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Abstract: Radiotherapy (RT) is a mainstay of cancer treatment. Recent studies have shown

that RT not only directly induces cell death but also has late and sustained immune effects.

High mobility group box 1 (HMGB1) is a nuclear protein released during RT, with location-

dependent functions. It is essential for normal cellular function but also regulates the

proliferation and migration of tumor cells by binding to high-affinity receptors. In this

review, we summarize recent evidence on the functions of HMGB1 in RT according to the

position, intracellular HMGB1 and extracellular HMGB1. Intracellular HMGB1 induces

radiation tolerance in tumor cells by promoting DNA damage repair and autophagy.

Extracellular HMGB1 plays a more intricate role in radiation-related immune responses,

wherein it not only stimulates the anti-tumor immune response by facilitating the recognition

of dying tumor cells but is also involved in maintaining immunosuppression. Factors that

potentially affect the role of HMGB1 in RT-induced cytotoxicity have also been discussed in

the context of possible therapeutic applications, which helps to develop effective and targeted

radio-sensitization therapies.

Keywords: autophagy, DNA damage repair, high mobility group box 1, immune modulation,

tumor radiosensitivity

Introduction
Radiotherapy (RT) remains the mainstay of cancer treatment because of the ability to

induce DNA double strand breaks (DSBs), which can result in direct cancer cell

death.1 Recently, research into improving outcomes of RT focused on changes of the

tumor cell phenotype, and the complex biological interactions between tumor cells

and tumor-associated stroma in the tumor microenvironment (TME).2,3 RT-induced

anti-tumor immunity is generated by the interaction of both immune-activating

signals and immune suppressive factors.4,5 After tumor cells are damaged by RT,

the release of tumor antigens and damage-associated molecular patterns (DAMPs)

can change the TME into an immune-stimulatory profile, thereby inducing an

effective anti-tumor immune response.6–8 The major contributor to this “all-sided”

response is RT-induced immunogenicity cell death (ICD). Typically, ICD facilitates

the uptake of tumor antigens by dendritic cells (DCs) and promotes T cell activation

and infiltration, which transforms a tumor into in-situ vaccines.9,10 However, in some

cases, the intricacy of tumor resistance to radiation may cause ICD to be unsuccess-

ful. Therefore, a second stimulus,such as hyperthermia and necroptosis inducers, is

necessary to better induce ICD in irradiated tumors, which results in better tumor

control. For example, Podolska and colleagues demonstrated that graphene-induced
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hyperthermia in combination with RT resulted in higher

levels of ICD in B16F10 melanoma cells.11 Moreover,

a specific immune response was implemented in immuno-

competent animals that were inoculated with tumor cells

undergoing ICD, which was associated with immunological

memory.12 Thus, it can be concluded that successful induc-

tion of ICD may directly influence the efficacy of RT.

One of the key hallmarks of ICD is the release of high

mobility group box 1 (HMGB1), a histone-chromatin

binding protein that belongs to DAMPs. However,

HMGB1 plays a contradictory role in RT, and the function

of HMGB1 changes with its location.13,14 Inside the cell,

nuclear HMGB1 binds loosely with histones (H1 and H5)

to stabilize chromosomal structure and facilitate nucleo-

some sliding, which involves DNA transcription, recombi-

nation, and repair.15 Cytoplasmic HMGB1 drives

autophagy by promoting lysosomal degradation and main-

tains cell homeostasis.16 Outside the cell, HMGB1 can

activate and mobilize antigen-presenting cells by binding

to Toll-like receptors (TLRs), and can drive inflammatory

responses by activating downstream inflammatory

cytokines.17 Notably, the presence of extracellular

HMGB1 is a two-edged sword: while a transient increase

in secreted levels of HMGB1 can induce immune

responses against tumor cells,18 chronic accumulation in

the extracellular space can result in abnormal pathophy-

siological conditions, such as cancer.19,20 In previous stu-

dies, it was shown that HMGB1 can combine with specific

ligands to induce chronic inflammation, thereby driving

malignant transformation by inducing immunosuppres-

sion, activation of oncogenes, and inhibition of tumor

suppressors.21,22 Moreover, HMGB1 can directly promote

the production of cytokines, such as vascular endothelial

growth factor (VEGF), transforming growth factor

β (TGF-β), and metalloproteinase (MMP) to favor tumor

angiogenesis, invasion, and metastasis.23–25

HMGB1 has been implicated in tumor radio-resistance

based on its DNA damage repair and autophagy functions,

and radio-sensitization through immune-mediated tumor

destruction.26–28 Thus, it is essential to elucidate the

mechanisms underlying the action of HMGB1 in RT, to

use it as a therapeutic target to increase radio-sensitivity.

In the following sections, the pivotal role of both intracel-

lular and extracellular HGMB1 in RT is discussed, along

with the potential underlying mechanisms influencing the

effect of RT to provide novel ideas for improving radiation

effects.

Extracellular: HMGB1 and
RT-Related Immune Response
Immune Recognition
The immune system can distinguish between “self” and

“non-self” antigens based on pathogen associated molecu-

lar patterns (PAMPs) and between “danger” and “non-

danger” based on DAMPs.8,29 PAMPs often refer to the

recognition of common components of bacteria and

viruses, such as peptidoglycans and lipoproteins. In gen-

eral, aberrant clones from normal cells, such as tumor

cells, carry mostly autoantigens, and thus are not recog-

nized by PAMPs. Accordingly, recognition of tumor cells

by the immune system is more dependent on DAMPs,

which refer to endogenously derived danger signals or

alarmins released by dying cells.30 RT is known to cause

fatal damage to tumor cells, which improves recognition

of the immune system through the release of DAMPs. In

general, RT-induced DAMPs contain the following cellular

hallmarks: calreticulin, heat shock proteins (HSPs), ade-

nosine 5-triphosphate, and HMGB1.31 Several DAMPs,

including HSPs, are increased at both exposed surface

expression and are released after RT treatment.32,33

Stimulated by these danger signals, RT-induced systemic

antitumor immunity not only shrinks local tumors but also

controls distant tumors, a phenomenon known as the

“abscopal effect”.34,35 However, in several studies, it has

been reported that a relative increase in the number of

immune suppressive properties in the TME after RT,

including TGF- β and immune checkpoint molecules, can

potentially impair RT-induced anti-tumor immune

responses.36 Therefore, RT-induced immune responses

against tumors can be considered a newly alternative

radio-sensitizing modality.

The immune system can recognize and respond to

dying tumor cells, and HMGB1 serves as a “necrotic

marker” for recognition by immune cells. Importantly, in

this role, immune stimulation characteristics of HMGB1

presuppose that they should be released by dead cells. The

lethal damage caused by RT is sufficient to result in loss of

cell membrane integrity, and HMGB1 must be released

from inside to outside the cell. Due to lack of a guiding

peptide, active secretion of HMBG1 is mediated via vesi-

cles rather than via the (ER)/Golgi secretion pathway,

whereas loss of membrane integrity and necrosis passively

releases cytosolic HMGB1.37 Of note, the release of

HMGB1 from necrotic tumor cells has been reported to

also recruit macrophages and neutrophils, resulting in

Liao et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2020:136860

http://www.dovepress.com
http://www.dovepress.com


tumor growth and metastasis.38,39 Figure 1 presents the

myriad immune-regulatory roles of HMGB1.

Inflammation
Solid tumors tend to be immunosuppressive and resist infil-

tration of inflammatory cells.40 However, RT can induce an

acute inflammatory reaction in tumors by upregulating mul-

tiple pro-inflammatory cytokines, including TNF, IL-1α,

and IL-1β.41,42 In these inflammatory conditions, binding

of HMGB1 with receptors for advanced glycation end-

products (RAGEs) triggers the RAGE/JNK/NF-κB inflam-

matory signaling pathway and plays a role in maintaining

inflammation.43 Once out of the cell, HMGB1 induces the

release of TNFα, IL-1α and other pro-inflammatory cyto-

kines from monocytes in an autocrine manner, thereby

creating an inflammatory environment.44 Furthermore,

HMGB1 can form complexes with DNA, lipopolysacchar-

ide (LPS), il-1β, and nucleosomes that interact with differ-

ent receptors to promote inflammation.45 Especially,

HMGB1/DNA complexes released from necrotic tissue

are thought to be highly pro-inflammatory, and act as

a death signal to promote cytokine production through

binding with TLR9.46 As a cytokine, HMGB1 can directly

activate endothelial cells to up-regulate the adhesion mole-

cule Mac-1, which leads to rapid recruitment, adhesion, and

migration of neutrophils.47,48 Moreover, the binding of

HMGB1 to TLRs is conducive for the infiltration and che-

motaxis of immune effectors, including Th1 cells, cytotoxic

T-lymphocytes (CTLs), and natural killer (NK) cells. The

activation of TLRs increases secretion of CCL2, CCL5, and

CXCL10, and the resulting chemokine gradient attracts

cytolytic immune cells into tumor tissues.49 In addition to

this, the interaction of HGMB1 with TLR2 can activate NK

cells via NF-κB, STAT3, and Smad3 signaling pathways to

induce anti-tumor immune responses.50 Taken together,

HMGB1 accelerates RT-mediated transformation of tumors

into “acute inflammatory” tissues by activating cytokines,

which is critical for initiation of the adaptive immune

response.

Adaptive Immune Response
Maturation of Dendritic Cells
DCs are potent antigen presenting cells (APCs) that med-

iate RT-induced adaptive immune responses by engulfing,

processing, and presenting tumor antigens to specific

T-cells.51 Immature DCs differentiate into mature cells in

response to antigenic stimuli, which is accompanied by

upregulation of CD40, CD80, CD86, and MHC that func-

tion as T-cell activators and co-stimulatory factors.52,53

However, immunosuppressive factors in the TME inhibit
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Figure 1 The paradoxical role of extracellular HMGB1 in RT-related immune effect. HMBG1 can be released in two ways: Monocytes actively secrete HMBG1 through

vesicles, while necrotic cells passively leak cytoplasmic HMGB1. Extracellular HMGB1 stimulates DC-mediated activation of CD8+T cells and subsequent IFN-γ secretion,

which further increases the number of necrotic tumor cells and promote more HMGB1 release. However, HMGB1 facilitates the growth of immunosuppressive cell such as

Tregs, MDSCs, and promotes the polarization of M1-type macrophages to M2-type macrophages. (DCs, Dendritic cells; HMGB1, High Mobility Group Box 1; IFN-γ,
Interferon-γ; MDSCs, Marrow-derived inhibitory cells; Treg,T regulatory cell).
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DC maturation. In a previous report, it was identified that

HMGB1 mediates activation of DCs and enhances the

expression of CD80 and CD86 on DCs in vitro in a dose-

dependent manner.54 Furthermore, upon maturation DCs

secrete high levels of HMGB1, which up-regulates

CXCR4 and CCR7 chemokine receptors, and therefore

can respond to chemokine receptor ligands.55 In this

regard, the autocrine/paracrine release of HMGB1 and

the HMGB1/RAGE pathway are essential for the migra-

tory function of DCs.55 All events, including the surface

expression of chemokine receptors as well as DC migra-

tion, abate in the presence of antagonists of HMGB1 or its

receptor, RAGE.56 Moreover, HMGB1 can enhance the

production of various cytokines by DCs, including IL-6,

IL-12p70, and TNF-α.56 Importantly,Kanegasaki’s group

showed that radiation-induced HMGB1 inhibited tumor

growth in non-irradiated sites by targeting ECI301

(eMIP), a single amino-acid substituted CCL3, to form

a DC-activating complex.57 These findings suggested that

HMGB1 contributed to a strong tumor control mediated by

DCs. In a subsequent study, it was hypothesized that the

HMGB1-IFN-γ loop was the regulatory mechanism of

DC-mediated anti-tumor immune responses against lung

cancer.58 HMGB1 stimulates the DC-mediated activation

of CD8+T cells and therefore IFN-γ secretion, which

further increases the release of HMGB1 from tumor cells

and promotes DC maturation.59 Taken together, HMGB1

may be one of the significant mediators augmenting RT-

mediated cancer immune responses by stimulating DC

maturation.

Recruitment of T Lymphocytes
As discussed previously, the clinical outcome of local RT

is dependent on the tumor infiltration of effector immune

cells.60 HMGB1 directly mediates adaptive immunity as

a proliferation signal of activated T lymphocytes.61 In

addition, release of HMGB1 by DCs controls clonal

expansion, survival, and the functional polarization of

naive T cells via RAGE.62 The interaction between

HMGB1 and RAGE activates MAPKs (p38 and ERK1/2)

and NF-κB pathways to promote maturation of DCs, and

subsequent Th1 polarization of pre-activated T cells.62

Moreover, HMGB1 was essential to the surface expression

of cytokine lymphotoxinα1β2 on T-cells, which contri-

butes to their activation and intratumoral accumulation.63

To test whether HMGB1 is required for the activation of

T-cells, He’s group first blocked HMGB1 in mice and

observed a weakened priming of adoptively transferred

T-cells.64 Also, HMGB1 modulates the expression of

CXCL11 to enhance the infiltration of T-cells.65 Suzuki

and colleagues reported that the HMGB1 that is released

following chemo-radiotherapy is necessary for immune

reactions in patients with esophageal squamous cell carci-

noma (ESCC), and may affect clinical outcomes.66 Tumor

antigen–specific T-cell responses were confirmed to coex-

ist with elevated serum levels of HMGB1.66 Importantly,

HMGB1 released by dying tumor cells promotes the acti-

vation of tumor-antigen specific T-cells and increases the

expression of IFN-γ, a key player in driving anti-tumor

immunity.67 Taken together, these findings indicate that

HMGB1 may be one of the significant mediators linking

antigen-specific T-cell responses to RT-induced cell death.

Opposite: Immunosuppressive Cell

Accumulation
RT is known to transform the TME by mobilizing T-cell

responses.68 Paradoxically, HMGB1 is involved in maintain-

ing the TME under certain conditions that might contribute to

the suppression of RT-mediated antitumor immunity.69

HMGB1 assists the proliferation, survival, and function of

several pro-tumor immunosuppressive cells that are

described below to facilitate immune tolerance and tumor

escape.49

Macrophages play an important role in immunomodula-

tion. It has previously been shown that HMGB1 expression

positively correlated with peritumoral macrophage infiltration,

which represented a poor prognosis in hepatocellular carci-

noma patients.70 Tumor infiltrating macrophages (TAMs)

can be subdivided into two distinct functional phenotypes:

M1-type macrophages that are activated through classical

pathways and mediate T-cells responses by secreting various

cytokines and expressing major histocompatibility complex

(MHC) class I and MHC-II. M2-type macrophages are acti-

vated alternatively and account for most TAMs that contribute

to T-cell suppression via IL-10 and transforming and growth

factor β (TGFβ).71,72 Interestingly, in a bladder cancer model,

RT in combination with the HMGB1 inhibitor glycyrrhizin

significantly increased the number of anti-tumor M1-type

macrophages when compared with RT alone.73 Thus, this

suggests that HMGB1 promotes HMGB1-mediated inhibition

of M1-type macrophages. Moreover, tumor-derived HMGB1

can efficiently trigger the differentiation of monocytes into

PD1+ TAMs with a substantial enhancement in CD206 and

IL-10 expression, thereby inhibiting CD8+ T-cell proliferation

and promoting the development of ESCC.19Moreover, He and
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coworkers reported that although HMGB1 induced adaptive

immunity in a prostate cancer model, and the ensuing T-cell

response resulted in further recruitment of macrophages and

promoted tumor progression, and the blockade of HMGB1

could hinder macrophage infiltration.63 These findings con-

firmed that HMGB1 could dampen RT-mediated immune

responses by infiltration of macrophages and skewing the

polarization of macrophages.

In the TME formation process, regulatory T cells

(Tregs) produce significant IL-10 to mediate immune sup-

pression. In addition, Tregs showed more resistance to

irradiation compared to other lymphocytes, which may

be responsible for the immune evasion of tumor cells

after RT.74 In activated CD4+CD25+T cells, HMGB1 can

upregulate the transcription factor Foxp3 to enhance the

differentiation of Tregs and dominantly control the sup-

pressive capacity of Tregs in the neuroblastoma microen-

vironment in vitro.69 Moreover, HMGB1 was found to

trigger the production of thymic stromal lymphopoietin

by tumor cells, which is necessary for the activation of

Tregs.75 Tregs significantly express a high level of RAGE

on the cell surface, and HMGB1 directly enhances the

suppressive capacity of Tregs in a RAGE-dependent

manner.76 HMGB1 may combine with RAGE on Tregs

and activate transcriptional factors (AP-1 and NF-kB) for

IL-10 production in Tregs.77 Tumor cell-derived HMGB1

facilitates Tregs to produce IL-10, which promotes Tregs-

mediated suppression of CD8+ T cell anti-tumor responses

in vitro and in vivo.78 In addition, HMGB1 acts as

a chemoattractant for Tregs and prolongs their survival

by mediation of TLR4 and RAGE.79 Therefore, it is pos-

sible that the interaction of HMGB1 with Treg receptors

increases infiltration of the latter into tumor tissues, and

shifts RT-induced antitumor responses in favor of the

tumor.

Myeloid-derived suppressor cells (MDSCs) represent

a heterogeneous population of immature myeloid cells,

including precursors of granulocytes, DCs, and macro-

phages that accumulate during tumor progression and

chronic inflammation.80 MDSC expansion may be

a possible factor driving tumor metastasis and RT-induced

secondary growth. In particular, HMGB1 promotes the

survival of MDSC in an anoxic and nutritionally deficient

tumor microenvironment.81 In a previous study on renal cell

carcinoma, it was found that HMGB1 did not directly

inhibit the proliferation of T cells and B cells, but instead,

induced the proliferation of MDSCs to mediate a pro-tumor

effect. By down-regulating HMGB1, the differentiation and

proliferation of MDSCs were significantly inhibited, both

in vitro and in vivo.82 Parker and coworkers reported that

HMGB1 regulates the quantity and quality of MDSCs in

murine tumor systems through activation of the NF-κB

signal transduction pathway. HMGB1 stimulates bone mar-

row progenitor cells to differentiate into MDSC, thereby

increasing the MDSC-mediated production of IL-10 as well

as suppression on expression of the naive T cell homing

receptor L-selectin.83 Therefore, it can be speculated that

HMGB1 secretion can dampen the effects of RT through

MDSC-mediated immunosuppression.

Intracellular: HMGB1 and
RT-Related DNA Damage
According to traditional radiobiology, RT-induced DNA

damage includes base and sugar damage, single-strand

breaks (SSBs), and DSBs.84 X-rays emit high-energy

photons that transfer energy to cellular molecules, result-

ing in the formation of unstable and highly reactive oxy-

gen species (ROS) that oxidize chemical bonds and induce

DNA damage.85 The cell-cycle checkpoints are then acti-

vated to allow cells to repair the damaged DNA before

entering the next cycle. However, if the level of radiation-

induced DNA damage exceeds its repair ability, the apop-

totic pathways are triggered, leading to cell death.86 Thus,

the DNA repair ability of tumor cells is the key factor to

determine survival and radio-resistance under nonlethal

radiation with cell membranes maintaining integrity.

HMGB1 is involved in four major DNA repair pathways:

nucleotide excision repair (NER), mismatch repair (MMR),

base excision repair (BER) and double strand break repair

(DSBR).87,88 DNA repair proteins cannot fully access DSBs

due to heterochromatin factors that limit the flexibility of

nucleosomes.89 HMGB1 has a high affinity for non-standard

DNA structures,90,91 and can bind to and bend the helix at the

site of radiation-induced damage, resulting in greater distor-

tion of DNA.91–93 This allows NER proteins, such as XPA,

RPA, and RAD23B to be removed from the nucleosomes and

facilitate accessibility of the damaged DNA.91 The proposed

model of HGMB1-induced NER is named “Access-Repair-

Restore”.87 HMGB1 recognizes the injury in the access

phase through proteins such as ACF, TFTC, STAGA and

CBP, which leads to damage repair and restoration. HMGB1

also plays a role in non-homologous end joining of DSBs

repair and V(D)J recombination by enhancing intra- and

inter-DNA ligation, and recruiting DNA-dependent protein

kinase catalytic subunit (PKcs) to the DNA break ends. Even
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in the absence of complementarity, HMGB1 can increase the

proximity of the DNA duplexes and their termini to facilitate

break end ligation.94,95 Furthermore, HMGB1 also increases

the stability of DNA by bending and looping the linear DNA

strands into a more compact structure.96

The crucial role of HMGB1 in promoting error-free

DNA repair is underscored by the significant increase in

DNA damage and mutations in HMGB1-knockout mice

after exposure to DNA damaging agents.91 The suppression

of HMGB1 also sensitized cancer cells to radiation by

inducing cell cycle arrest at the G0/G1 phase, thereby

enhancing apoptosis.97 In HMGB1 knockdown urothelial

carcinoma cell lines, the increase of post-radiation DNA

damage was induced, and showed a three-fold increase in

γH2AX foci after irradiation.26 Likewise, HMGB1 knock-

down inhibited the repair of DNA damage in MCF-7 cells

by decreasing the levels of telomerase reverse transcriptase

(hTERT) and cyclin D1, leading to accumulation of p-ATM,

p-ATR, and γH2AX foci.98 In another study, it was shown

that the interaction between HMGB1 and retinoblastoma

(RB) protein increased genomic stability post-radiation, and

promoted radio-resistance.99 This radiation-protective

behavior is achieved inside cells with intact membranes.

Taken together, HMGB1 meaningfully mediates DNA

damage repair and is critical to cancer cell radio-resistance

under certain circumstances.

Intracellular: HMGB1 and
RT-Related Autophagy
Autophagy is a catabolic pathway that involves lysosomal

degradation of damaged organelles and misfolded proteins

that recycles cellular components, and sustains energy

levels.100 In other words, autophagy is a self-protective

response of cells to RT-induced various stresses, including

hypoxia, nutrient deprivation, and therapeutic side effects.

Autophagy is regulated by a group of evolutionarily conserved

genes that are collectively known as autophagy-related genes

(ATG).101–103 Target molecules are first surrounded by cyto-

plasmic vesicles, and the resulting autophagosomes fuse with

lysosomes to form autophagolysosomes in which these mole-

cules are digested and released into the cytoplasm.104 Cancer

cells exposed to irradiation show accumulation of autophago-

somes, and a marked increase in the levels of Beclin-1 and the

microtubule-associated protein LC3-II.105,106 In addition,

induction of autophagy can affect RT-mediated radiobiological

effects in solid tumors.107 For example, the autophagic path-

way is stimulated in radioresistant MDA-231 breast cancer

cells following irradiation, while autophagy levels are only

slightly altered in radiosensitive HBL-100 cells.108 Thus,

autophagy greatly influences the therapeutic effect of irradia-

tion and can contribute to radio-tolerance.

HMGB1 is a pivotal regulator of autophagy and pre-

sumably a promoter of tumor radio-resistance.109 Cytosolic

HMGB1 binds to Beclin1 through an intra-molecular dis-

ulfide bridge (C23/45), which frees Beclin1 from its com-

plex with Bcl2 and subsequently induces autophagy.110

Disassociation of the Bcl2–Beclin1 complex, the molecular

switch of autophagy, is negatively regulated by p53.111 In

bladder cancer UM-UC3 cells, the association between

HMGB1 and Beclin1 increased four-fold and that between

HMGB1 and p53 decreased three-fold after radiation

exposure.26 In addition, nuclear HMGB1 can also induce

autophagy via transcriptional activation of heat shock pro-

tein B1 (HSPB1) through the Pink1/Parkin pathway.112

Phosphorylated HSPB1 (Ser15 and Ser86) plays a key

role in actin polymerization and recombination, which is

necessary for autophagy-related intracellular transport. In

this regard, the absence of HSPB1 limits the fusion of

autophagy vacuoles and lysosomes.113,114 The nuclear

HMGB1/HSP-induced autophagy pathway likely contri-

butes to cellular survival and radio-resistance. In a breast

cancer study, downregulated HMGB1 mRNA and protein

significantly suppressed RT-induced autophagy and sensi-

tized cells to irradiation.115 Ma and coworkers also reported

increased LC3 II puncta and accumulation of autophago-

somes in siHMGB1-transfected ESCC cells.116 Taken

together, high levels of HGMB1 induced by radiation expo-

sure enhance autophagy and most likely protects the cells

from radiotoxicity (Figure 2).

Discussion: Potential Factors
Altering the Role of HMGB1 in RT
The role of HMGB1 in RT is highly paradoxical. A non-

lethal level of radiation leaves the cell membrane intact,

and HMGB1 that is retained inside the cell promotes

tumor survival and radio-resistance by repairing damaged

DNA and inducing autophagy. This might explain that

increased level of nuclear and cytoplasmic HMGB1 is

a marker of poor prognosis in the early stages of

cancer.117 Because lethal radiation causes cell necrosis

and cell membrane fragmentation, HMGB1 is released to

the outside of the cell and subsequently induces complex

immune responses. As discussed above, HMGB1 can

facilitate both tumor elimination and immune evasion by
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respectively mediating anti- and pro-tumor responses. The

final outcome might depend on which side the balance

tilts.

The dichotomy between physiological and RT-induced

tumor cell death that respectively leads to tumor progres-

sion and elimination hinges on the release of HMGB1 that

links chronic inflammatory responses to acute adaptive

immunity. Campana’s group concluded that post-radiation

immune responses are dependent on the nature of the

HGMB1 release.118 Since the rapid growth of tumors

exceeds their nutrient supply, the core of solid tumors is

hypoxic and has an extreme low pH.119,120 Therefore, most

cells in the core of the tumor are necrotic and continuously

secrete HMGB1. Steady accumulation of HMGB1 in

advanced tumors induces chronic inflammation, and aggra-

vates tumor growth and metastasis.121 This can explain why

HMGB1 expression was significantly higher in tumor tis-

sues compared to normal tissues and associated with larger

tumor volumes, higher rates of lymphatic invasion, and

more frequent lymph node metastases.122 While active

secretion of HMGB1 in physiological conditions or chronic

passive secretion from dying cells facilitates neo-

angiogenesis and tumor invasion/metastasis,19,20 pulsed

acute release in response to lethal radiation promotes an

anti-tumor immune response.18,118,123 The proportion of

various immune cells in the TME is the major difference

between chronic and acute inflammatory responses, and is

also one of the reasons for HMGB1-mediated contradictory

effects on the tumor.124 Immunosuppressive cells, such as

Tregs are dominant during chronic inflammation, and TLR-

activated CD8+T cells and NK cells prevailed in the acute

stage and eliminated tumor cells (Figure 3).125,126

Chronic and acute HMGB1 release is characterized by

distinct post-translational modifications and distinct bind-

ing receptors, and determines immune outcome. For

instance, necrotic cells release bursts of pre-formed cyto-

solic non-acetylated thiol-HMGB1, while dying cells with

transient biological activity slowly release newly synthe-

sized or modified disulfide-HMGB1.127,128 It is worth

noting that reductive proteins are more likely to bind

CXCL12 to form heterocomplexes, which act as strong

immune stimulators to enhance leukocyte recruitment via

the chemokine receptor CXCR4.129 The interaction

between HMGB1 and different receptors may determine

key biological effects in HMGB1-mediated paradoxical

immune responses. TLRs are a large group of HMGB1

receptors, which are involved in host HMGB1-mediated

inflammation and immune responses. TLRs/HMGB1

recognition predominantly transmits signals in RT through

two pathways, including myeloid differentiation primary

response protein-88 (MyD88) and Toll/IL-1R domain–

containing adaptor inducing IFNα (TRIF), which plays

an important anti-tumor role.18 RAGE is another trans-

membrane receptor that is possibly involved in promoting
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JAK/STAT1 

HMGB1

Bcl2–Beclin1

Autophagy
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Pink1/Parkin

P53

HSPB1

HMGB1–Beclin1

Radiation damage

Figure 2 The role of intracellular HMGB1 in RT. HMGB1 is involved in the identification of DNA damage and four major DNA repair processes: nucleotide excision repair

(NER), mismatch repair (MMR), base excision repair (BER) and double strand break repair (DSBR). Nuclear HMGB1 promotes the transcription of HSPB1 to induce

autophagy. Cytoplasmic HMGB1 binds with Bclin1 separated from the Bcl2-Bclin1 complex to promote autophagy. Both DNA damage repair and autophagy promote tumor

radio-resistance.

Dovepress Liao et al

OncoTargets and Therapy 2020:13 submit your manuscript | www.dovepress.com

DovePress
6865

http://www.dovepress.com
http://www.dovepress.com


HMGB1-mediated maintenance of chronic inflammatory

states after RT.130 It has previously been demonstrated that

mice lacking RAGE resist the induction of skin cancer.131

Moreover, the interaction of HMGB1 and RAGE promotes

tumor angiogenesis to favor tumor growth.132

In addition to the HMGB1 isoform and receptor type, the

amount of extracellular HMGB1 also influences its immune

effects. Ma and coworkers showed that extracellular

HMGB1 downregulated the tumor suppressor SAM and

SH3 domain-containing 1 gene (SASH1), but further supple-

mentation with recombinant HMGB1 upregulated SASH1

and inhibited tumor growth in a concentration-dependent

manner.133 Thus, the type and amount of HMGB1 affects

the direction of RT-induced immune responses, however this

needs to be validated further.

The amount and nature of HMGB1 release also depend

on the type and potency of external stress. For instance,

low levels of H2O2 induced cytoplasmic translocation of

HMGB1, which was actively released as the oxidative

stress increased. Finally, cytotoxic doses of the oxidant

resulted in both active and passive release of HMGB1.134

This may explain the dose-dependent variation in radiation

in anti-tumor immune responses.135 While low doses of

radiation result in inflammation due to the inability to

induce immunogenic tumor cell death, high doses of radia-

tion have shown to induce in situ vaccination and stimu-

late the immune system. In several studies, it has been

shown that high doses of RT achieve better tumor inhibi-

tion and clinical effects when compared to low doses by

increasing T-cell activity.136–138 RT induced HMGB1 in

a dose-dependent manner and once the immunogen signal

from dying tumor cells reached a certain threshold, the

anti-tumor immune response was activated.123 However,

continuous up-regulation of HMGB1 can aggravate tissue

damage and release more danger signals, thereby resulting

in a vicious cycle of chronic inflammation and tumor

progression.139 This is a potential factor in RT failure

and may even lead to tumor relapse and metastasis.

Therefore, RT-related immune responses mediated by

HMGB1 need to be further elucidated.

Conclusions and Outlook
In recent years, the pathological role of HMGB1 in

various diseases has gained significant attention. In

many experimental studies that focused on infectious

and inflammatory diseases, HMGB1 as a successful tar-

get was confirmed.140,141 However, the ambiguous role

of HMGB1 in cancer complicates any potential thera-

peutic use. Unrepaired DSBs of DNA are lethal to the

cell, therefore, combining RT with HMGB1 inhibitors

can enhance DNA damage repair and improve radio-

sensitivity. Given the role of HMGB1 in the maintenance

of cell homeostasis, HGMB1-induced autophagy can be

targeted to reverse radiation tolerance. HMGB1 inhibi-

tors can improve the efficacy of RT, and systemic inhibi-

tion of HMGB1 can impair immune responses against

infection and other physiological functions. Therefore,

targeted delivery of HMGB1 in RT to tumors is worth

exploring in the future. The introduction of nanomedi-

cine may offer novel opportunities for targeting HMGB1

Normal growth

Chronic release
disulfide-HMGB1

Acute massive release 
       thiol-HMGB1

TLRs RAGE

NF-κB

Acute inflammation Chronic inflammation

immunostimulation immunosuppression 

Tumor growthTumor inhibition

Figure 3 Post-radiation immune response is dependent on the nature of HGMB1

release. Necrotic cells release bursts of pre-formed cytosolic non-acetylated thiol-

HMGB1, while dying cells with transient biological activity slowly release newly

synthesized or modified disulfide-HMGB1.The pulsed acute release of thiol-HMGB1

is more likely to form heterocomplexes which act as strong immune stimulators to

enhance leukocyte recruitment and promote acute inflammation dominated by

immunologic effector cell. On the contrary, the chronic release of disulfide-

HMGB1 promotes the tumor growth with the formation of immunosuppressive

chronic inflammation.
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treatment of cancer. Nanoparticles can encapsulate var-

ious drugs and multivalent surface modifications with

targeting ligands and efficiently improve current drug

delivery standards for biological distribution and intra-

tumor uptake in vivo in a complex environment.142

Although much research has been done on the anti-tumor

role of HMGB1 that acts as an alarm molecule, cancer cells

have the ability to secrete HMGB1 to maintain the inflamma-

tory TME and favor their own growth.124,126 The biological

characteristics of HMGB1-maintained chronic inflammation

are dominated by the recruitment and persistence of MDSCs

and Tregs, the promotion of fibrosis and angiogenesis, and the

production of other individual inflammatory factors, including

IL-1β and LPS.126 This immunosuppressive network, com-

posed of an array of cytokines, immune inhibitory cells, and

the extracellular matrix, mutually blocks antigen presentation

by DCs and inhibits T-cell-mediated antitumor immune

effects. Alternately, HMGB1 is a signature DAMP that is

released from dying tumor cells after RT, and is likely asso-

ciated with radiation-induced anti-tumor immune responses

that are dominated by immune effector cells.57,143 Lethal

doses skew the immune landscape from suppressive cells to

effector cells, altering the inflammatory status from chronic to

acute, and optimizing immune responses. Mature DCs and

activated CD8+T cells prevail in this acute inflammation and

arrive at the tumor site under the guidance of homing chemo-

kines to remove tumors in an immune-activated

environment.59 Thus, extracellular HMGB1 can be harnessed

to inhibit tumor growth by triggering cell damage, which

releases high amounts of HMGB1 in acute pulses. However,

this approach carries the risk of chronic inflammation, tumor

progression, and organ failure. Future studies will focus on

selecting the correct RT dose and fractionation frequency to

optimize the stimulation of HMGB1 in RT.
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