosen for the study. All samples were collected from patients of the Virgen del Rocío 

Hospital (Seville, Spain). The selection criteria to be included in the study were (1) patients had to 

have been evaluated by pneumology services by haemoptysis and/or a pulmonary nodule, (2) patients 

were smokers or ex-smokers of >20 pack year, (3) over 40 years of age. The exclusion criteria for this 

study were (1) Prior diagnosis of malignancy, (2) active pulmonary tuberculosis, (3) previous lung 

resection, (4) history of drug abuse, and (5) presence of other acute or chronic inflammatory disease. 

The present study was approved by the Hospital’s Ethical Committee and a written informed consent 

was obtained from all patients prior to their inclusion in the study. 

Subjects were prepared with a combination of topical anaesthesia (20% benzocaine spray to the 

pharynx plus 2% topical lidocaine as needed) and conscious sedation using midazolam and meperidine 
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according to institutional guidelines. Bronchioalveolar lavage (BAL) samples were obtained by 

installation and aspiration of 4 to 6 mL aliquots of 0.9% sterile saline in the bronchopulmonary 

segment. Recovered fluid was immediately passed through a 100 μm sterile nylon filter (Becton 

Dickinson, San Jose, CA, USA) to remove mucus and transported on ice to the laboratory. The total 

volume was then centrifuged for 10 min at 1800g and 4 °C. The supernatant was aliquoted into 2 mL 

tubes and frozen at −80 °C until further use. 

4.2. Sample Treatment 

Approximately 4–8 mL of sample was available to our experiments. Due to its low protein content, 

BAL samples needed to be concentrated before use. BAL samples were thawed on ice with a Protease 

Inhibitor Cocktail kit (Thermo Scientific, Franklin, MA, USA). Samples were then aliquoted into new 

tubes and placed on the vacuum concentrator (Concentrator plus-Eppendorf, Hamburg, Germany). The 

next step of the sample treatment protocol was the depletion of two of the most abundant proteins 

present in BAL (albumin and immunoglobulin G) that may obscure the presence of low abundant ones. 

This was accomplished by the use of SpinTrap columns (GE Healthcare) following the manufacturer’s 

instructions. The depleted BAL samples were then cleaned to remove contaminants, such as salts, 

thiols, denaturants, that would interfere with the two dimensional gel electrophoresis (2D-PAGE) 

protocol. A 2-D Clean-up kit (GE Healthcare) was used according to the manufacturer’s instructions 

with a rehydration solution containing urea (7 M), thiourea (2 M) and CHAPS (2%). Protein 

quantitation was assessed by the RCDC method (Bio-Rad, Hercules, CA, USA). 

4.3. 2D-PAGE  

BAL samples were used from the 60 patients included in the four groups (all samples were 

analyzed independently), by taking equal amounts of protein from each individual sample. A mixture 

of 75 μg of protein from each sample, DeStreak rehydration solution (GE Healthcare) and 0.5% of  

3–10 nL pH IPG Buffer (GE Healthcare), in a final volume of 125 μL, were submitted to isoelectric 

focusing (IEF) in 7 cm IPG DryStrips (GE Healthcare) with a 3–10 nL pH range. Subsequent to IEF, 

strips were then placed on 12.5% acrylamide gels and proteins separated by electrophoresis. After this 

second dimension, gels were SYPRO® stained according to the manufacturer’s instructions (Bio-Rad, 

Hercules, CA, USA). Gel images were scanned by using Typhoon TRIO (Amersham Biosciences, 

Piscataway, NJ, USA).  

4.4. Image Analysis and Mass Spectrometry 

Two-dimensional gel image analysis protein spot detection, spot matching, and semi-quantitative 

statistical analysis were performed using the Progenesis SameSpots (Nonlinear Dynamics, Durham, 

NC, USA). For each study group, four different gel images were analyzed, and a corresponding 

synthetic reference image was obtained. After computer matching, detected spots and spot matches 

were manually edited for greater accuracy. The detection of differentially expressed protein spots was 

performed using the test INCA volume and proteins that were two-fold or higher differentially 
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expressed were considered significant. Protein spots of interest were excised from the stained gel using 

a ProXcision robot (PerkinElmer, Boston, MA, USA) and sent for MS analysis. 

4.5. Protein Identification by Mass Spectrometry 

MS experiments were performed by the Proteomics platform of the University of Cordoba 

Proteomics Service (Cordoba, Spain). Protein spots of interest were washed with water and their 

trypsin digestion was performed. Tryptic peptides were mixed with a CCA matrix solution. The 

mixture was analyzed with a Voyager System DE-STR 7307 MALDI-TOF/TOF Mass Spectrometer 

(ABI) to obtain a peptide mass fingerprint (PMF). Peptide matching and protein searches against the 

Swiss-Prot database were done using the Mascot search engine with a mass tolerance of ±50 ppm. 

Protein scores >60 (threshold) indicated identity or extensive homology (p < 0.05) and were 

considered significant.  

4.6. Functional Analysis of the Identified Proteins 

From each spot only identified proteins with a probability higher than 95% and with at least two 

matched unique peptides were considered in the analysis, except for keratins, which were not 

considered. The experimental molecular weight and isoelectric point of each identified protein were 

determined based on the location of the original spot on the 2-D gel using the Progenesis software.  

4.7. Western Blot  

BAL proteins (30 μg) were separated in 12% gels polyacrylamide (SDS-PAGE) and transferred to 

polyvinylidene fluoride (PVDF) membranes (Bio-Rad, Hercules, CA, USA). After blocking, the blots 

were incubated overnight at 4 °C with primary antibodies according to the manufacturer’s instructions: 

anti-TXN, anti-GSR, anti-GSTA1, anti-CAT (1:1000, EPITOMICS, Burlingame, CA, USA), 

Secondary antibodies, peroxidase-conjugated anti-mouse (GE Healthcare, Uppsala, Sweden) and  

anti-rabbit (Cell Signaling, Beverly, MA, USA), were then applied to the individual membranes 

(1:2000) for 1 h at room temperature. Protein bands were revealed using enhanced chemiluminescence 

ECL (GE Healthcare, Uppsala, Sweden) and visualized in an image analyzer (Mini LAS-3000, 

Fujifilm, Tokyo, Japan). The relative protein levels were calculated by comparison to the amount of  

β-actin protein (1:1000 Abcam, Cambridge, MA, USA). The analysis of the expression values of the 

proteins of interest obtained by western blot was performed by densitometry, using Image J software 

and the results were expressed as fold change relative to the control protein (β-actin). The experiments 

were repeated three times independently. 

4.8. Bioinformatics 

The biological functions, in terms of gene ontology and interaction network, were analyzed using 

Ingenuity Pathways Analysis (IPA, version 7.1). Based on the local networks created by computational 

algorithms, identified proteins were connected with hub proteins, forming a functional protein cluster. 
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