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DNA methylation plays an important role in disease etiology. The Illumina Infinium HumanMethylation450 (450K)
BeadChip is a widely used platform in large-scale epidemiologic studies. This platform can efficiently and
simultaneously measure methylation levels at »480,000 CpG sites in the human genome in multiple study samples.
Due to the intrinsic chip design of 2 types of chemistry probes, data normalization or preprocessing is a critical step to
consider before data analysis. To date, numerous methods and pipelines have been developed for this purpose, and
some studies have been conducted to evaluate different methods. However, validation studies have often been limited
to a small number of CpG sites to reduce the variability in technical replicates. In this study, we measured methylation
on a set of samples using both whole-genome bisulfite sequencing (WGBS) and 450K chips. We used WGBS data as a
gold standard of true methylation states in cells to compare the performances of 8 normalization methods for 450K
data on a genome-wide scale. Analyses on our dataset indicate that the most effective methods are peak-based
correction (PBC) and quantile normalization plus b-mixture quantile normalization (QN.BMIQ). To our knowledge, this is
the first study to systematically compare existing normalization methods for Illumina 450K data using novel WGBS data.
Our results provide a benchmark reference for the analysis of DNA methylation chip data, particularly in white blood
cells.

Introduction

DNA methylation, where a methyl group is added to a cyto-
sine or adenine DNA nucleotide, may result in the regulation of
gene expression.1 DNA methylation influences numerous biolog-
ical processes, such as development and cell differentiation, and
also plays a crucial role in the progress of complex diseases,
including cancer and asthma.2,3 Therefore, exploring the relation
between this epigenetic variation and various phenotypes is
increasingly favored in scientific research.

Nowadays, Illumina has developed the Infinium HumanMe-
thylation450 BeadChip (450K) for profiling large-scale DNA
methylation at single base resolution by genotyping the C/T
polymorphism after sodium bisulfite treatment of DNA.4 Unlike
the previous version (27K), this new array incorporates 2 differ-
ent chemical assays: (1) Infinium I (n D 135,501), which uses a

single color with 2 different probes to generate methylated (M)
and unmethylated (U) measurements for a specific CpG locus;
and (2) Infinium II (n D 350,076), which uses a single probe
with 2 different colors to obtain M and U signal intensities for a
CpG locus. Although the 450K chip covers a large number of
CpG methylation loci and, thus, can be used in high-throughput
methylomic studies, such a special probe design causes potential
problems for data analysis. A previous report showed that Type I
and Type II probes usually have different distributions of methyl-
ation values, and that Type II probes are relatively less accurate
and sensitive for detecting extreme methylation values.5

Several methods and pipelines have been developed to prepro-
cess the 450K array data, in order to adjust for probe type or
color bias, subtract background signals, and eliminate systematic
errors. For example, quantile normalization (QN), a well-estab-
lished technique in analyzing gene expression data,6 is often used
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to analyze the Illumina methylation array data. QN replaces the
signal intensity of a probe with the mean intensity of the probes
that have the same rank from all studied arrays, and thus makes
the distribution of probe intensities from each array the same. In
general, raw data should be preprocessed by color balance adjust-
ment and background correction before QN. Yousefi et al. pro-
posed a reference factor-based color channel normalization
method called all sample mean normalization (ASMN), which
used the mean of red/green control probe intensities of all
samples to generate the reference normalization factors for the
specific color channel and then normalized each sample accord-
ingly.7 Dedeurwaerder et al. proposed a peak-based correction
(PBC) method to estimate the M-value peaks for Infinium I and
II independently, and rescale the Infinium II values to match the
Infinium I initial range.5 Maksimovic et al. subsequently pro-
posed a subset-quantile within array normalization (SWAN)
method, which assumes that probes with the same number of
CpGs should have the same intensity distribution regardless of
their design types.8 Touleimat and Tost also developed a categor-
ical subset quantile normalization (SQN) method based on the
assumption that probes belonging to the same CpG categories
(CpG island, S shore, S shelf, N shore, N shelf, and distant)
should have similar distributions.9 Pidsley et al. then generated a
combinational preprocessing framework that collected several rel-
evant methods integrating background adjustment, between-
array quantile normalization, and dye bias correction for M and
U signals, and Infinium I and II separately; among them, a
method named Dasen was the most recommended.10 Teschen-
dorff et al. published a b-mixture quantile normalization
(BMIQ) method that decomposed the b profiles of Type I and
Type II probes into 2 mixtures of 3 methylation states, and then
quantile normalized the 3 distributions of Type II profile corre-
sponding to those of Type I profile.11

To date, it is unclear which of the proposed methods
described above is best for preprocessing methylation data from
the Illumina 450K BeadChip platform. To address this issue, sev-
eral comparisons of different preprocessing approaches have been
conducted,12-14 mostly assessing reproducibility of technical rep-
licates, reduction of probe design bias and the influence of down-
stream differential methylation analysis. As a result, BMIQ was
the most recommended method, and Marabita et al. even pre-
ferred a QN plus BMIQ (QN.BMIQ) analysis pipeline, which
first quantile-normalized the intensities of methylation signals
among all arrays and then used BMIQ to normalize the b-values
within each array.13 However, almost all existing comparisons
did not possess the true status of intracellular DNA methylation
as a gold standard for comparison. Reproducibility of technical
replicates only implies chip precision, but does not directly mea-
sure chip accuracy when the truth is unknown. More recently,
sequencing-based technologies for genome-wide epigenetic pro-
filing have emerged. In spite of their higher cost (compared to
the array-based profiling), such technology is believed to better
capture the true methylation level in cells with a higher resolu-
tion.15 Hence, the sequencing data can be used for validating
DNA methylation. Dedeurwaerder et al. and Marabita et al.
have employed 2 bisulfite pyrosequencing (BPS) data sets as

validation datasets to evaluate the analytic pipelines for 450K
data, but they only have 352 and 15 BPS-450K matched CpG
sites, which are far fewer than those in the 450K chip and the
whole genome.12,13

In this work, we performed whole-genome bisulfite sequencing
(WGBS) on 4 white blood cell samples, which also have Illumina
Infinium 450K array data available from an epigenetic study that
includes 64 samples. We used the WGBS data as gold standard to
compare the performance of normalizing the 450K data with 8
representative methods (i.e., QN, PBC, SWAN, SQN, Dasen,
BMIQ, ASMN, and QN.BMIQ) on a genome-wide scale. To our
knowledge, this is the first study to systematically compare normal-
ization methods for the Illumina 450K methylation data using
WGBS data. The comparative analyses on our data set indicate
that PBC and QN.BMIQ-normalized 450K data are most consis-
tent with the corresponding WGBS data.

Results

Comparison of raw and normalized 450K data with WGBS
data

Comparison of CpG methylation levels
Bisulfite sequencing data has high precision and resolution, and

can thus be used as the gold standard to validate array-based DNA
methylation data. Our methylation dataset was composed of 4 sam-
ples, each having both 450K and WGBS data. For each sample, we
used different cutoffs of sequence depth to filter out CpGs from the
WGBS data, and calculated the Pearson correlation coefficient
(PCC) for the b-values of overlapped CpGs between the WGBS
data and each 450K data (raw and normalized). The 450K data for
64 samples were pooled together for normalization. The b-value
distributions of WGBS CpGs that overlapped with CpGs obtained
with the 450K platform showed 2 obvious peaks at low and high
methylation levels, regardless of the type of probe used (Type I,
Type II, or all; Fig. 1A). The number of overlapping CpGs between
WGBS and 450K data decreased when the cutoff of sequencing
depth increased (Fig. 1B). The mean Pearson correlations or mean
absolute differences (MAD) between WGBS and 450K data
reached extreme values when the sequencing depth was about 35
(Fig. 1C-H). Most of the normalized 450K data showed similar
high correlations with WGBS data, except that produced by SQN
(Fig. 1C and G). Similar results were observed when using Spear-
man correlation for comparison (Fig. S1). MAD curves clearly
show that 450K data normalized by PBC and BMIQ were closest
to the gold standard WGBS data; QN.BMIQ also showed good
performance (Fig. 1D and H). Raw measures of Type I probe
CpGs showed good consistency with the sequence data, yielding the
smallest MADs compared to most normalized values. Note that
BMIQ, PBC, and ASMN do not adjust the Type I probe data and
therefore showed the same correlations and MADs with WGBS
data (Fig. 1E and F). However, many normalization approaches
improved the correlation and MAD with WGBS for Type II
probes, compared to the raw measures; among them, PBC, BMIQ,
and QN.BMIQ showed the largest correlations and smallest MADs
with the gold standard WGBS data (Fig. 1G and H).
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Comparison of CpG methylation differences associated with
phenotypes

The four samples, measured by both WGBS and 450K plat-
forms in our data set, originated from 2 monozygotic twin pairs.
In every pair of twins, one had asthma while the other one did
not. We next compared the performances of these normalization
methods in downstream differential methylation analysis. For
each twin pair, we computed methylation differences by subtract-
ing the methylation values of healthy samples from the values of
asthmatic twin samples, and calculated PCCs of methylation dif-
ferences between different normalization data and between each
twin in the pair. The clustering diagram in Figure 2A shows that
data from the same twin pair clustered together, suggesting that

biological variation between samples are more significant than
that introduced by different normalization methods. Further-
more, we calculated the methylation differences using the WGBS
data, and compared the PCCs between WGBS data and normal-
ized 450K data for each twin pair. The results show that the cor-
relations of QN.BMIQ data rank top 3 in both sample pairs
(Fig. 2B and C).

Next, we ranked the differentially methylated CpGs accord-
ing to their absolute methylation differences, and counted
the number of top CpGs that were overlapped in both
WGBS and 450K data. We used 10 cutoffs from 2000 to
20000 to extract the top CpGs for comparisons. The results
showed that the PBC normalized array data had the largest

Figure 1. Comparison of different normalization methods for 450K data using WGBS data at a single CpG level. (A) b distributions of WGBS methylation
data for CpGs that overlapped with those obtained using the 450K platform. (B) Numbers of overlapped CpGs between WGBS and 450K data when
choosing different cutoffs of sequencing depth. Mean correlations between WGBS and each normalized 450K data for all overlapped 450K CpGs (C); for
Type I probe CpGs (E); and for Type II probe CpGs (G). Mean absolute differences between WGBS data and each normalized 450K data for all overlapped
450K CpGs (D); for Type I probe CpGs (F); and for Type II probe CpGs (H).
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number of differentially methylated CpGs overlapping with
those from the sequencing data in both twin pairs (Fig. 2D
and E).

Comparisons based on methylation regions
DNA methylation is usually studied in the context of DNA

regions (such as CpG islands, shores, and shelves) rather than sin-
gle CpG sites, largely because a group of adjacent CpGs that have
concordant differential methylation patterns may indicate a robust
and significant methylation event associated with phenotype.16-18

On the other hand, the SQN method performs normalization
based on different probe categories related to CpGs. Therefore, we
aggregated CpGs methylation values into regional levels and com-
pared them in the context of regions. According to 450K platform
annotations, the measured CpG sites, which were contained in
both 450K and WGBS data, belonged to 25,733 CpG islands,
11,536 N_shelves, 20,059 N_shores, 11,003 S_shelves, and
17,893 S_shores. We calculated the average b-value of the CpGs
located in a specific CG region to be the regional methylation level
and calculated their average sequencing coverage to be the regional
coverage. We then compared those different normalization
approaches with previous single-site based analyses. The correla-
tions between WGBS data and 450K data normalized by PBC,
BMIQ, and QN.BMIQ were larger, and their mean absolute dif-
ferences were smaller, than after normalization by other methods.

SQN still performed the worst, especially in the context of CpG
islands and shores (Fig. 3).

Assessment of reduction of variability in technical replicates
Using the 2 pairs of technical replicates in our data set, we

assessed the reduction in variability between replicates following
normalization with each method. Figure 4A shows that the PCCs
of duplicates from PBC and QN.BMIQ-normalized 450K data
are larger than for other methods, while those from ASMN and
SQN-normalized data are actually smaller than those of raw data.
Consistent results are shown in the MADs of duplicates: QN and
QN.BMIQ data showed smaller MADs in replicate samples, while
ASMN data showed even larger differences between technical repli-
cates than original raw data (Fig. 4B). These results are similar to
those reported by Marabita et al and Dedeurwaerder et al. studies,
where they also preferred the QN.BMIQ and PBC methods.12,13

Reduction of probe type bias
Animportantobjectiveofnormalizing the Illumina450Kdata is to

reduce thebias causedby theuseof the2 typesofprobes.Therefore,we
drew density plots of methylation b-values for each sample using raw
and normalized 450K data (Fig. 5), where the a red line represents the
densities of Type I probes for a sample and a blue line represents the
densities of Type II probes for a sample. It is shown thatQN, ASMN,
Dasen, and SWAN do not fully remove probe type bias; in contrast,

Figure 2. Comparison of CpG methylation differences using different normalization methods for 450K data. (A) Cluster dendrogram of CpG methylation
differences. Pearson correlation coefficient (PCC) between WGBS- and 450K-based methylation differences for sample.378 (B) and sample.911 (C).
Overlaps between top differentially methylated CpGs between WGBS and each 450K-based data for sample.378 (D) and sample.911 (E).
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QN.BMIQ, BMIQ, PBC, and SQNeliminate the bias between the 2
probe types. These results are similar to those reported by other
researchers.12-14 However, for SQN, although the bias is reduced, the
correlation/difference between the WGBS and its normalized 450K
data, and that between technical replicates, is severely compromised,
whichwas already shown in the above analyses.Hence, PBCandQN.
BMIQcouldbe themost efficientnormalizationmethods.

Discussion

The Illumina Infinium 450K arrays are now widely used in
profiling large-scale intracellular DNA methylation levels in
human epigenomic studies. Although many analytic methods
and pipelines for data from this platform have been imple-
mented, a consensus on preprocessing methods has not been

Figure 3. Comparison of different normalization methods for 450K data using WGBS data on a CpG regional level. b distributions, numbers of over-
lapped CpGs, mean correlations, and mean absolute differences between WGBS and 450K data, for CpG Island (A), N_Shelf (B), N_Shore (C), S_Shelf (D),
and S_Shore (E) regions.

Figure 4. Comparison of variability reduction in technical replicates after using different normalization methods on 450K data. Pearson correlation
coefficients (A) and mean absolute differences (B) between duplicate samples.
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reached. In this work, we used whole-genome bisulfite sequenc-
ing (WGBS) methylation data as gold standard to compare and
evaluate the performance of 8 normalization methods for the
450K data on a genome-wide scale. In particular, microarray
data from the 450K platform were obtained from 64 white blood
cell samples, among which 4 samples were also measured by
WGBS. WGBS data and differently normalized 450K data were
compared to evaluate the performance of different normalization
approaches. Our results suggest that PBC and QN.BMIQ nor-
malization methods may outperform others when analyzing the
Illumina Infinium 450K data.

Similar conclusions have been drawn by other studies. For
example, Marabita et al. found the QN plus BMIQ method
most effective among their 6 compared methods;13 Dedeur-
waerder et al. recommended the PBC method according to their
comparative analyses;12 Wu et al. found that raw data performed
better than several normalization approaches.14 Our observations
are consistent with those reports, although from a novel perspec-
tive. However, Maksimovic et al. and Touleimat et al. reported
that PBC did not work well when the methylation level distribu-
tion did not exhibit well-defined peaks;8,9 Teschendorff et al.
also showed that PBC could lead to discontinuities in Type II
density distribution.11 So the generalizability of our conclusions
may need to be evaluated on data from other tissue types.

The significance of our work lies in using the WGBS data
as a gold standard to evaluate the performance of normalizing
450K array data on a genome-wide scale. Previous reports
were mainly focused on just a few CpG sites for sequencing-
based validation, such as the small bisulfite pyrosequencing
(BPS) data sets employed by Dedeurwaerder et al. and Mara-
bita et al.12,13 WGBS can capture cytosine methylation states
on a whole-genome scale with high accuracy, especially when

the sequencing depth is high.19 Therefore, we generated a
whole-genome DNA methylation data set with the WGBS
technology, and used it as a gold standard to evaluate the cor-
responding 450K data normalized by different methods. To
our knowledge, this is the first study to systematically compare
normalization methods for the Illumina 450K methylation
data using WGBS data.

We acknowledge several limitations of our study. First, the
sequencing depth in our experiment is modest, »13£ coverage
per CpG site on average. Although we applied a higher cutoff to
obtain more accurate measures from sequencing, this reduced the
number of CpG sites to be compared. Also, our WGBS valida-
tion data set was small, and DNA methylation was only mea-
sured in white blood cells. The conclusions may need further
confirmation on other tissue data. We also did not evaluate the
impact of sequencing errors, which could bias the methylation
levels measured by WGBS. However, considering the high cost
of WGBS at the current time, the Illumina 450K methylation
platform will remain a popular technology for large-scale DNA
methylation profiling. Hence, our results will be valuable for the
analysis of the 450K array data.

Materials and Methods

Illumina Infinium HumanMethylation450 data
We quantified DNA methylation levels in white blood cells

from 64 children using the Illumina Infinium 450K platform.
High quality DNA (750 ng) was bisulfite converted using EZ
DNA methylation kit (Zymo Research, Irvine, CA). Bisulfite
converted DNA (200 ng) was used for analysis of whole-genome
methylation using the HumanMethylation 450K BeadChip

Figure 5. Comparison of the reduction of probe type bias after different normalizations. Density distributions of 2 probe type data.
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(Illumina). In brief, bisulfite converted DNA was whole-genome
amplified for 23 hours followed by end-point fragmentation.
Fragmented DNA was precipitated, denatured, and hybridized
to the BeadChips for 18 hours at 48�C. The BeadChips were
washed and the hybridized primers were extended and labeled
prior to scanning the BeadChips using the Illumina iScan system.

We read methylation data from the raw IDAT files using an R
package named methylumi and calculated the b-value for each
CpG as bDM/(MC UC a), where M and U represent methyl-
ated and unmethylated signal intensities at the specific site and a
is an arbitrary offset (usually 100) intended to stabilize b-values
where fluorescent intensities are low. Sometimes, people use
another index called M-value to quantify the DNA methylation
level, which is calculated as log2 [(M C a)/(U C a)]. In essence,
the M-value is equivalent to a logit transformation of the b-value.
Note that some normalization methods are performed on b-val-
ues and some are based on M-values.

Whole-genome bisulfite sequencing data
Four samples were used in the methyl-seq experiment. First,

750 ng of DNA were bisulfite bisulfite-converted using the EZ
DNA methylation-lightning kit. The concentration of bisulfite-con-
verted DNA was measured using quantifluor single stranded DNA
system (Promega, San Luis Obispo, CA) on an Ascent Fluorometer
(Thermofisher, Pittsburgh, PA). Bisulfite-converted DNA (50 ng)
was used to create a methyl-seq library using EpigenomeMethyl-Seq
Kit (Epicentre – an Illumina company) according to the man-
ufacturers’ protocol. In brief, cDNA was synthesized using random
hexamer with tagging sequence. After digesting excess random
primer, terminal tagging oligo (TTO) was added to the cDNA. The
tagged cDNAwas purified using AMpure XP system (Life Technolo-
gies, Grand Island, NY). The epigenome library was amplified (10
cycles) and then purified using AMpure XP system. The library was
then quantified using high sensitivity DNAChip (Agilent Technolo-
gies, Santa Clara, CA). The 200-cycle paired-end sequencing experi-
ment was performed by a university facility core, which used
Illumina HiSeq2000 and followed a standard protocol from the
manufacturer’s manual.

We utilized a tool named Bismark v0.12.5 to map the WGBS
reads to human genome hg19 and perform methylation calls.20

We then counted the number of methylated (observed as C) and
unmethylated (observed as T) cytosines at each CpG and calcu-
lated its b-value as #C/(#C C #T). The generated b profile was
regarded as the benchmark or gold standard of DNA methylation
status of the 4 samples.

Normalization of the Infinium 450K data
We pooled the 450K data from 64 samples together as a data

set and respectively preprocessed it with 8 representative methods
(SeeTable 1) to produce the normalizedDNAmethylation profiles.

We implemented color balance adjustment, background cor-
rection, and quantile normalization (QN) with the R package
lumi, which was designed to process the Illumina gene expression
and methylation microarray.21 The fuks, tost, BMIQ and dasen
functions from the wateRmelon package were respectively utilized
for normalizing the 450K data, which are after color and back-
ground corrections, based on the PBC SQN, BMIQ, and Dasen
methods.10 ASMN and SWAN were respectively implemented
with the asmn7 and minfi22 packages, and QN.BMIQ was
achieved by combining the 2 normalization methods with the
help of lumi and wateRmelon packages.13 All computational anal-
yses were implemented with R 3.1.2 and all the packages of nor-
malization were downloaded from Bioconductor 3.0.

From all raw and normalized 450K data, we filtered the SNP-
containing probes that were annotated by the Illumina 450K
platform and those unreliable probes that had at least one detect-
able P-value larger than 0.05. The remaining methylation profiles
were used for our comparative analyses.
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