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Abstract

Background

The massive quantities of genetic data generated by high-throughput sequencing pose chal-

lenges to data storage, transmission and analyses. These problems are effectively solved

through data compression, in which the size of data storage is reduced and the speed of

data transmission is improved. Several options are available for compressing and storing

genetic data. However, most of these options either do not provide sufficient compression

rates or require a considerable length of time for decompression and loading.

Results

Here, we propose TRCMGene, a lossless genetic data compression method that uses a ref-

erential compression scheme. The novel concept of two-step compression method, which

builds an index structure using K-means and k-nearest neighbours, is introduced to

TRCMGene. Evaluation with several real datasets revealed that the compression factor of

TRCMGene ranges from 9 to 21. TRCMGene presents a good balance between compres-

sion factor and reading time. On average, the reading time of compressed data is 60% of

that of uncompressed data. Thus, TRCMGene not only saves disc space but also saves file

access time and speeds up data loading. These effects collectively improve genetic data

storage and transmission in the current hardware environment and render system upgrades

unnecessary. TRCMGene, user manual and demos could be accessed freely from https://

github.com/tangyou79/TRCM. The data mentioned in this manuscript could be downloaded

from: https://github.com/tangyou79/TRCM/wiki.

Introduction

The advent of next-generation sequencing (NGS) techniques has enabled the rapid generation

of an overwhelming and ever-growing amount of information [1]. Massive amounts of genetic
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data may exert intense stress on existing hardware environments. The computational concerns

introduced by genetic data are related to the central processing unit (CPU) time required for

data processing, storage and transmission[2]. In fact, storage systems are the real bottleneck in

the processing of NGS data[1][3].

Compression involves storing genetic data to minimise storage cost and maximise compu-

tational and transferring efficiency[4]. Several options are available for compressing and stor-

ing genetic data. One possible solution is the use of general-purpose compression software,

such as zip and GZip [5]. However, such compression software is not specifically designed for

genetic data storage and analysis. Thus, these programs provide low compression rates, and

decompression is always needed before data could be accessed. Other solutions, such as

PLINK[6] and PBAT[7], have been proposed. These programs are free whole-genome associa-

tion analysis toolsets introduced in binary PED formats, the most well-known compression

format used in genome-wide association studies[8,9]. Nevertheless, its compression rate

remains insufficient, and the compressed datasets of sequencing data could still occupy several

gigabytes of disc space. In recent years, sophisticated compression techniques designed specifi-

cally for sequencing data have been proposed[10]. Many of these techniques are based on a ref-

erential compression schemes[11], such as DNAzip[12]. Referential compression approaches

take advantage of shared information and store the relatively small differences between

sequences and the reference sequence [11,13–15]. The compression rate of this scheme highly

depends on the similarity between the reference sequence and to-be-compressed sequences

[16].

Although useful, referential compression approaches suffer from several drawbacks, as fol-

lows: Firstly, a large overhead is needed for storing the reference sequence. Secondly, no given

reference sequence may be available for compression[17]. Thirdly, poor similarities between

the reference and to-be-compressed sequences may result in a low compression rate. A possi-

ble solution to these drawbacks is to dynamically select several particular sequences (called

core sequences) from the pre-compression file by using a clustering algorithm[18]. These core

sequences play the same role as the reference sequence in the compression process. Compres-

sion is performed by storing the differences between the to-be-compressed sequences and core

sequences instead of those between the to-be-compressed sequences and reference sequences

[19]. In the present study, we refer to this approach as the one-step referential compression

method (ORCM). After the initial compression tests, some satisfactory results are achieved

with high similarities between sequences. The proposed method could enhance the compres-

sion rate without requiring extra hardware. However, some results have shown that the com-

pression rate is relatively low with poor similarities because cluster analysis forces every

sequence into a cluster despite exhibiting low correlations with other cluster members[20].

Thus, calculating the similarity of every sequence in one cluster after clustering is necessary.

The data compression factor is defined as the ratio between the uncompressed and compressed

sizes of sequences. Similarity is related to the compression ratio. In many cases, poor similari-

ties have a serious effect on the compression rate. The to-be-compressed sequences could be

divided into two parts in accordance with compression ratios. TRCMGene compresses the

part with high similarity according to core sequences and dynamically selects special sequences

and compressed sequences with poor similarity on the basis of k-nearest neighbours algorithm

(kNN), a machine-learning algorithm[21]. We call this approach the two-step referential com-

pression method (TRCM). The structure of the original data could be rebuilt without losses by

using core sequences and the compressed file.

Here, we propose a two-step compression method for storing large genetic data produced

by NGS. Firstly, we cluster the data using the K-means algorithm and preliminarily estimate

the similarity of every sequence. We compress high-similarity sequences according to core

TRCMGene
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sequences. Secondly, we dynamically select special sequences on the basis of kNN technology

and compress low-similarity sequences that are highly related to the selected special sequences.

We show that our method consistently performs better than the compression approach imple-

mented in PLINK and provides an excellent compression factor for genetic data. The com-

pressed data structure also provides the potential for the efficient implementation of

permutation methods and does not require any overhead CPU time for decompression.

Method

Digitization of genetic data

Genetic data may be compressed efficiently by selecting for each bi-allelic marker depending

on the minor allele frequency (MAF) of the respective marker[22]. Before compressed by

using TRCMGene algorithm, genetic data had to be processed numerically according to the

related MAF. A small fragment of genetic data was used to show the process of digitization

simply, as shown in S1 Fig.

The Euclidean distance in TRCMGence was used to calculate the distance between two

individuals after digitization. In a genetic file, a sequence gieðg1
i ; g

2
i ; . . . ; gEi Þ and the collection

of sequences G = {gi, i = 1,. . ., N}. The distance was calculated by

dðgi; gjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðg1
i � g1

j Þ
2
þ ðg2

i � g2
j Þ

2
þ . . .þ ðgEi � gEj Þ

2
q

ð1Þ

Where, d(gi, gj) is the distance between Sequence gi and Sequence gj.

K-means cluster analysis for ORCM

Cluster analysis or clustering is the task of grouping a set of objects in such a manner that

objects in the same group (called a cluster) are more similar to each other than to those in

other groups (clusters) [23]. Clustering analysis could be used to group similar data together

and show the use of the same or different distribution of fragments presented in the sequence.

The K-means algorithm is one of the simplest and fastest clustering algorithms[24]. All

sequences of objects are represented as a point in a multidimensional feature space[25]. The

K-means algorithm takes the number of clusters k as an input parameter. The program starts

by randomly selecting k sequences as the centres of the clusters. These initial centres can be

simply randomly selected from the sequences. Once some centres have been selected, the algo-

rithm will take each sequence and calculate its distance from all cluster centres. The second

step begins by considering all sequences for grouping into new clusters in accordance with the

calculated distances and centre positions in new clusters. The new centre is usually obtained

by calculating the mean distance of the sequences that belong to this cluster. Given that the

centres have moved, the memberships need to be updated by recalculating the distance from

each sequence to the new cluster centres, thereby minimising the within-cluster sum of squares

[26]. The algorithm continues to update the cluster centres on the basis of the new member-

ship. It continues to update the membership of each sequence until the cluster centres are

fixed, such that no sequence moves from one cluster to another cluster[27]. Given that no

sequence has changed its membership, the centres will remain the same and the algorithm will

terminate. The cluster centres could be considered as the core sequences[28].

In a genetic file, a cluster K with centres Ce
KðC

1
K ;C

2
K ; . . . ;CE

KÞ and Rk (called radius of cluster

K) will only contain the sequences that satisfy the following property:

dðgi;CKÞ < RK ð2Þ
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Eq (2) indicates that cluster K only contains sequences with a scale represented by Rk. We

use Euclidean distance as the distance measure in this study.

k-nearest neighbor for TRCM

kNN is one of the oldest and most intuitive classification algorithms [29]. When paired with

domain knowledge [30] or learned distance metrics[31], kNN is highly competitive with many

machine-learning applications. With the expanding use of machine-learning algorithms in

various application settings, the kNN rule has become particularly attractive because its predic-

tions are easily explained.

An important drawback of kNN is its slow test-time performance[32]. kNN takes O(dn)

with respect to the data dimension d and the training set size n because it must compute the

distances between the test input and all elements in the training set. Similarly, the space

requirements of kNN also include O(dn) because the entire training set has to be stored [32].

The high time and space complexity associated with kNN render computing the decision rule

impracticable for time-critical applications and large-scale datasets—a problem that time and

space is likely to remain relevant as datasets continue to grow[33]. The approach that we dem-

onstrated in this study involves reducing the number of data by dividing the training data into

subsamples in accordance with the region division method.

Description of TRCMGene

The two-step compression procedure is composed of the following steps:

1. Partition a set of sequences of objects that are being compressed into some clusters on the

basis of K-means.

2. Calculate the distances between the cluster centre sequence and other sequences that belong

to this cluster and divide the sequences into two parts in accordance with distance.

3. Directly record the index relationships of the cluster centres with the sequences that are

close to the cluster centre.

4. Use kNN to select sequences suitable for replacing the cluster centre, as illustrated in Fig 1,

and record the relevant structure for sequences that are far from the cluster centre.

5. Build a tree index structure of these sequences for sequence processing based on the data

dictionary.

Fig 1 illustrates the application of TRCMGene to a set of two-dimensional data points as a

toy example. These points were divided into three groups on the basis of cluster analysis and

were marked with different colours. The method used a fast approximation distance metric

and two distance thresholds T1> T2 for processing. Each group was decomposed into a circle

area A and a ring area B with ring width R by boundary T1. The referential compression

method could be used to directly compress each point in area A that could be directly com-

pressed with cluster centre P1. We referred to this approach as ORCM. The distances of points

in area B were>T1. Thus, for these points with low similarity to P1, other reference points for

compression should be identified to gain high compression factor. To reduce the amount of

computation and comparison, for example, area A was divided into A(I) and A(II) by bound-

ary T2. The distances of points at area A(II) were closer to points in area B than those of P1,

such that points in area A(II) could be reference points for points in area B in the TRCM. To

some point in area B, we drew a circle block S with the centre at this point and the radius equal

TRCMGene
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to R to decrease the number of kNN training sets. If one or some points at area A(II) are in

Block S, then kNN would preferentially select one as reference point of this point and other

points at area B in block S for compression. The relative position shown in Fig 1 indicated that

the reference point of P4 and P10 is P5. If no points at area A(II) were in block S, then we grad-

ually increased the radius of S by Δd until some points in area A could be detected. The refer-

ence point of P8 is P11 in this toy example. The index structure of P1–P11 for compression,

decompression and random access is shown in Fig 2.

Index structure

TRCMGene ensures fast random access to sequences on the basis of their ID, regenerable

index structure and index file. Keeping indexes enable constant time access to a given sequence

or a given pattern substring. Accessing a random sequence means finding the ID in the alpha-

betically ordered small index file to determine its position in the compressed file. The index

file was accessed directly at the ID position, which indicates the location of the sequence infor-

mation that corresponds to such an ID. Finally, the compressed block containing the target ID

was read and inflated in RAM, and the sequence was directly retrieved. Therefore, only a small

portion of data was loaded to gain access to the sequence, and only a small portion of RAM

was used even if the file size exceeded RAM size.

Compressed file structure

In this study, a static data compression dictionary was adapted to enable genetic data compres-

sion after the establishment of the two-step index structure. This dictionary was created and

stored in memory for use in compressing genetic data. The simplified scheme of the compres-

sion file structure of TRCMGene is shown in Fig 3. The scheme started with a file header, in

Fig 1. Application of TRCMGene to the toy example.

https://doi.org/10.1371/journal.pone.0206521.g001
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which file details are recorded by a file name and description string with a fixed length. Then,

cluster centre sequence record stored the compression results by using the data dictionary with

replacement rule. Finally, by using the data dictionary, sequence record contained the group

ID, hierarchy ID and reference sequence ID based on the index file and compressed results. A

particular sequence could be accessed using only its compressed record instead of the entire

file, thus saving time and disc usage [34]. A series of different symbols were designed for

recording position information between reference and their related pre-compressed

sequences. The different mode were 0, 1 and 2 for recording the differential types. Mode 0 and

Mode 2 represent homozygous difference, and Mode 1 represents heterozygous difference

(exemplified in S2 Fig). The scheme also served as a kind of firewall against data corruption.

Results and discussion

Tests

We evaluated the performance of TRCMGene on 6 real data described in Table 1. There were

4 genetic files of Maize with as the suffix, ranging from 321 MB to 100.6 GB. One of the files

with 3.42G data size and another 2 species data files with “.ped” suffixes were used in Table 2.

All tests were conducted on a desktop computer (Intel Core i7-3770 Quad Core Processor

CPU @ 3.40 GHz and 8 GB Memory) with 64-bit Ubuntu 13.04. Time measurements were

performed with the Unix time command.

The experimental results indicated that TRCMGene is a robust development that provides

an appropriate compression method for genetic data and nearly instant access to any sequence

at any moment. Entire datasets could be efficiently obtained from TRCMGene.

Differences between the compression factors of TRCMGene and ORCM (Fig 4) became

more remarkable with file size. The compression factors of ORCM for different file sizes were

nearly the same, as shown in the lower part of Fig 4. The average compression factors of

TRCM were three to seven times those of ORCM. This result illustrated that the second com-

pression process by kNN provides advantages.

Fig 2. Index structure of the toy example.

https://doi.org/10.1371/journal.pone.0206521.g002
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The efficiency of TRCMGene depends on two factors: The number of clusters and the pro-

portion of sequences compressed by TRCM. It can be seen that as the cluster number

increased, compression factor of TRCMGene had a small fluctuation. The time for compress-

ing 4 maize dataset using TRCMGene with number of clusters were shown in Table 3. The

time to compress grew a little more under 15 clusters, and then it increased slightly faster.

Although selecting parameter k was difficult in cases where external constraints were not

given, parameter k did not have a crucial effect on compression through ORCM and TRCM.

This result indicated that compression is insensitive to k. Thus, we usually selected a small

parameter k to save compression time.

Another factor that influences compression is the proportion of sequences compressed by

TRCM. This proportion could improve compression performance in different numbers of

clusters. Fig 5A showed the compression comparison with 5 and 15 clusters. Compressing a

high proportion of sequences by TRCM would result in high compression factor but would

slightly decrease the reading time. (Fig 5B). The compression factor of genetic data is limited

by the complexity of the compression algorithm and compression time. Meanwhile, compres-

sion factor is related to the reading time. Fig 6 shows that TRCMGene exhibited a good bal-

ance between compression factor and reading time. The compression factors of TRCM

outperformed those of ORCM in all files with different sizes, with the same trend of reading

time ratio. Although compressed files have a more complex data structure than simple uncom-

pressed original files, a reasonable index structure and data dictionary could improve the time

Fig 3. Compressed file structure. The general structure is shown on the left. The detailed description of every

compressed sequence is shown on the right. Refer to the text for details.

https://doi.org/10.1371/journal.pone.0206521.g003

Table 1. The detailed information of data files mentioned.

Species Original File Size The Numbers of Individuals The Numbers of SNPs The Numbers of Marks

Maize 321MB 115 73157 8413055

Maize 3.42G 201 459446 92348646

Maize 44.3G 702 1692698 1188273996

Maize 100.6G 1398 1928450 2695973100

Arabidopsis 4.35 GB 219 759270 166280130

Mice 611 MB 59 144782 8542138

https://doi.org/10.1371/journal.pone.0206521.t001
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efficiency of reading. The index structure ensured that only necessary information was loaded

for the jobs, thus reducing the memory space by two thirds.

Table 2 shows the performance of TRCMGene compared with PLINK and GZip. The com-

pression factor of TRCMGene was slightly greater than that of PLINK. TRCMGene could be

used for some common genetic data formats, which outperformed PLINK only processing .

ped files. GZip gave the lowest compression factor and fewest compression time of all. GZIP

compared well with TRCMGene in data format. But it need decompress the compressed files

Table 2. Performance of TRCMGene compared with that of two other compression methods.

Species Original File Size Items TRCM Gene PLINK GZIP

Maize 3.42 GB File size after compression (MB) 201.5 219.6 419.7

Compression factor 16.97 15.57 8.15

Compression time (s) 428 549 407

Arabidopsis 4.35 GB File size after compression (MB) 212.2 286.1 498.3

Compression factor 20.50 15.20 8.73

Compression time (s) 539 719 489

Mice 611 MB File size after compression (MB) 34.6 40.3 83.9

Compression factor 17.68 15.16 7.28

Compression time (s) 89 73 71

https://doi.org/10.1371/journal.pone.0206521.t002

Fig 4. Compression capabilities of TRCMGene compared to method by ORCM. Compression factor with respect to

the uncompressed file size calculated as original file sizes divided by the compressed file sizes (greater is better).

https://doi.org/10.1371/journal.pone.0206521.g004
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before operation, thus this general-purpose compression software takes extra time to decom-

press the files before loading them into the memory. PLINK is designed to flexibly perform a

wide range of basic, large-scale genetic analyses and could directly use compressed files for

whole-genome association analysis. But compressing large files by PLINK would take much

time than other two.

Conclusion

We developed TRCMGene, a new compression method, to address the problem of large file

sizes and long loading times of genetic data. We introduced a novel concept called two-step

compression method, which built an index structure using K-means and kNN. We have

shown that this method works better than PLINK and GZip with a good balance between com-

pression factor and reading time. Our method utilizes the structure of the compressed data

and enables the direct loading of genetic data into memory. TRCMGene not only saves disc

Table 3. Time needed to compress by TRCMGene.

DataSet size Compression time (s)

3 clusters 5 clusters 10 clusters 15 clusters 20 clusters

321M 40 45 56 63 83

3.42G 428 449 462 488 561

44.3G 4656 4678 4689 4756 4810

100.6G 13968 14789 15239 15887 16342

https://doi.org/10.1371/journal.pone.0206521.t003

Fig 5. Factors that influence the performance of TRCMGene.

https://doi.org/10.1371/journal.pone.0206521.g005
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space but also saves accessing time to the file and speeds up sequence loading. These character-

istics collectively optimise the use of computer resources.

Supporting information

S1 Fig. A simple example of digitization the genetic data. If the related MAF was A/C, the

allele information was coded using 0 to 2 where 0 = AA, 1 = AC and 2 = CC.

(TIF)

S2 Fig. A simple example of compressed data using the static dictionary. A string “%2&0(2)

1” was stored to record the difference between pre-compressed sequence and its reference

sequences. When uncompressed, the pre-compressed sequence can be retrieved by reference

sequence and this string.

(TIF)
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