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The role of MRI‑R2* in the detection 
of subclinical pancreatic iron loading 
among transfusion‑dependent sickle cell 
disease patients and correlation with hepatic 
and cardiac iron loading
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Abstract 

Objectives:  Pancreatic reserve could be preserved by early assessment of pancreatic iron overload among transfu-
sion-dependent sickle cell disease (SCD) patients. This study aimed to measure pancreatic iron load and correlate its 
value with patients’ laboratory and radiological markers of iron overload.

Materials and methods:  Sixty-six SCD children and young adults underwent MRI T2* relaxometry using a simple 
mathematical spreadsheet and laboratory assessment.

Results:  The results indicated moderate-to-severe hepatic iron overload among 65.2% of studied cases. None 
had cardiac iron overload. Normal-to-mild iron overload was present in the pancreas in 86% of cases, and 50% had 
elevated serum ferritin > 2500 ug/L. There was no significant correlation between pancreatic R2* level, serum ferritin, 
and hepatic iron overload. Patients with higher levels of hemolysis markers and lower pre-transfusion hemoglobin 
levels showed moderate-to-severe pancreatic iron overload.

Conclusion:  Chronically transfused patients with SCD have a high frequency of iron overload complications includ-
ing pancreatic iron deposition, thereby necessitating proper monitoring of the body’s overall iron balance as well as 
detection of extrahepatic iron depositions.
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Key points

•	 Transfusion-dependent SCD patients did not dem-
onstrate cardiac siderosis.

•	 A total of 86% of transfusion-dependent SCD 
patients had normal-to-mild pancreatic iron over-
load.

•	 No correlations were found between pancreatic R2* 
level, transfused iron, or hepatic iron.
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Introduction
Sickle cell disease (SCD) is an autosomal recessive hema-
tological disorder involving production of abnormal 
sickle hemoglobin (HbS) [1]. The responsible gene exists 
in the Egyptian western desert near the Libyan border 
with variable rates of 0.38% in coastal areas and up to 
9.0% in the new valley oases, mostly of the African globin 
gene haplotype [2].

Although wider use of hydroxycarbamide and new ther-
apeutic approaches have improved health-related quality 
of life, SCD in lower-resource countries still carries a poor 
prognosis and is associated with high early childhood 
mortality [3]. Transfusion is a frequently employed ther-
apy that is best validated for prophylaxis and treatment of 
stroke, preoperative prophylaxis, and treatment of acute 
chest syndrome (ACS) [4]; about 90% of adult patients 
have received a transfusion at least once in their lifetimes 
[3]. Although transfusion improves disease severity and 
complications, severe iron overload is an inevitable com-
plication, and chronically transfused iron-overloaded 
SCD patients have higher mortality than those with fewer 
transfusions and without iron overload [5].

Magnetic resonance imaging (MRI) is noninvasive, 
inexpensive, and widely available in developed coun-
tries [6]. Although serum ferritin is clinically used to 
estimate body iron stores, it reflects only around 1% of 
the total iron storage pool, and its measurement can be 
confounded by many conditions. In addition, liver iron 
content measured through MRI, which serves as a better 
indicator of whole-body iron, does not reflect heart iron 
loading [7]. The pancreatic iron burden may precede car-
diac iron loading and is a powerful predictor of heart iron 
overload, and its early assessment and tailored chelation 
could prevent diabetes and preserve pancreatic reserve 
[8].

The primary purpose of this work was to quantitatively 
assess pancreatic iron loading in transfusion-dependent 
SCD patients. The secondary purposes were to assess 
pancreatic iron load in correlation to hepatic and car-
diac iron load using MRI and to delineate the relationship 
between pancreatic iron load, clinical outcomes, and lab-
oratory tests including serum ferritin and amylase.

Materials and methods
Patient population
This cross-sectional study included 66 children and 
young adults with SCD who were recruited as regular 
patients of the Pediatric Hematology Clinic, Children’s 
Hospital, a tertiary university hospital. Participation in 
the study was voluntary and required informed consent 
from the patients and/or their legal guardians. The study 
was approved by the institutional regulatory board of the 

Pediatric University Hospital. All procedures adhered to 
the ethical standards of the responsible committee on 
human experimentation (institutional and national) and 
with the Helsinki Declaration of 1975, as revised in 2008.

Inclusion criteria

•	 Older than 5 years and able to perform MRI study.
•	 Patients with SCD who received packed RBCS blood 

transfusion more than 20 times in their lives showed 
an increased risk of iron overload. Thus, chelation 
therapy should be considered (according to National 
Cancer Comprehensive Network Clinical Practice 
Guidelines in Oncology [9]).

Exclusion criteria

•	 Known to have contraindications for MRI, such as an 
implanted magnetic device, pacemaker, or claustro-
phobia.

•	 History of myocardial infarction, cardiac failure, or 
hepatic failure.

•	 Affliction with other transfusion-dependent diseases.

All recruited patients were subjected to detailed medi-
cal history review and full clinical examination with 
special emphasis on disease duration, anthropometric 
measures, cardiac disease, history of splenectomy, viral 
hepatic infection, and history of transfusion or chelation 
therapy. The transfusion that was received was calculated 
as transfusion index: volume of transfused packed red 
cells in ml per kg body weight per year.

Patients with SCD received monotherapy or combined 
chelation therapy. Mono-chelation included deferoxam-
ine (DFO) infused subcutaneously in a dose that ranged 
from 30 to 45 mg/kg/day given 5 days/week, oral defer-
iprone (DFP) in a daily dose ranging from 50 to 100 mg/
kg/day, or oral deferasirox (DFX) in a daily dose of 
40  mg/kg/day. Assessment of patients’ compliance with 
chelation therapy involved reviewing patient self-reports, 
and the number of doses taken each day was checked 
using prescription refills and pill counts. A cutoff point 
below 80% was considered poor compliance to the regi-
men [10]. Hydroxyurea therapy was given orally in a dose 
of 20 mg/kg/day, with an increase to the maximum toler-
ated dose according to safety and response.

Laboratory analysis
Peripheral venous blood samples were collected on 
potassium-ethylenediaminetetraacetic acid (K2-EDTA) 
for complete blood count (CBC) using Sysmex 
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XT-1800i (Sysmex, Kobe, Japan) hemoglobin analysis 
by HPLC using D-10 (BioRad, Marnes La Coquette, 
France). To perform the chemical analysis and 
enzyme-linked immunosorbent assay (ELISA), clot-
ted samples were obtained, and serum was separated 
by centrifugation for 15 min to perform liver function 
tests (including serum albumin, total bilirubin, alanine 
aminotransferase, aspartate aminotransferase, lactate 
dehydrogenase, and indirect bilirubin) using Cobas 
Integra 800 (Roche Diagnostics, Mannheim, Germany). 
Serum ferritin level was measured using the Immulite 
1000 analyzer (Siemens Healthcare Diagnostics, Mar-
burg, Germany) and accompanied by the calculation of 
the patient’s mean value of the year before the study to 
assess ferritin trend. As per relevant literature, the cut-
off value of 2500 µg/L was used to classify patients into 
two groups as this has been defined as the best predic-
tor of thalassemia complication [11].

Magnetic resonance imaging (MRI) acquisition and image 
analysis
MRI examination was performed on a 1.5 Tesla super-
conductive MR Philips scanner (Achieva; Philips Medical 
Systems, Best, The Netherlands) in a tertiary university 
hospital without any contrast material. Patients were pre-
pared and informed to remain motionless, avoid exces-
sive swallowing, adjust respiration, and avoid several 
diaphragmatic motions. The duration of the study took 
approximately 10–15  min, and the system produced 
some loud noises.

(A) To complete quantitative measurement of pancre-
atic iron loading (R2*), the following steps were taken.

•	 Upper abdominal axial cuts were taken using a multi-
echo gradient sequence at 12 simultaneous echo 
times (TE) with a field-of-view (FOV) span from the 
dome of the diaphragm to the inferior poles of the 
kidneys to ensure complete pancreatic coverage by 
25 slices.

•	 The region of interest (ROI) was manually drawn 
over the pancreatic head or tail encompassing paren-
chymal tissue (mostly drawn over the pancreatic 
head) and took care to avoid confounding anatomy 
(large blood vessels or ducts) and areas with suscep-
tibility artifacts from gastric or colic intraluminal gas. 
Then, the ROI was copied across all images.

•	 Grading of pancreatic iron loading (R2*): Nor-
mal: < 30  Hz, Mild: 30–100  Hz, Moderate: 100–
400 Hz, and Severe: > 400 Hz [12].

(B) To complete quantitative measurement of myocar-
dial T2*, the following steps were taken:

•	 Multi-echo turbo field echo (mTFE) cardiac black 
and white blood short-axis were obtained using 
ECG and respiratory-gated with a dedicated 12-ele-
ment phased-array Torso coil using single 8–12  s 
breaths.

•	 The ROI was drawn in the interventricular sep-
tum encompassing both endocardial and epicardial 
regions.

•	 Grading of cardiac iron loading T2*: Normal > 20 ms, 
Mild: 15–20  ms, Moderate: 10–15  ms, and Severe  
< 10 ms [13].

(C) To quantitatively measure liver iron concentration 
(LIC), the following steps were taken:

•	 Upper abdominal axial cuts were taken using a multi-
echo gradient sequence where the signal intensity 
of the liver parenchyma was acquired using region-
based measurement.

•	 The ROI was placed over an axial mid-hepatic slice of 
the right hepatic lobe in an area free from vessels and 
bile ducts.

•	 Liver siderosis was measured using relaxation param-
eter T2*, and liver T2* values were then converted 
into R2* values (= 1000/T2*). Finally, LIC (mg/gdw) 
were calculated according to Garbowski et al.’s equa-
tion: LIC = 0.03 × R2* + 0.7 [14].

•	 Grading of liver iron loading LIC: Normal < 2 mg/g, 
Mild: 2–7  mg/g, Moderate: 7–15  mg/g, and 
Severe > 15 mg/g [15].

The pancreatic R* as well as myocardial and liver T2* 
were manually calculated via simple mathematical mod-
els by using Microsoft Excel Spread Sheet V3.0 [16]. The 
mean value of the signal intensity along different TE val-
ues was manually input into an Excel spreadsheet, and 
then, a curve-fitting truncation model consisting of a 
mono-exponential decay curve was applied [17].

(D) To qualitatively assess the renal iron overload:

•	 The upper abdominal axial cuts that were taken for 
coverage of the whole pancreatic tissue by 25 slices 
with a FOV spanning from the dome of the dia-
phragm to the inferior poles of the kidneys were used 
for qualitative assessment of the renal iron overload.

•	 The renal cortices contained the highest concen-
trations of glomeruli and proximal tubules, and 
the micro-anatomic locations contained the great-
est iron deposition. Excess renal iron overload was 
determined by the presence of a hypointense signal 
of the renal cortex compared to the medulla on the 
T1-weighted images and accentuated reduction in 
cortical signal intensity on the T2-weighted images.
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Statistical analysis
The data were analyzed using Stata® version 14.2 (Stata-
Corp LLC, College Station, TX, USA) and MedCalc© 
version 15.8 (MedCalc© Software bvba, Ostend, Bel-
gium). Quantitative variables were described in the form 
of mean and standard deviation or median and interquar-
tile range (IQR; 75th and 25th percentiles). Qualitative 
variables were described as numbers and percentages. 
The Kolmogorov–Smirnov test was used to test the dis-
tribution of normality. To compare parametric quantita-
tive variables between two groups, Student’s t test was 
applied. To compare nonparametric quantitative vari-
ables between two groups, the Mann–Whitney test was 
used. Qualitative variables were compared using the chi-
square (x2) test or Fischer’s exact test when frequencies 
were below five. Pearson correlation coefficients were 
used to assess the association between two normally dis-
tributed variables. When a variable was not normally dis-
tributed, a Spearman correlation test was performed. A p 
value < 0.05 was considered significant in all analyses.

Results
This study included 66 patients (n = 66; 31 females and 
35 males; 15.68 ± 7.02 years of age) with a history of SCD 
who had received repeated blood transfusions for cardio-
pulmonary complications and ACS (33.3%, 22 patients) 
as a secondary stroke preventive measure (13.7%, 9 
patients) and for frequent sickling crisis and symptomatic 
anemia (53.0%, 35 patients).

Among the 66 patients, only 53 received chelation ther-
apy. Of these 53 patients, 92.5% (49 patients) received 
monotherapy as follows: 35 patients (71.4%) received 
DFP, 13 patients (26.5%) received DFO, and only one 
patient (2.1%) received DFX. The remaining four patients 
(7.5%) required combined chelation therapy for the treat-
ment of iron overload. Demographic, clinical, laboratory, 
and radiological characteristics of the studied patients 
with SCD are illustrated in Table 1.

Most of the patients (65.2%, 43 patients) demonstrated 
moderate-to-severe hepatic iron overload, 13.6% (9 
patients) demonstrated moderate-to-severe iron over-
load within the pancreatic tissue, and none had a cardiac 
iron overload. Twenty-eight patients revealed a marked 
decrease in renal cortical signal intensity with almost 
sparing of the renal medulla (Figs. 1, 2).

To study the possible correlation between pancreatic 
iron overload in SCD patients, a comparison between 
SCD patients with normal pancreatic MRI and those 
with moderate-to-severe pancreatic MRI was performed, 
as illustrated in Table 2. The mild subgroup was omitted 
from this comparative study for two reasons. Firstly, the 
mild subgroup had a narrow zone of Hz of only 0–100 

versus the moderate (100–400) and severe zones (more 
than 400  Hz). Secondly, the mild subgroup was in the 
gray zone between normal and significant iron over-
loading. Thus, adding this group with a relatively high 
percentage ratio (65.1%) of abnormal pancreatic MRI to 
the sample would have produced a great impact on the 
results.

Patients who presented with a high level of hemolysis 
marker and a low level of pre-transfusion hemoglobin 
exhibited moderate-to-severe pancreatic MRI iron 
overload. Although the percentage of non-compliance 
to chelation therapy was higher (71.4%) in those who 

Table 1  Characteristics of the studied patients with sickle cell 
disease

Variable Sickle cell disease (n = 66)

Age (year); mean ± SD 15.68 ± 7.02

Male: female, n (%) 35 (53.0%): 31 (47.0%)

Positive family history of SCD, n (%) 43 (65.2%)

Clinical characteristics

Splenectomized, n (%) 13 (20.0%)

Number of sickle crisis/year; median (IQR) 4 (2–8)

Sickle crisis ≥ 3/year, n (%) 35 (54.7%)

History of silent or manifest stroke, n (%) 9 (14.1%)

History of acute chest syndrome, n (%) 12 (18.8%)

Cardiopulmonary complications, n (%) 10 (15.6%)

Transfusion index (mL/kg/year) 120 (60–240)

Iron overload per day (mg/kg); mean ± SD 0.23 ± 0.15

On chelation therapy, n (%) 53 (80.3%)

Poor compliance to chelation, n (%) 21 (42.0%)

Laboratory characteristics

Pre-transfusion hemoglobin (g/dL); 
mean ± SD

8.03 ± 1.42

HbS (%); mean ± SD 61.33 ± 20.70

HbF (%); median (IQR) 4.7 (1.3–12.2)

Serum amylase (U/L); mean ± SD 56.73 ± 21.43

Serum ferritin (ug/L); median (IQR) 2805 (median 940–4638)

 Serum ferritin level > 2500; n (%) 33 (50%)

Radiological characteristics

LIC (mg/g liver dry weight); median (IQR) 11.63 (5.81–20.31)

 Normal; n (%) 7 (10.6%)

 Mild; n (%) 16 (24.2%)

 Moderate; n (%) 24 (36.4%)

 Severe; n (%) 19 (28.8%)

Cardiac T2* (msec); mean ± SD 31.40 ± 6.58

 Normal; n (%) 66 (100%)

Pancreatic MRI (msec); median (IQR) 53.80 (35.35–84.45)

 Normal; n (%) 14 (21.2%)

 Mild; n (%) 43 (65.1%)

 Moderate; n (%) 8 (12.1%)

 Severe; n (%) 1 (1.6%)
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had abnormal pancreatic MRI than those with normal 
MRI (45.5%), the difference does not have statistical 
significance. To highlight the effect of iron overload, 
a comparison between SCD patients who had serum 
ferritin less than or equal to 2500 ug/L and those with 
high serum ferritin of more than 2500 ug/L was also 
performed, as illustrated in Table 3.

A correlation study of pancreatic MRI among the SCD 
patients revealed that there was a non-significant nega-
tive correlation between pancreatic MRI and transfu-
sion index (p = 0.314), iron overload per day (p = 0.424), 
pre-transfusion hemoglobin (p = 0.051), serum amyl-
ase (p = 0.730), HbS% (p = 0.663), and serum ferritin 
(p = 0.964). In addition, there was a non-significant 

positive correlation with LIC (p = 0.069). Furthermore, 
there was no significant correlation between serum 
amylase and other studied parameters.

Discussion
Transfusion is used in patients with SCD to increase 
blood’s oxygen-carrying capacity and to improve blood 
flow [4]. The recruited children and young adults with 
SCD were a unique population who received frequent 
transfusions as prophylaxis and as therapy for major 
complications of SCD. However, iron overload is an una-
voidable complication of transfusions [4]; consequently, 
the studied SCD patients presented high iron overload/

Fig. 1  Flow diagram showing the number of patients under chelation therapy, as well as the hepatic, cardiac, and pancreatic iron loading among 
the sample population
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day with an estimated average value of 0.23 ± 0.15 mg/kg, 
which leads to iron accumulation. Fortunately, 80.3% of 
the studied patients received monotherapy chelation.

MRI does not image iron directly; it images water pro-
tons diffusing near iron deposits [6], which causes local 
distortion in the magnetic field inhomogeneity (T2∗) and 

loss of signal intensity in proportion to its deposition 
[18]. MRI represents a safe, noninvasive, highly repro-
ducible modality [19, 20] that provides new insights into 
the dynamics of iron overload [21].

Iron causes MRI images to darken at a rate propor-
tional to the hepatic iron load, with the half-life of this 

Fig. 2  MRI of a transfusion-dependent patient with sickle cell disease using multiple echo times. A Axial MRI with a region of interest drawn in the 
head of the pancreas. B Left ventricular short-axis black blood MRI images sequence with a region of interest drawn at mid interventricular septum. 
C Axial MRI liver with a region of interest drawn in the periphery of the right lobe of the liver
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darkening defined as T2*. The rate of darkening, desig-
nated as R2*, is the reciprocal of T2* and is proportional 
to the iron content of the tissues. MRI scanning estimates 
tissue iron concentration both by gradient echo imaging, 
which provides T2*, and spin echo imaging, which pro-
vides T2, the reciprocal of R2 [22].

R2 and R2* methods have respective theoretical advan-
tages and disadvantages. R2 techniques are insensitive to 
the size and shape of the imaging “voxel” as well as exter-
nal magnetic inhomogeneities, while R2* methods can 
be influenced by these factors. In contrast, R2* measure-
ments are more robust to variations in the length scale of 
iron deposition and can accurately reflect the bulk mag-
netic susceptibility of tissues. R2* measurements can also 
be performed in a single breath-hold, while R2 methods 
take 5 to 20 min (depending on technique). R2* measure-
ments are robust to long-range magnetic disturbances; 
thus, one would expect a linear relationship between R2* 
and iron over the entire physiologic range of iron deposi-
tion [23, 24].

There are two basic types of pulse sequences: the spin 
echo (SE) and the gradient echo (GRE). To measure sig-
nal intensity and quantify iron concentration, GRE T2* 
and SE T2 sequences are used. The GRE sequence gen-
erates a T2* decay curve, which is much faster and very 

sensitive even to small amounts of iron deposition. In 
contrast, the SE sequence generates a T2 decay curve, 
which is a more time-consuming process [25].

In the current study, MRI T2* relaxometry method 
was used to concurrently quantify hepatic, myocardial, 
and pancreatic iron in the same setting with short acqui-
sition times and fast scanning through the multi-echo 
sequence, which is particularly beneficial in the pediatric 
population. A range of echo times was used to allow accu-
rate quantification of T2* values in cases of severe iron 
overload and to provide suitable sensitivity at low tissue 
iron levels. The use of constant repetition time between 
all echo times eliminated any T1 effects that might skew 
the data when using the conventional sequence [26].

There is no definitive gold standard for T2* post-pro-
cessing [15]. Consequently, iron content was calculated 
in the current study through a relatively inexpensive, 
commercially available Excel spreadsheet with a linear 
mono-exponential fitting model that is reported to have 
a slightly higher coefficient of variation compared with 
the nonlinear fitting used in CMR tools [16]. This Excel-
based approach would be the most accessible program 
for most physicians, especially in limited-resource set-
tings, and avoids the complicated extra technical step and 
costs of licensing the necessary complementary bases.

Table 2  Comparison between sickle cell disease patients with normal and those with abnormal pancreatic MRI

*Patients with Abnormal* pancreatic MRI include those with pancreatic MRI > 100 Hz

Variable Normal pancreatic MRI (n = 14) Abnormal* pancreatic MRI 
(n = 9)

p value

Age (years); mean ± SD 17.79 ± 8.80 20.11 ± 8.80 0.543

Males; n (%) 8 (57.1) 3 (33.3) 0.265

Transfusion index (mL/kg/year); median (IQR) 240 (120–240) 120 (60–240) 0.158

Iron Overload (mg/kg/day); mean ± SD 0.30 ± 0.14 0.22 ± 0.17 0.226

On chelation; n (%) 11 (78.6) 7 (77.8) 0.964

Poor compliance to chelation; n (%) 5 (45.5) 5 (71.4) 0.280

Pre-transfusion hemoglobin (g/dL); mean ± SD 8.74 ± 1.64 6.61 ± 0.54 0.004

HbS (%); mean ± SD 67.79 ± 24.72 54.92 ± 25.69 0.312

HbF (%); median (IQR) 0 (0–8.2) 3.45 (3.1–12.2) 0.177

Lactate dehydrogenase (IU/L); mean ± SD 472.14 ± 155.57 768.38 ± 531.13 0.062

Total bilirubin (mg/dL); mean ± SD 2.42 ± 1.16 4.05 ± 1.59 0.012

Indirect bilirubin (mg/dL) 1.515 (0.96–2.1) 2.04 (1.89–2.71) 0.048

Serum amylase; mean ± SD 62.43 ± 24.15 70.00 ± 32.37 0.539

Serum ferritin (ug/L); median (IQR) 3670.5 (1456–4743) 1987 (1650–4313) 0.571

Serum ferritin level > 2500; n (%) 8 (57.1) 4 (44.4) 0.552

LIC (mg/g liver dry weight); median (IQR) 14.045 (7.35–20.83) 14.03 (9.2–24.89) 0.614

Normal; n (%) 1 (7.1) 0 (0.0) 0.859

Mild; n (%) 3 (21.4) 2 (22.2)

Moderate; n (%) 5 (35.7) 3 (33.3)

Severe; n (%) 5 (35.7) 4 (44.4)

Cardiac T2* (msec); mean ± SD 31.51 ± 4.90 29.99 ± 3.87 0.442
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The liver is the dominant storage organ for excess iron 
acquisition and mobilization of iron in response to iron 
chelation [27]. An LIC of more than seven milligrams 
Fe/gram dry liver weight represents the best threshold 
for determining the presence of hepatic fibrosis [27] and 
vascular morbidity [28]. The majority of patients (65.2%) 
had moderate-to-severe liver iron overload, confirming 
the previously reported finding that liver toxicity in SCD 
occurs at similar levels to those observed in patients with 
thalassemia major (TM) [28–30].

The heart, in contrast to the liver, has robust mecha-
nisms to prevent excessive transferrin-mediated uptake 
[27]. The studied children and young adults exhibited 
moderate-to-severe hepatic iron loading, with no evi-
dence of cardiac iron loading endorsing that chronically 
transfused patients with SCD had a lower risk of cardiac 
complication in comparison with patients with TM [31]. 
Delayed cardiac iron uptake compared to many other 
extrahepatic organs including the pancreas [32] confirms 
that iron overload selectively targets the liver in patients 
with SCA, initially relatively sparing the heart [33]. How-
ever, the heart becomes vulnerable to iron loading once 
the “threshold” LICs are reached, and that threshold is 
higher in SCD [34] (15–20 mg/g dry weight) than in TM 
[35].

Pancreatic iron overload can impair the exocrine and 
endocrine functions of the pancreas [8], which, unlike 
the liver, may not regenerate or remodel even with the 

reduction in hemosiderosis [36]. This necessitates early 
assessment of pancreas iron and tailored chelation that 
may prevent diabetes and preserve pancreatic reserve 
[8]. Most of the recruited chronically transfused SCD 
patients (86%) had normal-to-mild pancreatic iron over-
load, confirming that they are less likely to develop pan-
creatic iron overload compared to patients with TM; this 
is likely because iron released by transfusion and hemoly-
sis is efficiently handled by effective erythropoiesis [37], 
thus keeping transferrin saturations [38] and non-trans-
ferrin-bound iron (NTBI) levels low [39]. Furthermore, 
SCD patients have shorter and less intense transfusion 
exposure [40] even when aggressive chronic transfusion 
therapy is used as it is often started later in life and at a 
lower intensity [41]. In line with these points, Noetzli 
et al. found that chronically transfused SCD patients are 
less likely to develop moderate-to-severe pancreatic iron 
overload even after correcting for differences in transfu-
sion duration, transfusion intensity, and severity of iron 
loading [42].

SCD patients with a history of low pre-transfusion 
hemoglobin levels and high levels of hemolysis mark-
ers revealed moderate-to-severe pancreatic iron MRI 
overload, thereby supporting the hypothetical relation-
ship between hemolysis and pancreatic iron overload. 
Pancreatic iron burden precedes and is a powerful pre-
dictor of heart iron overload [8] as both organs have the 
same L-type calcium iron channels [36]. In this study, 

Table 3  Comparison between sickle cell disease patients who had serum ferritin ≤ and > 2500 ug/L

Variable Serum ferritin ≤ 2500 ug/L 
(n = 33)

Serum ferritin > 2500 ug/L 
(n = 33)

p value

Age (years); mean ± SD 14.78 ± 6.85 16.55 ± 7.18 0.315

Males; n (%) 15 (46.9) 19 (57.6) 0.388

Iron Overload (mg/kg/day); mean ± SD 0.17 ± 0.14 0.28 ± 0.13 0.001

On chelation; n (%) 20 (62.5) 32 (97.0) 0.001

Poor compliance to chelation; n (%) 6 (31.6) 15 (50.0) 0.204

Pre-transfusion hemoglobin (g/dL); mean ± SD 7.66 ± 1.46 8.37 ± 1.30 0.046

HbS (%); mean ± SD 63.28 ± 16.04 59.57 ± 24.29 0.504

HbF (%); median (IQR) 6.2 (0.8–12.2) 3.6 (1.3–10) 0.579

Lactate dehydrogenase (IU/L); mean ± SD 547.38 ± 331.71 525.21 ± 204.67 0.749

Total bilirubin (mg/dL); mean ± SD 2.59 ± 1.50 2.60 ± 1.09 0.970

Indirect bilirubin (mg/dL) 1.33 (0.9–2.18) 1.8 (0.9–2.12) 0.549

Serum amylase; mean ± SD 57.41 ± 24.46 56.12 ± 18.74 0.815

LIC (mg/g liver dry weight); median (IQR) 6.19 (3.06–11.02) 16.16 (12.94–24.7) 0.000

Normal; n (%) 7 (21.9) 0 (0.0) 0.000

Mild; n (%) 13 (40.6) 2 (6.1)

Moderate; n (%) 10 (31.3) 14 (42.4)

Severe; n (%) 2 (6.3) 17 (51.5)

Cardiac T2* (msec); mean ± SD 32.03 ± 5.09 30.79 ± 7.80 0.454

Pancreatic MRI (msec); median (IQR) 52.85 (35.35 – 83.5) 54.9 (31.8 – 87) 0.847
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pancreatic R2* did not correlate with cardiac T2* as all 
patients had normal cardiac T2*, and it had a nonlin-
ear relationship with LIC. This data suggests that heavy 
hepatic siderosis is a prerequisite for cardiac and endo-
crine siderosis in SCD, unlike in TM [43], and that pan-
creas R2* values probably represent the most viable 
surrogate index for extrahepatic risk [44].

The renal cortices contain the highest concentrations of 
glomeruli and proximal tubules, and it is the micro-ana-
tomic locations that contain the greatest iron deposition 
in SCD patients [45]; this is consistent with the finding 
that nearly half of patients revealed a marked decrease 
in renal cortical signal intensity (which represents iron 
loading) with almost sparing of the renal medulla. In the 
current study, renal iron was not quantitatively assessed, 
and further studies are needed to assess kidney iron bur-
den in patients with SCD.

Conclusion
Chronically transfused patients with SCD have a high 
frequency of iron overload complications including 
pancreatic iron deposition, thus necessitating proper 
monitoring of the overall body iron balance as well as 
detection of extrahepatic iron deposition.

Study limitation
Contributions from multicenter will be of additive value 
to better assess such important complications of extrahe-
patic iron deposition. ROI positioning in the pancreatic 
tissue is sometimes complicated due to tissue inhomoge-
neities and breathing artifacts. Additionally, the pancreas 
may be difficult to locate in older, splenectomized sub-
jects because of glandular apoptosis, fatty replacement, 
and loss of normal anatomic landmarks. Moreover, the 
surrounding confounding anatomy (e.g., large blood ves-
sels or ducts) and areas involved in susceptibility artifacts 
from gastric or colic intraluminal gas also hinder proper 
pancreatic assessment and may hamper the results. 
The effect of iron overload upon pancreatic function-
ing, and especially the endocrine function, needs to be 
evaluated to predict the risk of diabetes mellitus among 
transfusion-dependent SCD patients. Renal iron was not 
quantitatively assessed, and further studies need to be 
conducted to assess kidney iron burden in patients with 
SCD.
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