
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Chemical Physics 564 (2023) 111709

Available online 26 September 2022
0301-0104/© 2022 Elsevier B.V. All rights reserved.

Searching for potential inhibitors of SARS-COV-2 main protease using 
supervised learning and perturbation calculations 

Trung Hai Nguyen a,b,*, Nguyen Minh Tam a,b, Mai Van Tuan c, Peng Zhan d, Van V. Vu e, 
Duong Tuan Quang f,*, Son Tung Ngo a,b,* 

a Laboratory of Theoretical and Computational Biophysics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam 
b Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam 
c Department of Microbiology, Hue Central Hospital, Hue City, Viet Nam 
d Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, 
Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China 
e NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam 
f Department of Chemistry, Hue University, Thua Thien Hue Province, Hue City, Viet Nam   

A R T I C L E  I N F O   

Keywords: 
SARS-CoV-2 Mpro 
LIE 
FEP 
Machine learning 
Supervised learning 

A B S T R A C T   

Inhibiting the biological activity of SARS-CoV-2 Mpro can prevent viral replication. In this context, a hybrid 
approach using knowledge- and physics-based methods was proposed to characterize potential inhibitors for 
SARS-CoV-2 Mpro. Initially, supervised machine learning (ML) models were trained to predict a ligand-binding 
affinity of ca. 2 million compounds with the correlation on a test set of R = 0.748 ± 0.044. Atomistic simulations 
were then used to refine the outcome of the ML model. Using LIE/FEP calculations, nine compounds from the top 
100 ML inhibitors were suggested to bind well to the protease with the domination of van der Waals interactions. 
Furthermore, the binding affinity of these compounds is also higher than that of nirmatrelvir, which was recently 
approved by the US FDA to treat COVID-19. In addition, the ligands altered the catalytic triad Cys145 - His41 - 
Asp187, possibly disturbing the biological activity of SARS-CoV-2.   

1. Introduction 

Coronaviruses have the largest genomes among RNA viruses (26–32 
kb) encrypting structural and nonstructural proteins [1,2]. Coronavi-
ruses have been infecting humans and normally cause mild respiratory 
syndrome [3]. However, in 2002, the severe acute respiratory syndrome 
coronavirus (SARS-CoV) was first recognized in Guandong, China, and 
was associated with 774 deaths over 8096 infected cases [4]. The Middle 
East respiratory syndrome coronavirus (MERS-CoV) was first reported in 
2012 to be able to transfect animals to humans and lead to severe cases 
of respiratory syndromes and deaths [5]. This shows that coronavirus 
can induce severe symptoms and potential pneumonia and death. A 
novel coronavirus, SARS-CoV-2, causes severe acute respiratory syn-
dromes and is related to millions of deaths worldwide since it initially 
spread in December 2019 in Wuhan, Hubei Province, China [6-9]. The 
virus has been suggested to initiate from bats and can quickly transfect 

between humans [10]. The spreading speed is tremendously high since 
the virus can exist in an aerosol [11]. Despite efforts to reduce the viral 
outbreak, more than 450 million people have been infected to date. The 
viral outbreak effectuated the COVID-19 pandemic. Therefore, the 
development of therapy is crucial for community health. In this context, 
remdesivir was first approved as an antiviral drug for treating COVID-19 
[12]. However, it is considered a controversial decision [13] since the 
drug showed disappointing trials [14,15]. After that, Pfizer’s Paxlovid, 
which combined nirmatrelvir and ritonavir, was authorized as the first 
oral antiviral drug to treat COVID-19 by the FDA [16]. Although Pax-
lovid effectiveness is as high as 89% in reducing hospitalization or death 
compared placebo, its components might cause a severe interaction with 
widely used medications such as statins, blood thinners, and some an-
tidepressants. Moreover, new SARS-CoV-2 variants in the UK, South 
Africa, and the US [17,18] have prompted scientists to search for more 
COVID-19 drugs since emerging mutations can reduce the effectiveness 
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of current treatments. Indeed, some variants have recently been re-
ported to be able to escape from neutralizing antibodies [19,20]. 
Therefore, developing an appropriate treatment for COVID-19 is ur-
gently needed. 

Among more than 20 structural proteins and nonstructural proteins 
(nsp) encoded by SARS-CoV-2 genomes, the main protease (Mpro), as 
well as a 3-chymotrypsin-like protease (3CLpro), are known as crucial 
enzymes related to the replication and proliferation of a new virus 
[1,21]. In particular, SARS-CoV-2 Mpro, corresponding to nsp5, and 
papain-like protease (PLpro), corresponding to nsp3, first autocleave 
themselves from the synthesis of messenger RNA (mRNA) translation. 
The proteases then cleave polyproteins to polypeptides, leading to the 
replication and functionalities of a new virus. The cleaved proteins 
involve endoribonuclease (NendoU), exonuclease (exoN), helicase 
(Hel), RNA-dependent RNA polymerase (RdRp), and an S-adenosyl- 
methionine-dependent ribose 2′-O-methyltransferase (2′-O-MT). It 
should be noted that whereas PLpro is responsible for the formation of 
nsp1-3, Mpro determines the formation of nsp4-16 [22]. Therefore, 
3CLpro/Mpro is one of the most appropriate targets for COVID-19 drug 
design. 

3CLpro/Mpro is a homodimer protein consisting of two chains each 
consisting of 306 residues divided into three domains I, II, and III [23]. 
Indeed, the active site of Mpro comprises His41 and Cys145 located in 
the cleft between domains I and II [24,25]. Strong binding inhibitors to 
Mpro often form tight hydrogen bond (HB) and nonbonded (NBC) 
contacts with these residues [26]. Moreover, the important residues 
controlling the ligand-binding affinity to SARS-CoV-2 Mpro include 
Thr26, Ser46, Asn142, Gly143, His164, Glu166, and Gln189 [26]. 
Although the catalytic activity of SARS-CoV-2 Mpro rigidly relies on 
dimerization [23], investigation of the ligand-binding affinity in silico 
can be performed based on the monomeric form [27]. 

Because of the well-characterized structure and great interest in 
designing inhibitors for SARS-CoV-2 Mpro, numerous computational 
and experimental studies have been carried out to estimate efficient 
inhibitors to block the biological activity of Mpro [24,25,28-37]. Among 
these studies, computational approaches are widely used to speed up the 
screening of potential SARS-CoV-2 inhibitors since several thousand 
compounds can be tested over a short period of time [27,38-40]. Indeed, 
computer-aided drug design (CADD) has arisen as a robust protocol for 
high-throughput screening of thousands/million compounds for poten-
tial inhibitors of enzymes since October 5, 1981. An article entitled 
“Next Industrial Revolution: Designing Drugs by Computer at Merck” 
was published in Fortune magazine [41]. The power of CADD has been 
increasingly demonstrated because the method remarkably reduces the 
time and cost of drug development [42]. For example, 81 inhibitors were 
screened over 400 000 tested compounds, yielding a hit rate of only 
0.02% [43]. CADD is used not only to screen for new inhibitors but also 
to test existing drugs for repurposing targets [34,40]. Therefore, 
numerous drugs have been discovered thanks to the contribution of 
CADD. Examples of some of the earliest successes of CADD include the 
carbonic anhydrase inhibitor dorzolamide, which was authorized in 
1995 [44,45], and saquinavir, ritonavir, and indinavir, which were 
authorized for inhibiting human immunodeficiency virus 1 (HIV-1) 
protease in 1995, 1996, and 1996, respectively [41]. 

Typically, the computational approach is utilized to determine 
promising agents that can bind well to a protein target. Investigation of 
the ligand-binding free energy is thus one of the most important tasks in 
CADD [46]. Several methods have been developed to unravel the 
physical/chemical process [47]. Among these, molecular docking [48] 
or quantitative structure–activity relationship (QSAR) [49] methods can 
be used to characterize the ligand-binding affinity of several thousand/ 
million ligands. More accurate methods such as the fast pulling of ligand 
(FPL) [50], linear interaction energy (LIE) [51,52], and molecular 
mechanism/Poisson-Boltzmann surface area (MM/PBSA) [53-55] are 
then used to refine the docking/QSAR outcomes. The free energy 
perturbation (FEP) method was finally performed to validate the list of 

promising inhibitors [56-59]. Moreover, recent advancements in ma-
chine learning (ML) methods have benefited many areas of science and 
technology. In particular, ML has been used in CADD for drug discovery 
and repurposing [60,61]. The most common task of ML in CADD [62] is 
to predict ligand binding affinities from features extracted from mo-
lecular properties including physical, chemical, and structural terms. 
This is a typical supervised regression problem where ML approaches 
such as random forest, gradient boosting, and deep learning can result in 
good prediction accuracy. ML was used to repurpose existing drugs for 
SARS-CoV-2 treatment [40]. 

In this work, we combined ML models with atomistic simulations to 
screen a large database of approximately two million compounds for 
potential inhibitors of SARS-CoV-2 Mpro. In particular, ML models were 
trained to predict ligand binding free energies for the whole database, 
and top-lead ligands with the strongest predicted binding affinity were 
selected. These top-lead compounds were subsequently subjected to 
physics-based calculations, including molecular docking and molecular 
dynamics (MD) simulations, to validate their binding mechanisms to 
SARS-CoV-2 Mpro. Our resulting list of promising inhibitors for SARS- 
CoV-2 Mpro can serve as a foundation for further experimental in-
vestigations and contribute to the rapid development of SARS-CoV-2 
therapy. 

2. Materials and methods 

2.1. Computational scheme 

The computational scheme used to investigate potential inhibitors 
for SARS-CoV-2 Mpro from ChEMBL [63], a database of bioactive mol-
ecules with drug-like properties, is described in Fig. 1. In particular, ML 
models were trained and tested to accurately determine the binding free 
energy of ChEMBL compounds to SARS-CoV-2 Mpro. The top 100 po-
tential inhibitors for SARS-CoV-2 Mpro, which were estimated by ML 
models, were docked to the protease. The structural change of the SARS- 
CoV-2 Mpro + inhibitor complexes was then investigated using unbiased 
MD simulations. The Gibbs free energy difference between the unbound 
and bound states of the top 100 ligands to Mpro was revealed via LIE and 
FEP calculations. A list of compounds for inhibiting SARS-CoV-2 Mpro 
from the ChEMBL database was thus obtained. 

2.2. SARS-CoV-2 Mpro and ligands 

The list of available inhibitors of SARS-CoV-2 Mpro (Table S1) was 
collected from literature reviews, which involved 571 compounds with 
the corresponding values of the half-maximal inhibitory concentration 
(IC50). The experimental ligand-binding free energy was calculated as 
ΔGEXP = RTlnIC50, which was based on the approximation that IC50 
equals the inhibition constant (ki) and was used as the label for training 
models. Table S1 contains the labeled data and SMILES strings of the 
corresponding compounds. The distribution of the ΔGEXP values is 
shown in Figure S1 of the Supporting Information. A total of 451 and 
120 compounds were randomly chosen for training and testing, 
respectively. The performance metrics used for model selection include 
RMSE, Pearson’s R, and Spearman’s ρ correlation coefficients. The best 
model was used to predict ligand-binding affinity for the ChEMBL 
database, which includes ca. 2 million bioactive compounds with drug 
properties. Furthermore, the SARS-CoV-2 Mpro structure was down-
loaded from the Protein Data Bank with ID 7JYC [64]. 

2.3. Supervised learning calculation 

Regression models were trained to predict ligand-binding free energy 
from molecular features. They included linear regression (LR), random 
forest (RF), extreme gradient boosting (XGBoost) [65], and a deep 
learning model based on convolutional networks on graphs (Graph-
Conv) [66]. The LR model, which is simple and therefore less prone to 
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overfitting, was used as a baseline model. Model hyperparameters were 
tuned by using a tenfold cross-validation technique. Optimal values of 
hyperparameters that minimize mean square error (MSE) were searched 
by using the Hyperopt library [67]. For LR, only the L2 regularization 
strength (alpha) was tuned. For RF, the following hyperparameters were 
tuned: max_depth, min_samples_split, min_samples_leaf and max_features. 
For XGBoost, max_depth, min_child_weight, subsample, colsample_bytree, 
reg_lambda, and learning_rate were optimized. For the GraphConv model, 
the number of units in the graph_cov layers and dense layer, learning 
rate, and dropout rates were tested. The Python library Scikit-Learn [68] 
was used to train the LR and RF models. To train XGBoost and Graph-
Conv [66], we used the XGBoost and DeepChem [69] libraries, 
respectively. 

Molecular features were extracted by using the RDKitDescriptors tool 
kit implemented in Deepchem [69]. It computed 200 physical and 
chemical properties such as molecular weight, polar surface area, 
number of valence electrons, numbers of HB donors and acceptors, and 
maximum and minimum partial charge. To make the models more 
robust and less prone to overfitting, we reduce the number of features as 
follows. Some features have zero values for almost all compounds in the 
training set. Removing features having zero for more than 99% training 
compound resulted in a reduction of 68 features. Strongly correlated 
features (absolute value of Pearson’s R > 0.95) were also removed, 
which resulted in a further reduction of 27 features. Finally, 105 features 
were used as input to the ML models. Some features may have no nu-
merical value for certain compounds. These missing values were 
imputed by the median of the feature. Before inputting into the models, 
all features were standardized to have a zero mean and standard devi-
ation of one. These 105 features were used to train the LR, RF, and 
XGBoost models. GraphConv uses convolutional networks on graphs to 
automatically extract useful features from the ligand molecule, which is 
represented as an undirected graph [66]. It is implemented as an 

embedding layer that accepts the SMILES string as input and outputs a 
fixed-length vector (called the molecular fingerprint). The fixed-length 
vector is then fed into a densely connected layer. Both the embedding 
vectors and weights of densely connected layers are learned simulta-
neously during training of the model. The Python code for carrying out 
ML modeling is available online at this GitHub URL https://github. 
com/nguyentrunghai/SARS-CoV-2Mpro_inhibitor_ML. 

2.4. Docking simulations 

AutoDock Vina [70] using modified empirical parameters [71] was 
utilized to investigate the ligand binding poses to SARS-CoV-2 Mpro. In 
particular, AutoDockTools [72] was used to parameterize both the li-
gands and receptor. The docking grid center was picked as the center of 
mass of the native inhibitor. The grid size was picked as 24 × 24 × 24 Å, 
referring to the previous assessment [26]. The exhaustiveness parameter 
of modified Vina was selected as the default value referring to the pre-
vious assessment [71]. The largest energy variability between docking 
modes was appointed as 7 kcal mol− 1. The docking structure with the 
lowest docking energy was used as the starting conformation of MD 
simulations. 

2.5. Molecular dynamics simulations 

MD simulations were performed to refine the docking outcome using 
GROMACS 5.1.5 [73]. In particular, the Amber99SB-iLDN force field 
[74] was employed to topologize the protease and charge-neutralizing 
ions. The catalytic triad Cys145-His41-Asp187 may play a vital role in 
the binding process of a ligand to SARS-CoV-2 Mpro [75]. The proton-
ation state of these residues was assigned as shown in Fig. 1C. Water 
molecules were parameterized via the TIP3P water model [76]. In 
addition, the general Amber force field [77] was utilized to parameterize 

Fig. 1. Computational strategy. (A) Computational approach utilized to search promising inhibitors for SARS-CoV-2 Mpro by using hybrid approach involving 
supervised machine learning and atomistic simulations. (B) Ligand-binding pose was preliminarily predicted via AutoDock Vina. (C) Configuration of catalytic triad 
Cys145 - His41 - Asp187. (D) + (E) Initial conformations of SARS-CoV-2 Mpro + inhibitor and individual inhibitors in solution. 
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the ligands using the AmberTools18 and ACPYPE packages [78,79]. 
Among these, the chemical information, including geometrical param-
eters and charges, was obtained from quantum mechanics calculations 
using density functional theory (DFT) with the B3LYP functional and 6- 
31G(d,p) basis set. The restrained electrostatic potential approach was 
employed to assign the atomic charges [77]. 

A dodecahedron periodic boundary condition (dPBC) box with a 
volume of 669 nm3 was used to situate the SARS-CoV-2 Mpro + inhibitor 
complex. In particular, the minimum distance between the complex and 
the boundary is 1.0 nm. The solvated complex thus comprises ca. 66,000 
atoms, respectively, including 1 protease, 1 ligand, 20,400 water mol-
ecules, and counterbalanced ions Na+. In addition, a dPBC box with a 
capacity of ca. 41 nm2 was employed to place the ligand, in which the 
minimum distance between the ligand and the boundary was 1.0 nm. 
The solvated ligand system hence consists of ca. 3700 atoms, including 1 
ligand, 1200 water molecules, and neutralized ions Na+. 

MD parameters were obtained according to previous simulations 
[26,36]. In particular, nonbonded interactions were cut off at 0.9 nm. 
The fast particle–mesh Ewald (PME) electrostatics method [80] was 
utilized to mimic electrostatic (cou) interactions. Moreover, the cutoff 
scheme was employed to calculate the van der Waals (vdW) interaction. 
Equilibration simulations were attempted over three steps involving 
energy minimization, NVT, and NPT simulations. The length of the NVT 
and NPT simulations is 100 ps. The last snapshot of NPT simulations was 
then used as the starting shape of MD simulations. The lengths of the MD 
simulations are 5.0 and 20.0 ns, corresponding to the solvated ligand 
and complex systems, respectively. The simulation for each system was 
repeated twice with different random initializations. 

2.6. Free energy calculations 

Linear interaction energy (LIE) calculation. The binding free energy 
(ΔGLIE) of a ligand to SARS-CoV-2 Mpro via the LIE approach [81] was 
computed as the difference between the average of the cou and vdW 
interactions of the ligand with neighboring atoms over various systems, 
including the ligand in the solvated complex (bound state - noted as 
subscript b) and the ligand in solution (unbound state - noted as subscript 
u). ΔGLIE can be determined by. 

ΔGLIE = α
( 〈

VvdW
l− s

〉

b −
〈
VvdW

l− s

〉

u

)
+ β

( 〈
Vcou

l− s

〉

b −
〈
Vcou

l− s

〉

u

)
+ γ (1) 

where the coefficients were selected as α = 0.288, β = − 0.049, and 
γ = 5.880 by referring to the previous assessment [26,33].Free energy 
perturbation (FEP) simulation. The FEP approach [82] was finally used to 
provide a more accurate estimation of the ligand binding free energy. 
λ-alteration simulations [83] were employed to change the ligand- 
binding system from bound (λ = 0) to unbound (λ = 1) states. The free 
energy alteration between two states, ΔGλ=0→1 = − kBTln〈e−

ΔH
kBT〉λ=0, can 

be calculated via several values of the coupling parameter λ over MD 
simulations. The ligand changing from bound to unbound states over 
λ-alteration simulations can be called the ligand-demolition process, in 
which the energy change can be computed by using the Bennett 
acceptance ratio (BAR) method [84]. The binding free energy of a ligand 
to a protein is thus determined as the gap of energy changes over two 
ligand-demolition processes, including annihilating the ligand in the 
soluble complex (ΔGComp

λ=0→1) and individual ligand (ΔGlig
λ=0→1), as follows: 

ΔGFEP = ΔGComp
λ=0→1 − ΔGlig

λ=0→1 (2)  

2.7. Analysis tools 

The chemicalize webapp, an online tool of ChemAxon, was utilized 
to predict the protonation states of ligands. The computed error (suc-
cess-docking rate and correlation coefficients) was assessed via 1000 
rounds of the bootstrapping method [85]. The ligand-binding diagram 
was produced by using the free version of Maestro [86]. The 

nonhydrogen atom root-mean-square deviation (RMSD) between 
docked and experimental binding poses was calculated via GROMACS 
tools “gmx rms” [73]. A hydrogen bond (HB) contact was counted if the 
angle ∠ [acceptor (A)-hydrogen (H)-donor (D)] was larger than 135◦

and the A-D distance was less than 0.35 nm. A nonbonded contact was 
counted if the distance between two nonhydrogen atoms was lower than 
4.5 Å. The clustering calculation was performed via GROMACS tools 
“gmx cluster.” The collective-variable FEL was constructed by using 
GROMACS tools “gmx sham.”. 

3. Results and discussion 

3.1. Prediction of potential inhibitors from supervised ML models 

To rapidly screen the ChEMBL library, four regression models were 
trained: linear regression (LR), random forest (RF), extreme gradient 
boosting (XGBoost) [65], and convolutional networks on graphs 
(GraphConv) [66]. The performance metrics of the test set are listed in 
Table 1. Due to its simplicity, the LR model is the least accurate among 
the four models we trained in this work. This is not unexpected since LR 
is not able to capture nonlinear relationships between features and 
targets. Nevertheless, the LR model served as a baseline for more so-
phisticated models. The best model by all three metrics is XGBoost, 
which gives an RMSE of 1.125 ± 0.095, Pearson’s R of 0.748 ± 0.044 
and Spearman’s ρ of 0.765 ± 0.048 (Table 1). However, it is not better 
than the second-best model, which is random forest by a large margin. 
The GraphConv model comes in third place, although its performance is 
very close to that of random forest. From this assessment, the XGBoost 
model was selected to predict the binding free energy for nearly 2 
million compounds in the ChEMBL database. Fig. 2 shows a comparison 
of the binding free energy between the experiment and prediction made 
by XGBoost for 120 compounds in the test set. 

The distribution of the predicted binding free energy by the XGBoost 
model (ΔGXGB) is shown in Figure S1 of the Supporting Information. 
The predicted binding free energy for the ChEMBL ligand ranges from 
− 5.78 to − 10.02 kcal mol− 1 with a mean value of − 7.47 ± 0.46 kcal 
mol− 1. The top 100 compounds with ΔGXGB values from − 9.63 to 
− 10.02 kcal mol− 1 may be good candidates for SARS-CoV-2 Mpro in-
hibitors because their predicted binding affinities are comparable to that 
of nirmatrelvir with ΔGXGB = − 9.57 kcal mol− 1. The mean value of 
ΔGXGB is − 9.72 ± 0.01 kcal mol− 1. The predicted binding free energy is 
probably underestimated since the ML model was trained and tested on 
ki, which was approximated by IC50. The list of compounds is reported in 
Table S2 of the Supporting Information. Although the ML model 
adopted a good correlation coefficient with the respective experiments 
(cf. Fig. 2), physical-based methods were also carried out to further 
evaluate the binding process of these ligands to SARS-CoV-2 Mpro. 

3.2. Estimation of docking pose of ligands to SARS-CoV-2 Mpro 

As mentioned above, although the ML method was shown to be 
effective in predicting potential inhibitors, physical-based approaches 
were also utilized to refine the predicted binding affinity and to provide 
physical and chemical insights into the binding process [87]. In this 
work, the binding process of SARS-CoV-2 Mpro and its inhibitors was 

Table 1 
Performance metrics of regression models in predicting binding free energy of 
120 tested ligands to SARS-CoV-2 Mpro. Numbers in parentheses are error bars 
estimated by bootstrapping.  

Model RMSE (kcal mol¡1) Pearson’s R Spearman’s ρ 

Linear Regression 1.299 ± 0.104 0.631 ± 0.070 0.708 ± 0.053 
Random Forest 1.157 ± 0.093 0.737 ± 0.046 0.753 ± 0.045 
XGBoost 1.125 ± 0.095 0.748 ± 0.044 0.765 ± 0.048 
GraphConv 1.161 ± 0.088 0.735 ± 0.050 0.749 ± 0.043  
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investigated via two steps: molecular docking and MD simulations. In 
particular, the ligand-binding pose to SARS-CoV-2 Mpro was prelimi-
narily probed via AutoDock Vina [70]. Note that AutoDock Vina pro-
vided an appropriate success-docking rate, ρ̂ = 67%, when the docking 
pose of nine ligands was compared to the respective experiments [26]. In 
addition, recently, the modified version of AutoDock Vina [71] was 
benchmarked using the different empirical parameters, which provided 
a better correlation to the respective experiments. However, the per-
formance of the approach on SARS-CoV-2 Mpro was not considered. 
Therefore, in this work, the ρ̂ value of AutoDock Vina with original and 
modified empirical parameters was reevaluated with a larger set 
involving 40 different complexes (Table S3 of the Supporting Infor-
mation). The obtained results were consistent with those of previous 
work [26]. In particular, the conformations docked via AutoDock Vina 
differed from the experimental structures by an amount of RMSD =

1.85 ± 0.15 such that the ρ̂ value was 62.5 ± 7.8 %. Interestingly, the 
corresponding values of the modified AutoDock Vina are 1.80 ± 0.14 Å 
and 65.0 ± 7.6 %, respectively, which are better than those of AutoDock 
Vina. Here, a successfully docked shape was counted if the RMSD was 
lower than 2.00 Å. AutoDock Vina with the modified empirical param-
eters was thus employed to find the binding pose of the top 100 ligands 
to SARS-CoV-2 Mpro. The docking outcomes are shown in Table 2 and 
Table S5 of the Supporting Information. The ligand-binding free energy 

ΔGDock diffuses in the range from − 11.3 to − 17.6 kcal mol− 1, in which 
the mean value is − 14.89 ± 0.10 kcal mol− 1. The mean value is 
significantly smaller than that of nirmatrelvir, ΔGDock = − 13.8 kcal 
mol− 1, which was considered a positive control. Note that the modified 
AutoDock Vina often offered an overestimated value of ligand-binding 
affinity [71]. Moreover, as mentioned above, the predicted value 
ΔGML is probably underestimated. This may explain why the obtained 
docking results were significantly larger than those obtained by the ML 
models. 

3.3. MD-Refined simulations 

Docking approaches normally utilize several approximations to 
speed up the computation [70,72]. Therefore, the obtained outcomes 
are thus refined by using more accurate and precise approaches such as 
Steered-MD (SMD), MD, and replica-exchange MD (REMD) simulations 
[34,37,89]. In this work, although AutoDock Vina with the modified 
empirical parameters formed the success-docking rate ρ̂ = 65.0 ± 7.6, 
unbiased MD simulations were employed to clarify the docking results. 
According to previous work [26], the solvated SARS-CoV-2 Mpro + in-
hibitor complex was equilibrated by using 20.0 ns unbiased MD simu-
lations for each trajectory, which is long enough to equilibrate the 
complex conformations. The all-atom RMSD of the complexes almost 
achieved stable states just after 5.0 ns (cf. Table S4 of the Supporting 
Information). The equilibrated conformations of the solvated complex 
and ligand systems were then used for free energy calculations via LIE/ 
FEP approaches. 

The protease individual residues were calculated to reveal the 
ligand-binding mechanism by analyzing intermolecular NBC and HB 
contacts between top-lead compounds (Table 2 and discussed below). 
The probability of NBC and HB contacts of ligands to SARS-CoV-2 Mpro 
residues was described in Fig. 3. In particular, top-lead ligands adopted 
intermolecular contacts with 43 residues. The residues formed inter-
molecular NBCs to top-lead ligands over more than 46% of the evaluated 
conformations (20,000 shapes in total). In addition, only 24/43 residues 
adopted intermolecular HB to top-lead compounds, which occupied 6% 
of all investigated shapes. Note that the outcomes are obviously larger 
than those of twenty available inhibitors [26]. It may be argued that the 
top-lead compounds form a stronger ligand-binding affinity than twenty 
available inhibitors [26]. Moreover, the residues that were able to adopt 
more than 6% HB and 46% NBC to ligands are critical elements 

Fig. 2. Predicted binding free energy versus experiment for 120 test com-
pounds. Prediction was made using XGBoost model. 

Table 2 
Calculated binding free energy of top-lead compounds to SARS-CoV-2 Mpro via different approaches.  

N0 Compound name ΔGXGB ΔGVina 〈Vcou
l− s 〉b − 〈Vcou

l− s 〉u 〈VvdW
l− s 〉b − 〈VvdW

l− s 〉u ΔGLIE ΔGcou ΔGvdW ΔGFEP ΔGEXP 
a 

1 CHEMBL3815050  − 10.02  − 15.7  7.16  − 36.37 − 16.71 ± 0.36  − 2.06  − 10.06 − 12.12 ± 1.12  
2 CHEMBL4300604  − 9.98  − 14.7  10.66  –33.23 − 15.97 ± 0.49  − 9.48  − 9.49 − 18.97 ± 3.59  
3 CHEMBL3945443  − 9.98  − 15.1  9.58  − 30.44 − 15.12 ± 0.03  − 16.92  − 14.73 − 31.65 ± 0.92  
4 CHEMBL3678802  − 9.97  − 17.1  5.23  –32.15 − 15.40 ± 1.39  − 9.47  − 8.72 − 18.19 ± 0.69  
5 CHEMBL4170638  − 9.91  − 14.0  3.62  − 31.78 − 15.21 ± 0.36  − 3.68  − 11.19 − 14.87 ± 0.33  
6 CHEMBL4111845  − 9.79  − 15.3  3.79  − 35.84 − 16.39 ± 0.58  − 12.95  − 8.46 − 21.41 ± 0.69  
7 CHEMBL580289  − 9.75  − 15.0  7.88  –32.08 − 15.51 ± 0.78  − 17.79  − 9.45 − 27.24 ± 2.87  
8 CHEMBL3640406  − 9.74  − 15.8  15.84  − 29.33 − 15.10 ± 0.14  9.97  − 14.96 − 4.99 ± 1.26  
9 CHEMBL538763  − 9.74  − 15.1  11.20  − 30.55 − 15.23 ± 0.78  6.02  − 12.13 − 6.11 ± 3.77  
10 CHEMBL176909  − 9.73  − 15.3  14.99  − 35.52 − 16.84 ± 0.36  − 6.99  − 12.47 − 19.45 ± 1.07  
11 CHEMBL4095929  − 9.72  − 17.2  18.81  –32.15 − 16.06 ± 0.21  9.13  − 14.07 − 4.95 ± 0.42  
12 CHEMBL3640394  − 9.69  − 14.4  15.34  − 29.54 − 15.14 ± 0.30  7.79  − 14.77 − 6.98 ± 0.57  
13 CHEMBL3657195  − 9.68  − 15.0  7.87  − 30.99 − 15.19 ± 0.26  5.07  − 8.63 − 3.56 ± 1.93  
14 CHEMBL416434  − 9.68  − 15.9  11.72  –32.35 − 15.77 ± 1.97  − 7.06  − 11.11 − 18.17 ± 2.52  
15 CHEMBL1471687  − 9.67  − 13.8  − 8.97  − 38.03 − 16.39 ± 0.45  − 7.19  − 13.76 − 20.95 ± 0.08  
16 CHEMBL285908  − 9.67  − 11.3  11.07  –33.31 − 16.01 ± 0.99  1.60  − 10.40 − 8.80 ± 2.00  
17 CHEMBL3673817  − 9.67  − 16.3  2.23  –32.67 − 15.40 ± 0.27  3.57  − 12.21 − 8.64 ± 1.74  
18 CHEMBL4101092  − 9.66  − 17.1  14.50  –32.10 − 15.83 ± 0.7  − 1.73  − 16.77 − 18.50 ± 1.08  
19 CHEMBL20260  − 9.64  − 15.8  − 3.65  − 34.18 − 15.55 ± 1.34  1.54  − 12.55 − 11.01 ± 2.88  
20 Nirmatrelvir  − 9.57  − 13.8  2.21  − 29.80 − 14.57 ± 0.06  − 4.56  − 9.78 − 14.35 ± 0.04 − 10.46 [88]  

a ΔGEXP value obtained based on IC50 value, in which term was approximately equal to inhibition constant Ki and contribution of covalent binding energy is 
assumed to be small [88]. Unit is kcal mol− 1.  
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controlling the ligand-binding process to the protease. There are 13 
residues satisfying the criteria (Fig. 3). The residues are Thr25, His41, 
Ser46, Asn142, Gly143, Ser144, Cys145, His163, His164, Glu166, Asp187, 
Gln189, and Gln192. Interestingly, top-lead compounds frequently 
created intermolecular contacts with the catalytic triad Cys145-His41- 
Asp187, which may prevent the biological activity of SARS-CoV-2 Mpro. 
In addition, the residues Met49, Leu141, Met165, Leu167, Pro168, 
Arg188, Thr190, and Ala191 also contribute a large amount of the 
binding energy because they rigidly adopt NBC to ligands. Overall, top- 
lead ligands can bind well to Mpro by forming a large number of con-
tacts with several residues located in the active sites. This may prevent 
the reduction in ligand-binding affinity when mutations of SARS-CoV-2 
Mpro occur. 

As mentioned above, the catalytic triad Cys145-His41-Asp187 may 
play a crucial role in the binding process of a ligand to SARS-CoV-2 Mpro 
[75]. The distance between the Cys145-Sγ and His41-Nε 
(d(SγCys145 − NεHis41)) and His41-Nδ vs. Asp187-Oδ (d(NδHis41 − OδAsp187)) 
atoms was considered to mediate the influence of ligands on SARS-CoV- 
2 Mpro. Moreover, SARS-CoV-2 Mpro in solution without ligand was 
also simulated over 220 ns (Figure S2 of the Supporting Information) to 
compare the difference. The collective-variable free energy landscape 
(FEL) using d(NδHis41 − OδAsp187) and (d(SγCys145 − NεHis41)) as reaction 
coordinates was constructed over equilibrium snapshots of SARS-CoV-2 
Mpro with top-lead inhibitors (Table 1) and without an inhibitor. The 
outcome is shown in Fig. 4. The presence of inhibitors clearly altered the 
FEL of SARS-CoV-2 Mpro, implying a change in enzymatic biological 
activity. In particular, the SARS-CoV-2 Mpro without the presence of 
ligands formed two minima noted as A1-2 at (d(NδHis41 − OδAsp187), 

(d(SγCys145 − NεHis41)) coordinates of (0.50, 0.35) and (0.73, 0.33). In 
addition, the SARS-CoV-2 Mpro + ligands adopted two minima denoted 
as B1-2 at (d(NδHis41 − OδAsp187), (d(SγCys145 − NεHis41)) coordinates of 
(0.51, 0.34) and (0.29, 0.33). 

3.4. Binding free energy calculation via the LIE method. 

The binding free energy of ligands and SARS-CoV-2 Mpro can be 
calculated using the LIE approach with a correlation coefficient of 
RLIE = 0.73 ± 0.09 [26]. The binding free energy ΔGLIE was thus per-
formed to assess the top 100 inhibitors, which was suggested by the 
XGBoost model. The mean gap of the cou and vdW interaction energies 
between a ligand and surrounding molecules over bound and unbound 
states was calculated and is shown in Table 2 and S2 of the Supporting 
Information. The corresponding values over 100 ligands are 7.18 ± 0.55 
and − 26.48 ± 0.49 kcal mol− 1, respectively. The obtained outcome 
suggests the domination of vdW over electrostatic interactions in the 
binding process of ligands to SARS-CoV-2 Mpro, which is in good 
agreement with previous works [34,36]. This also explained why the 
empirical parameters for amyloid beta systems involving α = 0.288, β =

− 0.049, and γ = − 5.880 were successfully applied for computing the 
binding affinity of a ligand to SARS-CoV-2 Mpro. The negative metrics β 
and γ correspond to the loss of electrostatic interaction during the ligand 
association, and the hydrophobic interaction is strong as the domination 
of the vdW term. 

The obtained ΔGLIE is shown in Table 2 and S2 of the Supporting 
Information. Over the top 100 compounds, the metric varies in the range 
from − 7.51 ± 3.55 to − 16.84 ± 0.36 kcal mol− 1, in which the average 

Fig. 3. Probability of NBC and HB contacts between SARS-CoV-2 Mpro individual residues and top-lead compounds. Green rectangles denote residues that formed 
more than 6% HB and 46% NBC to ligands. 

Fig. 4. Collective-variable FEL of SARS-CoV-2 Mpro in present and absent ligands. Distances d(NδHis41 − OδAsp187) and (d(SγCys145 − NεHis41), which are associated 
with catalytic triad Cys145 - His41 - Asp187, were utilized as reaction coordinates. 
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value is − 13.87 ± 0.14 kcal mol− 1. The magnitude of ΔGLIE is larger 
than that of ΔGML by an amount of 4.14 kcal mol− 1, which is consistent 
with the previous work that the ΔGLIE is smaller than ΔGEXP by a value 
of 3.89 kcal mol− 1. Note that the overestimation of ΔGLIE compared with 
ΔGML was observed because the ML model was trained using IC50 as an 
approximation to ki in calculating the experimental binding free energy. 
Moreover, the obtained ΔGLIE are in good agreement with the docking 
simulation, which is ΔGDock = − 14.89 ± 0.10 kcal mol− 1. The RMSE 
between ΔGDock and ΔGLIE is 1.88 kcal mol− 1. Furthermore, 19% of the 
ligands formed a strong binding free energy to the protease, in which the 
calculated ΔGLIE was lower than − 15.00 kcal mol− 1 (Table 2). Inter-
estingly, the top 19 inhibitors formed a lower ΔGLIE than that of the 
positive control nirmatrelvir, whose ΔGLIE is − 14.57 ± 0.06 kcal mol− 1 

(Table 2). They were thus selected for further investigation to validate 
the outcome via the perturbation method [82]. 

3.5. Investigation of ligand-binding affinity via perturbation simulations 

The perturbation simulation is known as one of the most accurate 
approaches thus far [26,47,90,91]. In a recent report [26], this approach 
was indicated as the most accurate method for determining the binding 
free energy of SARS-CoV-2 Mpro and its ligands. The FEP approach 
formed the highest correlation coefficient, RFEP = 0.85 ± 0.06 [26], for 
the respective experiment in comparison with other methods such as 
LIE, fast pulling of ligand (FPL) [50], and molecular mechanics Poisson- 
Boltzmann surface area (MM-PBSA) [53,92]. The perturbation simula-
tions were successfully applied to characterize several potential in-
hibitors for SARS-CoV-2 Mpro [34,35,90]. The approach was thus 
utilized to refine the binding free energy of the top 19 inhibitors, which 
adopted an ΔGLIE smaller than − 15.00 kcal mol− 1. 

The obtained ΔGFEP was mentioned in Table 2. In particular, the 
value fell in the range from − 3.56 ± 1.93 to − 31.65 ± 0.92 kcal mol− 1 

with a mean of − 14.56 ± 1.74 kcal mol− 1. This may suggest that nine 
compounds having ΔGFEP < − 15.00 kcal mol− 1 would be highly potent 
inhibitors for SARS-CoV-2 Mpro (Table 2). These compounds include 
CHEMBL4300604, CHEMBL3945443, CHEMBL3678802, CHEMBL 
4111845, CHEMBL580289, CHEMBL176909, CHEMBL416434, CHE 
MBL1471687, and CHEMBL4101092. Interestingly, among nine com-
pounds, CHEMBL3945443, which formed the strongest binding affinity 
to SARS-CoV-2 Mpro, has a nitrile group, the same as nirmatrelvir; 

unfortunately, the MD-refined structure (Fig. 5) of the complex did not 
reveal this issue. This may imply the inaccuracy of conventional MD 
simulations since they cannot represent the covalent binding between 
proteins and ligands. Further computation using a quantum chemical 
approach would thus be employed to reveal the problem. Moreover, 
using the same approach, the available inhibitors can form 
− 9.18 ± 2.48 (α-ketoamide 13b), − 7.73 ± 1.77 (ritonavir), and 
− 14.56 ± 2.65 (proscillaridin) kcal mol− 1 [26,36]. Furthermore, the 
binding free energy of PF-07321332 (nirmatrelvir) to SARS-CoV-2 Mpro 
is − 14.35 ± 0.04 kcal mol− 1, which was calculated as a positive control. 
The compound CHEMBL3945443 can thus form a covalent bond to 
Cys145-Sγ of SARS-CoV-2 Mpro. Furthermore, over all considered sys-
tems, the mean electrostatic free energy difference ΔGcou is 
− 2.66 ± 1.91 kcal mol− 1, while the average vdW free energy difference 
ΔGvdW is − 11.89 ± 0.54 kcal mol− 1. The obtained results indicated that 
the vdW interaction rules over electrostatic interactions in the binding 
process of the considered inhibitors to SARS-CoV-2 Mpro. It should be 
noted that this result is consistent with previous works [26,36]. 

4. Conclusions 

In this work, a hybrid approach using knowledge- and physical-based 
methods was proposed to characterize potential inhibitors of SARS-CoV- 
2 Mpro. Initially, the XGBoost model was trained to screen ligand- 
binding affinity over a large database of compounds. The predicted 
binding affinity for a test set strongly correlates with experimental data 
with a correlation coefficient of R = 0.748 ± 0.044. The ligand-binding 
free energy ΔGXGB of drug-like compounds from the ChEMBL database 
[63] was then predicted by the XGboost model. 

The top 100 compounds that formed the largest values of ΔGML were 
further investigated via atomistic simulations. The binding pose of these 
ligands to the protease was preliminarily estimated using the modified 
AutoDock Vina with a successful docking rate of 65.0 ± 7.8 %. The 
complex was then refined via unbiased MD simulations. Moreover, the 
equilibrium conformations of the complex were used for binding free 
energy calculation via the LIE approach. A short list including 19 com-
pounds was suggested for further analysis via the FEP method since 
adopting ΔGLIE < − 15.00 kcal mol− 1. Furthermore, the perturbation 
simulations indicated that 9 compounds (CHEMBL4300604, 
CHEMBL3945443, CHEMBL3678802, CHEMBL4111845, CHEMBL58 
0289, CHEMBL176909, CHEMBL416434, CHEMBL1471687, and 
CHEMBL4101092) can bind well to SARS-CoV-2 Mpro with a binding 
free energy of ΔGFEP < − 15.00 kcal mol− 1, which is lower than that of 
nirmatrelvir,ΔGFEP = − 14.35 kcal mol− 1. It may be argued that these 
compounds may act as highly potent inhibitors of SARS-CoV-2 Mpro. 

The obtained results also suggested that the vdW interaction may 
play an important role in the binding process of SARS-CoV-2 Mpro +
inhibitors. Moreover, the residues Thr25, His41, Ser46, Asn142, Gly143, 
Ser144, Cys145, His163, His164, Glu166, Asp187, Gln189, and Gln192 
play an important role since HB and NBC were rigidly adopted as li-
gands. Furthermore, the residues Met49, Leu141, Met165, Leu167, 
Pro168, Arg188, Thr190, and Ala191 also contribute a large amount of 
the binding energy since rigidly adopting NBC to ligands. In addition, 
the ligands inhibit the biological activity of SARS-CoV-2 Mpro by 
altering FEL construction via d(NδHis41 − OδAsp187) and (d(SγCys145 −

NεHis41)). The catalytic triad Cys145 - His41 - Asp187 was thus 
disturbed. 
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F. Hunter, L. Junco, G. Mugumbate, M. Rodriguez-Lopez, F. Atkinson, N. Bosc, C. 
J. Radoux, A. Segura-Cabrera, A. Hersey, A.R. Leach, ChEMBL: towards direct 
deposition of bioassay data, Nucleic Acids Res 47 (2018) D930–D940. 

[64] B. Andi, D. Kumaran, D.F. Kreitler, A.S. Soares, W. Shi, J. Jakoncic, M.R. Fuchs, J. 
Keereetaweep, J. Shanklin, S. McSweeney, Hepatitis C Virus NSP3/NSP4A 
Inhibitors as Promising Lead Compounds for the Design of New Covalent Inhibitors 
for SARS-CoV-2 3CLpro/Mpro Protease, 2020. 

[65] T. Chen, C. Guestrin, XGBoost: A Scalable Tree Boosting System, KDD ’16: 
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining (2016) 785–794. 

[66] D.K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru- 
Guzik, R.P. Adams, Convolutional Networks on Graphs for Learning Molecular 
Fingerprints, in: C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, R. Garnett (Eds.), 
Advances in Neural Information Processing Systems, Curran Associates, Inc.2015. 

[67] J. Bergstra, D. Yamins, D. Cox, Making a Science of Model Search: Hyperparameter 
Optimization in Hundreds of Dimensions for Vision Architectures, Proceedings of 
the 30th International Conference on Machine Learning 28 (2013) 115-123. 

[68] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, 
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, 
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine 
Learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830. 

[69] B. Ramsundar, P. Eastman, P. Walters, V. Pande, K. Leswing, Z. Wu, Deep Learning 
for the Life Sciences: Applying Deep Learning to Genomics, Microscopy, Drug 
Discovery, and More, O’Reilly Media2019. 

[70] O. Trott, A.J. Olson, Improving the Speed and Accuracy of Docking with a New 
Scoring Function, Efficient Optimization, and Multithreading, J. Comput. Chem. 31 
(2010) 455–461. 

[71] T.N.H. Pham, T.H. Nguyen, N.M. Tam, T.Y. Vu, N.T. Pham, N.T. Huy, B.K. Mai, N. 
T. Tung, M.Q. Pham, V.V. Vu, S.T. Ngo, Improving Ligand-Ranking of AutoDock 
Vina by Changing the Empirical Parameters, J. Comput. Chem. 43 (2021). 

[72] G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A. 
J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective 
receptor flexibility, J. Comput. Chem. 30 (2009) 2785–2791. 

[73] M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl, 
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