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1  | INTRODUC TION

Gut microbiota is often called the “forgotten organ” in its symbiotic 
host (O’Hara & Shanahan, 2006) and plays essential roles in food 
digestion, energy harvest, metabolism, and immune training of its 
host (Donaldson, Lee, & Mazmanian, 2016; Hooper, Littman, & 
Macpherson, 2012; Hooper, Midtvedt, & Gordon, 2002; Qin et al., 
2010; Turnbaugh et al., 2006; Velagapudi et al., 2010). In mammals, 
large-scale studies of gut microbiota have been conducted in humans 
(Huttenhower et al., 2012; Lozupone, Stombaugh, Gordon, Jansson, 
& Knight, 2012; Saraswati & Sitaraman, 2015; Yatsunenko et al., 
2012), mice (Gu et al., 2013; Tanca et al., 2017), other domestic ani-
mals such as pigs (Mu, Yang, Su, Zoetendal, & Zhu, 2017) and sheep 
(Zeng et al., 2017), and to a lesser extent in wild animals, such as bats 
(Chiroptera). Bats have been largely overlooked in terms of their gut 

microbiota although they represent the second largest mammalian 
order and over 20% of mammal species (Simmons, 2005). To date, 
only eight research papers on the gut microbiota of bats have been 
published (Banskar, Mourya, & Shouche, 2016; Carrillo-Araujo et al., 
2015; Daniel et al., 2013; Dietrich, Kearney, Seamark, & Markotter, 
2017; Galicia, Buenrostro, & García, 2014; Maliničová, Hrehová, 
Maxinová, Uhrin, & Pristaš, 2017; Phillips et al., 2012; Weinberg 
et al., 2017). Comparing with a significant number of studies on vi-
ruses in bats (Annan et al., 2013; Calisher, Childs, Field, Holmes, & 
Schountz, 2006; Tong et al., 2013; Yuan et al., 2010), more work is 
needed to investigate gut bacterial microbiotas and their effects on 
ecology and evolution of bats.

A majority of previous studies of gut microbiota have fo-
cused on fecal samples because they are easily accessible. 
However, recent studies have shown that microbiota community 
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Abstract
The gut microbiota is now known as a key factor in mammalian physiology and health. 
Our understanding of the gut microbial communities and their effects on ecology 
and evolution of their hosts is extremely limited in bats which represent the second 
largest mammalian order. In the current study, gut microbiota of three sampling 
sources (small intestine, large intestine, and feces) were characterized in two sympa-
tric and insectivorous bats (Rhinolophus sinicus and Myotis altarium) by high-
throughput sequencing of the V3-V4 region of the 16S rRNA gene. Combining with 
published studies, this work reveals that Gammaproteobacteria may be a dominant 
class in the whole Chiroptera and Fusobacteria is less observed in bats although it has 
been proven to be dominant in other mammals. Our results reveal that the sampling 
source influences alpha diversity of the microbial community in both studied species 
although no significant variations of beta diversity were observed, which support 
that fecal samples cannot be used as a proxy of the microbiota in other gut regions in 
wild animals.
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compositions varied between different gut regions and feces 
of mice, (Gu et al., 2013; Looft et al., 2014; Mu et al., 2017) and 
pikas (Li, Chen, et al., 2017) possibly because microbiotas play 
different functional roles in different intestinal compartments 
and niches. To date, very few such comparisons have been con-
ducted in wild animals (but see Kohl et al., 2017; Li, Li, et al., 
2017) to test whether fecal samples can be used as a proxy of the 
microbiota in other gut regions.

In the current study, we aim at comparing the composition of 
the bacterial microbiota of bats from different gut sections. For this 
aim, we sampled two bat species, Rhinolophus sinicus (Rhinolophidae, 
Yinpterochiroptera) and Myotis altarium (Vespertilionidae, 
Yangochiroptera). Both species live in the same cave. Both of them 
are insectivorous and feed on insects such as Coleoptera (Hu, Yang, 
Tan, & Zhang, 2012; Zhang, 1985). Here by focusing on these two 
bat species, we aim to (a) characterize their core microbiota and 
compare it to that of other bat species and mammals; (b) compare 
the microbiota of paired small intestine, large intestine and feces to 
test whether fecal samples can be used as a proxy of the microbiota 
in other gut regions.

2  | MATERIAL S AND METHODS

2.1 | Sample collection and DNA extraction

A total of six adult bats, three males for Rhinolophus sinicus 
(Rhinolophidae, Yinpterochiroptera) and three females for Myotis 
altarium (Vespertilionidae, Yangochiroptera), were captured from 
the same cave in Yixing city, Jiangsu province, China, in October 
2016. Bat sampling procedure was approved by the National 
Animal Research Authority, East China Normal University (ap-
proval ID 20080209). In order to reduce the possibility of contami-
nation, each bat was kept in a single clean and sterile bag. Feces 
samples were collected in about two hours after bat capturing and 
transferred to RNase-free PCR tubes. Then, bats were rapidly eu-
thanized by cervical dislocation to minimize pain and intestinal tis-
sues were taken and transferred to RNase-free PCR tubes. In this 
study, intestinal tissues were divided into small intestine (defined 
as the region close to section of the back stomach, the part of the 
duodenum) and large intestine (defined as the part of colon, far 
from the rectum). All samples were immediately frozen in liquid 
nitrogen in the field and then stored at a −80°C freezer after going 
back to the laboratory. To harvest the gut microbiota, the intesti-
nal regions were opened and washed at least three times with the 
physiological saline DEPC (Diethy pyrocarbonate). Here, intesti-
nal samples include collections of luminal contents. Together with 
fecal samples, a total of 18 samples were generated in the current 
study (Table 1).

Genomic DNA was extracted from each sample with the QIAamp 
DNA Stool Mini Kit (Qiagen, Germany). Quantity and quality of DNA 
were assessed using NanoDrop and agarose gel electrophoresis, re-
spectively. The final DNA was diluted to a concentration of 1 ng/μl 
and stored at −20°C.

2.2 | Species identification

To confirm the species identification of bats based on the morphol-
ogy in the field, we amplified and sequenced the cytochrome b (cytb) 
gene for all individuals. Genomic DNA was extracted from the mus-
cle tissue using DNeasy kits (Qiagen). Details of primers, PCR reac-
tion and the thermal profile for cytb have been provided in (Mao, 
He, Zhang, Rossiter, & Zhang, 2013). Because several genetic line-
ages have been found for R. sinicus in the mainland of China (Mao 
et al., 2013), we identified the specific lineage for bats used in this 
study by reconstructing a Maximum Likelihood (ML) tree based on 
cytb sequences of the focal three samples and ones from the pre-
vious study. ML tree was reconstructed in the software RAxML 
7.2.8 (Berger, Krompass, & Stamatakis, 2011) with GTRGAMMA 
model and bootstrap supports were estimated from 1,000 replicate 
searches.

2.3 | 16S rRNA gene amplification and sequencing

The hypervariable V3 and V4 regions of the 16S rRNA gene 
(456 bp) was amplified with the universal primer pair 343F  
(5′- TACGGRAGGCAGCAG -3′) and 798R (5′- AGGGTATCTAATCCT-3′) 
(Nossa et al., 2010). The PCR mix (25 μl) consists of KAPA HiFi 
HotStart ReadyMix (2X), 1 μM of each primer and 2.5 μl of DNA. The 
thermal profile includes an initial denaturation at 95°C for 3 min, fol-
lowed by 25 cycles of 95°C 30 s, 55°C 30 s and 72°C 30 s, and a final 
extension at 72°C 10 min. Amplicons were purified with AMPure XP 
beads (Agencourt) and amplified in duplicate in independent PCRs 
labeled using different barcodes. After purification, the final ampli-
con was quantified using Qubit dsDNA assay kit. Equal amounts of 
purified amplicon from each sample were pooled (∼20 ng per sam-
ple) and sequenced using 350 bp paired-end reads on Illumina MiSeq 
platform.

2.4 | Data analysis

Raw reads were filtered using Trimmomatic software (Bolger, Lohse, 
& Usadel, 2014) with a sliding window of 4:20 and minlen of 50 bp. 
Filtered reads were merged using FLASH software (Reyon et al., 
2012) with 10 bp of minimal overlapping, 200 bp of maximum over-
lapping and 20% of maximum mismatch rate. Using QIIME software 
(version 1.8.0) (Caporaso et al., 2010), sequences with ambiguous 
bases or homopolymers were discarded and only sequences with 
the length of over 200 bp and 75% of bases over Q20 were re-
tained. Then, sequences with chimera were detected and removed 
using USEARCH (Edgar, Haas, Clemente, Quince, & Knight, 2011). 
The final valid sequences were used for the downstream analysis 
in QIIME.

Valid sequences were grouped into operational taxonomic units 
(OTUs) (Blaxter et al., 2005) at a 97% similarity threshold using 
UPARSE (Edgar, 2013) and the most abundant sequence was picked 
as the OTU representative sequence using QIIME package. OTUs 
were assigned taxonomic identities in QIIME using RDP classifier 
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(Wang, Garrity, Tiedje, & Cole, 2007) and the Silva database Version 
123 (16s rDNA) (Quast et al., 2012).

Similar numbers of sequences were generated per sample rang-
ing from 32,161 to 47,840 (Table 1) except for RS-3 with only 7,675 
sequences. To avoid potential artifacts of uneven sequences depth 
in calculating relevant indices, all samples were rarified to 32,010 
sequences except for RS-3. Rarefaction curves at this sequence 
depths showed that a majority of microbial diversity was captured 
for each sample (Figure 1). For comparison with results from 32,010 
sequences depth, samples of R. sinicus were also analyzed at 7,010 
sequences depth (Supporting Information Figure S1).

2.5 | Effects of sampling sources on the 
microbial diversity

To determine the effect of sampling sources (the small intestine, 
large intestine, and feces) on microbial diversity, microbiota com-
position and abundance were compared among different sampling 
sources in each of two bat species (R. sinicus and M. altarium) using 
both alpha and beta diversity analyses.

The Observed Species counts were used as the indicator of alpha 
diversity in the samples, but Chao1 and Shannon indices were also 
generated for comparisons with the published literatures. To com-
pare microbiota abundance difference, genera with the top 15 abun-
dance were obtained and visualized using barplots. The membership 
and structure of samples at the top 15 abundance genera were re-
vealed by heatmap plots. For comparisons between three sampling 
sources, one-way ANOVA was used. For comparisons between two 
sampling sources (pairwise comparisons), Welch’s t test was used. 
Significant difference was considered at p < 0.05.

Beta diversity (between sample diversity) was estimated by 
calculating unweighted and weighted UniFrac distance matrices 
(Lozupone, Lladser, Knights, Stombaugh, & Knight, 2011) between 

samples. The unweighted UniFrac matrix is affected by presence/
absence and weighted UniFrac matrix incorporates information of 
relative abundance. To compare gut community membership and 
structure, principal coordinates analysis (PCoA) was performed 
based on unweighted and weighted UniFrac distance matrices. Then, 
a permutational multivariate analysis of variance was performed 
based on distance matrices implemented in the adonis function of 
the vegan package in R. Specifically, we examine the effect of sam-
pling sources on both unweighted and weighted UniFrac distance 
matrices (beta diversity variation) in each species.

To test the validity of using fecal samples as a proxy of micro-
biota in other gut regions, we generate UPGMA (Unweighted Pair 
Group Method with Arithmetic mean) trees based on unweighted 
and weighted UniFrac distance matrices across all 18 samples.

3  | RESULTS

3.1 | Core microbiota in two insectivorous bats

In this study, we amplified and sequenced the cytochrome b 
(cytb) gene for all individuals (GenBank accessions:MH325072-
MH325077). By performing BLAST searches at NCBI database, we 
confirmed their taxonomic assignments made based on the mor-
phology in the field. In addition, Maximum Likelihood (ML) tree 
reconstructed based on cytb sequences revealed that all three R. 
sinicus samples used in this study were classified with individuals 
from East R. s. sinicus (Supporting Information Figure S2).

All sequences of the 18 samples clustered in 409 OTUs and 
403 of them were assigned into order level (L4, 98.5%), 393 into 
family level (L5, 96.1%), 313 into genus level (L6, 76.5%), and 147 
into species level (L7, 35.9%). The dominant phyla in R. sinicus and 
M. altarium were Proteobacteria (43.5% in R. sinicus; 42.5% in M. 
altarium), Firmicutes (22.9% in R. sinicus; 28.7% in M. altarium), and 

F IGURE  1 Rarefaction analysis of gut bacteria sequencing of the 16S rRNA gene in different samples of R. sinicus and M. altarium. (a) 
Rarefaction curves of eight samples in R. sinicus at 32,010 sequences depth. (b) Rarefaction curves of nine samples in M. altarium at 32,010 
sequences depth
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F IGURE  2 Bacteria community composition and relative abundance at the phyla and class levels in (a) R. sinicus and (b) M. altarium. (c) Pie 
charts show relative abundances of bacterial classes with an abundance of > 1% in three dominated phyla in R. sinicus and M. altarium
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Bacteroidetes (29.9% in R. sinicus; 26.3% in M. altarium), which 
consistently occurred in all three sampling sources of each spe-
cies (Figure 2a,b). In the small intestine, the distribution of the 

three dominant phyla was relatively average in both bat species, 
whereas in the large intestine of M. altarium and feces of R. sinicus, 
Proteobacteria occupied over a half (Figure 2a,b). In R. sinicus, other 

FIGURE 3 Comparisons of the microbial community composition and abundance in three sampling sources of R. sinicus. (a) Venn diagrams of 
shared genera in three sampling sources. (b) Statistical comparisons of alpha diversity (measured by the total number of observed species) of 
microbiota among the three sampling sources at 32,010 sequences depths. *p < 0.05, **p < 0.01. (c) Relative abundances of the top 15 genera in 
three sampling sources. (d) Heatmap of the top 15 abundance genera in three sampling sources. Principal coordinates analysis (PCoA) of all three 
microbial communities of R. sinicus regions based on unweighted UniFrac distances (e) and weighted UniFrac distances (f)
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phyla with more than 1% abundance were Acidobacteria (1.0%) in 
the small intestine and Actinobacteria (2.0%) in the large intestine. 
In M. altarium, other phyla with more than 1% abundance were 
Actinobacteria (1.72%) and Gemmatimonadetes (1.01%) in the small 
intestine and Actinobacteria (1.08%) in the feces.

In Proteobacteria, the most abundant class was 
Gammaproteobacteria (91.4% in R. sinicus, 89.9% in M. altarium) 
(Figure 2c) which had a relative abundance of more than 95% in 
the small intestine and feces and 77.2% in the large intestine of 
R. sinicus and nearly 90% relative abundance in all three sampling 
sources of M. altarium (Figure 2a,b). Other classes of Proteobacteria 
were Alphaproteobacteria, Betaproteobacteria, Deferribacteres 
(not observed in the small intestine of R. sinicus and large intestine 
of M. altarium), Deltaproteobacteria, and Epsilonproteobacteria 
(Figure 2a,b). The case of Firmicutes was almost the same be-
tween M. altarium and R. sinicus and the majority classes (96.4% in 
both species) are Clostridia and Bacilli in all three sampling sources 
(Figure 2a–c). In Bacteroidetes, the most abundant class (96.2% in R. 
sinicus, 94.9% in M. altarium) (Figure 2c) was Bacteroidia in all three 
sampling sources of R. sinicus and the small intestine and feces of M. 
altarium and in the large intestine of M. altarium Flavobacteriia class 
exceeded 12.5% (Figure 2a,b).

Similar numbers of OTUs were observed in the two bat spe-
cies (318 for R. sinicus and 362 for M. altarium). This similarity 
was also reflected at the genus level (108 genera in R. sinicus 
and 117 genera in M. altarium). Although a large proportion 
of taxa was shared between the two bat species (i.e. 96 out of 
the total 129 genera, 74.4%), 12 unique genera were observed 
in R. sinicus and five of them with an abundance of > 0.1% 
(Chryseobacterium, Sphingomonas, Fusobacterium, Moraxella, and 
Ruminococcus 2), and 21 unique genera were observed in M. altar-
ium and six of them with an abundance of > 0.1% (Campylobacter, 
Flavobacterium, Haliscomenobacter, Maribacter, Neptuniibacter, and 
Ruminococcaceae_UCG_009). Among 96 shared genera, the most 
abundant is Vibrio which represented 15.5% in R. sinicus and 18.1% 
M. altarium.

3.2 | Effects of sampling sources on the 
microbial diversity

In R. sinicus, the large intestine contained the largest number of 
observed taxa followed by feces (Table 1). Similar pattern was ob-
served in the total and unique number of genera. Specifically, among 
108 genera found in all R. sinicus samples after removing four uncul-
tured genera, 88 (21 of them are unique) were in large intestine, 68 
(13 are unique) in feces, and 62 (four are unique) in small intestine 
(Figure 3a). The small intestine and feces shared the least number of 
genera and similar number of genera was shared by large intestine 
and small intestine and by large intestine and feces (Figure 3a). A 
total of 40 genera (37.0%) were shared among the three sampling 
sources (Figure 3a).

At 32,010 sequences depth, a significant difference of alpha di-
versity (observed species) was detected among the three sampling 

sources (one-way ANOVA test, p = 0.0038) (Figure 3b). In addi-
tion, pairwise comparisons of the three sampling sources were also 
significant (p < 0.05 in all Welch’s t test) (Figure 3b). However, at 
7,010 sequences depth the difference of alpha diversity among the 
three sampling sources was not significant (p = 0.411) (Supporting 
Information Figure S3) and also for the three pairwise comparisons 
(p > 0.05 in all Welch’s t test). These results indicated that sequences 
depth generated for each sample might affect alpha diversity mea-
surements. Although we did not recover any OTUs whose abundance 
differed significantly among the three sampling sources (one-way 
ANOVA test, p > 0.05), we did find some taxa with a relative high 
abundance in specific sampling sources. Specifically, among genera 
with the top 15 abundance small intestine has more Vibrio; large 
intestine has more Serratia, Prevotella 9, and Bacteroides; the feces 
have more Hafnia and Clostridium (Figure 3c). This abundance differ-
ence among different sampling sources was largely due to a specific 
sample and not consistent across all three samples, as revealed by 
the heatmap (Figure 3d). For example, more Serratia, Prevotella 9, and 
Bacteroides in large intestine resulted from an extremely high abun-
dance of each genus in RL-3, RL-2 and RL-1, respectively. Similar find-
ings were observed in the high abundance of Hafnia and Clostridium 
in feces. However, a high abundance of Vibrio observed in small in-
testine did occur in all three samples. In addition, Vibrio was the only 
genus showing a significant abundance difference among pairwise 
comparisons (i.e. the small intestine vs. large intestine, p = 0.0316, 
Welch’s t test). Overall, heatmap plots of the top 15 abundance gen-
era revealed that samples were mixed and did not cluster based on 
their corresponding sampling sources (Figure 3d).

Contrast to alpha diversity variation above, sampling sources had 
no significant effects on beta diversity of both microbial commu-
nity membership (presence/absence of species; Adonis: R2 = 0.245, 
p = 0.523; Figure 3e) and structure (incorporates information of rel-
ative abundance; Adonis: R2 = 0.461, p = 0.083; Figure 3f).

In M. altarium, feces have the largest number of observed taxa 
followed by the small intestine (Table 1). Similar to the case in R. sini-
cus, this pattern was also observed in the genus level. Specifically, 
a total of 117 genera were found in all M. altarium samples after 
removing four uncultured genera, including 102 (24 of them are 
unique) in feces, 71 (nine are unique) in small intestine, and 69 (four 
are unique) in large intestine (Figure 4a). Contrast to the results in R. 
sinicus, small intestine and feces shared the most number of genera 
(20, 17.1%) and only two and 13 genera were shared by large intes-
tine and small intestine and by large intestine and feces, respectively 
(Figure 4a). A total of 45 genera (38.5%) were shared in three sam-
pling sources (Figure 4a).

Like the case in R. sinicus, a significant difference of alpha diver-
sity was observed among the three sampling sources in M. altarium 
(one-way ANOVA test, p = 0.0113) (Figure 4b). However, in pairwise 
comparisons, significant difference was only found between the 
large intestine and feces (Welch’s t test, p = 0.0415) (Figure 4b). For 
microbiota abundance, five OTUs showed significant differences 
among the three sampling sources (p < 0.05). Among all pairwise 
comparisons of the top 15 abundance genera, only Prevotella 9 and 
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Vibrio exhibited significant abundance differences (Vibrio between 
small intestine and feces, p = 0.00199; Prevotella 9 between small 
intestine and large intestine, p = 0.0347, Welch’s t test) (Figure 4c). 
Some genera, such as Raoultella, Hafnia, Serratia, and Clostridium, 
showed a high abundance in one sampling source mainly caused by 
a specific sample and not consistent across all samples (Figure 4d). 

Unlike the case in R. sinicus, samples from the same sampling source 
clustered together as revealed by heatmap plots of the top 15 abun-
dance genera (Figure 4d).

In line with the results in R. sinicus, sampling sources had no sig-
nificant effects on beta diversity of both microbial community mem-
bership (presence/absence of species; Adonis: R2 = 0.275, p = 0.283; 

F IGURE  4 Comparisons of the microbial community composition and abundance in three sampling sources of M. altarium. (a) Venn 
diagrams of shared genera in three sampling sources. (b) Statistical comparisons of alpha diversity (measured by the total number of 
observed species) of microbiota among the three sampling sources at 32,010 sequences depth. *p < 0.05. (c) Relative abundances of the top 
15 genera in three sampling sources. (d) Heatmap of the top 15 abundance genera in three sampling sources. Principal coordinates analysis 
(PCoA) of three microbial communities of M. altarium based on unweighted UniFrac distances (e) and weighted UniFrac distances (f)
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Figure 4e) and structure (incorporates information of relative abun-
dance; Adonis: R2 = 0.231, p = 0.294; Figure 4f).

Finally, the result of UPGMA clustering revealed that fecal com-
munity in each species did not cluster with communities of either 
small or large intestine in terms of both community membership and 
structure (Figure 5).

4  | DISCUSSION

4.1 | Core microbiota in R. sinicus and M. altarium

The dominant phyla in R. sinicus and M. altarium are Proteobacteria, 
Bacteroidetes and Firmicutes, consistent with the previous study 
on other insectivorous bats of Phyllostomid (Carrillo-Araujo et al., 
2015). Similar relative abundance of Proteobacteria was observed 
between our study (>42% in both species) and the previous study 
on other insectivorous bats (40%, Carrillo-Araujo et al., 2015). 
Interestingly, Proteobacteria is rarely found (<10%) in carnivore 
species except for domestic dogs (Handl, Dowd, Garcia-Mazcorro, 
Steiner, & Suchodolski, 2011). Unlike the case of Proteobacteria, the 
relative abundance of Bacteroidetes (>26%) and Firmicutes (>22%) 
in R. sinicus and M. altarium is much higher than other insectivo-
rous bats of Phyllostomid (10% Bacteroidetes and <5% Firmicutes) 
(Carrillo-Araujo et al., 2015). Firmicutes is the only phylum univer-
sally shared in mammals (Ley et al. 2008) and in some carnivore spe-
cies and human Firmicutes has a relative abundance of >60% (Menke 
et al., 2014, 2017).

At the class level, Gammaproteobacteria (Proteobacteria), 
Bacteroidia (Bacteroidetes), Bacilli (Firmicutes), and Clostridia 
(Firmicutes) are four dominant classes in R. sinicus and M. 

altarium. Gammaproteobacteria is the largest class in R. sinicus 
(39.7%) and M. altarium (38.2%), which is higher than other insect-
feeding bats (~20%) (Carrillo-Araujo et al., 2015). Interestingly, 
Gammaproteobacteria also has a relatively high abundance in non-
insectivorous bats of Phyllostomid (Carrillo-Araujo et al., 2015). 
Thus, Gammaproteobacteria may be a dominant class in the whole 
Chiroptera. In some mammals such as cheetch and vultures feeding 
on decaying meat, Fusobacteria is dominant at the class level (Menke 
et al., 2017; Roggenbuck et al., 2014). However, we did not observe 
Fusobacteria in R. sinicus and M. altarium, which is also rare in nonin-
sectivorous bats of Phyllostomid (Carrillo-Araujo et al., 2015).

4.2 | Effects of sampling sources on 
microbial diversity

The current study revealed significant differences of the microbial 
community composition (the alpha diversity) in different sampling 
sources (the large intestine, small intestine, and feces) in two bat 
species (R. sinicus and M. altarium) although no significant variations 
of beta diversity were observed. These results were in line with the 
previous studies in mice (Gu et al., 2013; Pang, Vogensen, Nielsen, & 
Hansen, 2012; Weldon et al., 2015), pigs (Looft et al., 2014; Mu et al., 
2017), and sheep (Zeng et al., 2017). Observed differences across the 
sampling sources may be caused by environmental heterogeneity in 
different intestinal compartments and niches, such as different oxy-
gen exposure, pH, and substrate availability (Hao & Lee, 2004). In ad-
dition, functional changes have also been reported between cecal and 
fecal microbiota in mouse (Tanca et al., 2017). Our study further con-
firms that fecal samples, although easily accessible, cannot be used 
as a proxy of the microbiota in other gut regions (Li, Li, et al., 2017b).

F IGURE  5 UPGMA clustering analysis of three gut microbial communities of R. sinicus and M. altarium. (a) Unweighted UniFrac distances. 
(b) Weighted UniFrac distances. In both trees, samples from the small intestine, large intestine, and feces are coded by red, green, and blue, 
respectively. Asterisks in the node represent confidence values: *** 75%~100%, ** 50%~75%, * 25%~50%
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Our current results contrast with the previous work on 
Phyllostomid bats that did not reveal significant differences in mi-
crobiota composition between three different intestine regions 
(Carrillo-Araujo et al., 2015). This contrast may be caused by differ-
ent sampling sources used in comparisons. It is now known that mi-
crobiota differ across different functional gut regions (Haange et al., 
2012). In Carrillo-Araujo et al. (2015), the intestine was divided into 
three fractions of similar size (anterior, medium, and posterior). In 
addition, fecal samples were not included in Carrillo-Araujo et al. 
(2015). Significant differences in microbiota composition between 
three different sampling sources observed in the current study may 
result from the inclusion of fecal samples. Indeed, as for the microbi-
ota difference between large and small intestine, our results in M. al-
tarium were consistent with Carrillo-Araujo et al. (2015). In addition, 
sequences depth per sample may also contribute to the contrast be-
tween our study and Carrillo-Araujo et al. (2015). The current study 
analysis based on a low sequences depth (7,010 sequences) in R. sini-
cus did not reveal a significant difference of microbial community 
compositions across the sampling sources.

Although two genera were identified to exhibit significant abun-
dance differences between different sampling sources, they were 
not consistent in two bat species. For example, Vibrio showed a 
significant abundance difference between small intestine and large 
intestine in R. sinicus but between small intestine and feces in M. 
altarium and a significant abundance difference of Prevotella 9 was 
only observed between small intestine and large intestine in M. al-
tarium. Thus, our current results cannot draw any conclusions about 
the effect of sampling source on microbial community abundance.

5  | CONCLUSION

This study has characterized the microbiota of three sampling 
sources (the small intestine, large intestine, and feces) in two insec-
tivorous bat species. Our study adds to the list of a growing num-
ber of studies on the gut microbiota in bats. Our results revealed 
that the sampling source influences the alpha diversity of microbial 
community and suggest that fecal samples cannot be used as mi-
crobial inventories in other gut regions. In the future, more num-
ber of individuals will be needed to test this suggestion. Recent 
studies have shown that the sex of hosts may affect the gut micro-
bial diversity (e.g. Fierer, Hamady, Lauber, & Knight, 2008; Markle 
et al., 2013). In this study, all R. sinicus individuals are male and all 
M. altarium are females. Thus, we did not compare the difference 
of microbial diversity between these two bat species. Future in-
vestigations will continue to assess the relative effects of genetic 
divergence of hosts, sex, the gut region, and diet on gut microbial 
communities.
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