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Emotion classification using electroencephalographic (EEG) data is a challenging task in the field 
of Artificial Intelligence. While many researchers have focused on finding the best model or feature 
extraction technique to achieve optimal results, few have attempted to select the best methodological 
steps for working with the dataset. In this study, we applied two different theoretical approaches 
based on the noise of the dataset: curriculum learning and confident learning. Curriculum learning 
involves presenting training examples to the model in a specific order, starting with easier examples 
and gradually increasing in difficulty. This approach has been shown to improve model performance. 
Confident learning is a method for identifying and correcting label errors in datasets. By identifying 
and correcting these errors, confident learning can improve the performance of machine learning 
models trained on noisy datasets. We then applied the Integrated Gradient technique in order to assess 
the explainability of each model. Our aim was to explore the impact of different models and methods 
on emotion classification performance using EEG data. We collected and used an EEG dataset in 
which participants rated the emotional valence of positive and negative pictures while performing an 
emotion regulation (ER) task, comparing a control condition (Look) with two ER strategies: cognitive 
reappraisal and expressive suppression. We performed a multilabel classification to identify emotional 
neutrality or polarization of emotional valence (both positive and negative) rated by participants and 
the emotion regulation strategy adopted during the task. We compared the performance of models 
trained on three datasets selected based on label noise and evaluated their suitability for this task. Our 
results suggest different patterns based on the architecture used for feature importance, highlighting 
both advantages and criticisms.

Affective computing and EEG
Artificial intelligence (AI) has made significant progress in recent years, enabling the development of systems 
that can accurately perform tasks such as speech and image recognition. One area of AI that has received 
particular attention is emotion recognition, which aims to identify and classify human emotional states from 
various input modalities, giving birth to a new branch of AI, i.e., affective computing1.

Electroencephalography (EEG), a neurophysiological technique that measures the spontaneous electrical 
activity of the brain, has proven to be useful in the field of emotion recognition2 due to its sensitivity to 
emotional changes3. For instance, studying emotions through physiological signals can be particularly useful 
for individuals who have difficulty expressing emotions through facial expression or speech, such as people with 
traits in the autism spectrum4. Thus, a tool that can translate emotions into feedback that is understandable by 
therapists or parents could be extremely helpful.

However, classifying EEG data can be challenging due to several factors. EEG signal contains both actual 
brain activity and noise and artifacts5. Additionally, the EEG signal is non-linear6 meaning that linear equations 
may have limited effectiveness in modelling it. EEG signal is also non-stationary6, meaning that its statistical 
properties vary over time. This can make it difficult for models trained on temporally limited EEG data to 
generalize at different times or for different people. Finally, there is high inter-subject variability in the EEG 
signal, which can drastically affect the performance of a model when evaluating different subjects7.

1Molecular Mind Laboratory (MoMiLab), IMT School for Advanced Studies Lucca, Lucca, Italy. 2Department 
of Information Engineering, University of Pisa, Pisa, Italy. 3Department of Psychology ‘Renzo Canestrari’, 
University of Bologna, Bologna, Italy. 4Linda Fiorini and Francesco Bossi contributed equally to this work. email:  
francesco.digruttola@gmail.com

OPEN

Scientific Reports |        (2024) 14:24046 1| https://doi.org/10.1038/s41598-024-75263-x

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf


The consequence of these features, taken together, is represented by the struggle to have good results with 
machine or deep learning techniques.

One common approach to simplify the input data is feature extraction. This involves extracting relevant 
features from the data, such as time domain features like event-related potentials (ERPs)8 or power spectral density 
9–11. In one recent paper12, the authors extracted five frequency bands and used a Random Forest (RF) model 
on those extracted features, achieving an accuracy of 70% in classifying emotional valence. Further research 
reached even higher accuracy in classifying emotional valence and arousal by exploiting different methods based 
on spectral features 13–16. Although feature extraction can be a promising approach for simplifying EEG data, 
another more intricate but promising method involves using raw data as input to the model. In this case, the 
architecture and composition of the model itself are used to extract the most important features. In the following 
lines, we are going to introduce the state-of-the-art neural networks used in literature. Convolutional neural 
networks (CNN) are often used for this purpose17 as they are capable of initially extracting both local, low-level 
features and global, high-level features from raw input data18. Results achieved when using this approach in a 
binary classification of emotional valence are often considered good when the accuracy is slightly below 70%17, 
even with feature extraction techniques. Another promising approach is classifying emotional valence using the 
combination of CNN and Recurrent Neural Networks (RNN). RNNs have an internal state that allows them to 
learn from long-term dependencies and temporal patterns in the data19, which is extremely useful in the case of 
EEG data. In recent studies20–23, the authors used a particular type of RNN, a Long Short Term memory network 
(LSTM)24, particularly efficient to avoid the vanishing gradient problem, which occurs when the gradients of the 
loss function become very small for the weights of the earlier layers, and handling long sequences25. With this 
method, researchers reached an accuracy above 70% for the emotional valence.

Another promising approach that has been scarcely used in emotion classification could be using a 
CNN + GRU (Gated Recurrent Unit) network to combine the advantages of both methods.

Recently, researchers have also begun to use Transformer neural networks26 for EEG analysis. Originally 
developed for natural language processing27, these models have also been adapted to time series as input data 
28 and, more recently, EEG data. Indeed, transformer models can capture the global contextual information26 of 
the data, which can be very useful considering the discriminative spatial information deriving from each single 
electrode in EEG data 29.

Both feature extraction and deep learning methods applied to raw signals have advantages and disadvantages. 
On the one hand, feature extraction results are usually more accurate, but the signal is extensively processed, 
making it difficult to use for a future Brain-Computer Interface (BCI) application. BCI could be a great asset 
for some individuals in particular cases, such as interventions for people with autism30 that can express their 
emotions in a misleading way for the therapist31. On the other hand, using the raw signal produces less accurate 
results, but this method could be more useful in this context, in which signal preprocessing is not possible.

Beyond the simple emotion recognition
In this paper, we aim to employ emotion recognition within a unique context where participants were trying 
to modify their emotions. To the best of our knowledge, this is the first study exploring the field of emotion 
regulation. Specifically, we used an EEG emotion regulation (ER) task to classify the perceived emotional valence 
of emotional pictures observed by participants and the ER strategy they adopted. We asked participants to assess 
the emotional valence of 60 images. For each picture, participants were instructed to adopt one out of two 
possible ER strategies (and a control condition). We used a novel approach based on identifying the optimal 
methodology to classify EEG data after minimal preprocessing.

ER refers to the “extrinsic and intrinsic processes responsible for monitoring, evaluating, and modifying 
emotional reactions, especially their intensity and duration”32. It plays an essential role in everyone’s life: many 
studies highlighted the correlation between healthy ER strategies and social and affective adaptation33,34, how 
it affects decision-making35 and coping with stress36 or the severity of symptoms in conditions such as Post-
traumatic stress disorder (PTSD)37 or Attention deficit hyperactivity disorder (ADHD)38. Also, the typical state 
that characterizes mood and anxiety disorders often depends on emotion dysregulation39.

Two of the most studied ER strategies are cognitive reappraisal and expressive suppression40. Cognitive 
reappraisal is an antecedent-focused ER strategy, which refers to the attempt to reinterpret a situation eliciting 
emotions in a way that changes its meaning and emotional impact34,41. Expressive suppression, on the other 
hand, is a response-focused strategy and can be defined as the attempt to hide, inhibit, or reduce ongoing 
emotion-expressive behaviour (such as facial expressions, verbal utterances and gestures)42.

We included this manipulation in our study for two reasons. Firstly, this represents the first effort in the 
literature to employ an AI model for classifying ER strategies. Secondly, and more significantly, ER strategies 
are employed by individuals on a daily basis. Therefore, a tool that can discriminate these strategies may be 
exceedingly valuable in research and clinical settings. For instance, it could facilitate investigations about how 
and when individuals tend to regulate their emotions or about comprehending typical and atypical coping 
mechanisms.

Data-centric strategies in EEG emotion recognition: confident and curriculum learning
As discussed above, emotion classification is still a challenging task for machine learning models, and it could 
become even more difficult considering the attempt to classify the ER strategies as well. For this reason, we 
believe that the most appropriate strategy for these tasks is focusing on the data quality, especially considering 
the intrinsic noise of EEG data already discussed above.

Some researchers in AI already focused on the so-called data-centric approaches. One of the most frequently 
used is Confident Learning, useful to identify and correct label errors in any dataset using any model43. 
Confident learning can help models avoid learning from unreliable or inconsistent labels, which can degrade 
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their accuracy and generalization. In the same vein, we also used curriculum learning. This is a training strategy 
that orders data samples from easy to hard, based on several criteria such as label noise or the ambiguity of the 
examples given43. The concept of curriculum learning was first introduced by Bengio and colleagues in a data-
centric framework44, who proposed a method for training neural networks by presenting training examples in a 
predefined order of difficulty. This approach was inspired by the idea of curriculum development in education, 
which involves designing a sequence of learning experiences that gradually build on one another. Since then, 
curriculum learning has been extensively studied in the machine learning literature, with researchers exploring 
a variety of different strategies for selecting the order in which training examples are presented45. Curriculum 
learning can help models focus on simpler concepts first and gradually progress to more complex ones, without 
being overwhelmed by noise or ambiguity.

To date, while some researchers have incorporated curriculum learning in emotion recognition studies46, 
no EEG studies within affective computing have yet explored a data-centric approach, including curriculum or 
confident learning. Thus, we want to explore this methodology. Indeed, emotion recognition, with its inherent 
complex nature and consequent non-convex optimization challenges, presents itself as a prime candidate 
for curriculum learning in the development of classification models. This aligns with the principle that ideal 
problems for curriculum learning should involve non-convex optimization44.

Also, we suggest that even the categorisation of emotional valence clusters (e.g. positive, neutral and negative) 
should be based on a data-driven approach. Thus, a promising way to approach this problem is to study not only 
the EEG variation, but also the noisiness of the data and the label assigned. For this reason, we believe that 
confident learning can be very beneficial for our work. Thus, the first aim of our study is to use a data-centric 
approach to feed the proposed models the best possible data based on input EEG data.

Integrated gradients for explainable AI
As this is a methodological, data-centric study, our focus extends beyond mere performance metrics to also 
include the strategies employed by the models. Our goal is not only to identify an effective strategy for fitting 
the models but also to comprehend the underlying reasons and mechanics of what makes certain approaches 
succeed or fail. Consequently, the second aim of this study is to use explainable AI (XAI) to study how different 
models make classification decisions with respect to emotion and ER strategy classification of raw EEG data. 
With regard to XAI, we employed the Integrated Gradient (IG) approach47 to study the deep learning models we 
trained. IG requires no modification to the original network (Model Agnostic Approach) and is extremely simple 
to implement. Its objective is to assign an attribution score that underlines how each input feature is positively 
or negatively related to each prediction. It is based on two axioms: (i) sensitivity: if one feature change makes the 
classification output change, then that feature should have a non-zero attribution; (ii) implementation invariance: 
the attribution method result should not depend on the specificities of the neural network architecture 47.

Aim and hypothesis
Our hypothesis is that adopting those two novel approaches (namely data-centric approach and XAI) for 
emotion recognition while employing different emotion regulation strategies could lead to less biased networks 
and to understand how the predictions are made. Curriculum learning could help models focus on simpler 
concepts first and gradually progress to more complex ones, without being overwhelmed by noise or ambiguity. 
Confident learning could help models avoid learning from unreliable or inconsistent labels, which can degrade 
their accuracy and generalization. IG could enhance the understanding of how the predictions are made by 
different models.

In this study, we compared four different architectures: CNN, CNN + unidirectional RNN, CNN + bidirectional 
RNN, and Transformer. In summary, in this paper, we propose a novel approach that combines curriculum 
learning, confident learning and IG for emotion classification using different models while adopting two ER 
strategies, i.e., expressive suppression and cognitive reappraisal, and a neutral strategy that implies just looking 
at the stimuli.

Results
Behavioural results
In Fig. 1, participants’ average responses are displayed. Table 1 shows the results of the mixed-effect linear model 
performed on the emotional valence ratings reported by participants. In particular, the estimated marginal 
means (emmean), standard errors (SE), asymptotic lower and upper confidence limits (asymp.LCL, asymp.UCL), 
z-ratio, and p-value for each of the comparisons are shown. The mixed-effects linear model on participants’ 
ratings showed a significant interaction effect (χ2 = 1106.7, df = 40, p =  < 0.001) between the mindset and the 
emotional valence. Post-hoc multiple comparisons (corrected according to Tukey’s HSD) based on the different 
mindsets showed that looking at negative images was associated with lower (i.e., more negative) ratings than 
reappraising or suppressing them (see Table 1, statistically significant effects are in bold), while there was no 
significant difference between reappraising and suppressing negative images. On the other hand, looking at 
positive images was associated with higher emotional valence than reappraising or suppressing them, while 
there was no significant difference between reappraising and suppressing positive images. These results showed 
the overall effectiveness of the two emotional regulation strategies in modulating the emotional impact of the 
images.

Confident learning
The quality of data labels was evaluated using Random Forest (RF) as a benchmark model for the confident 
learning approach. Separate RF models were trained for emotional valence and ER strategy as target classes. All 
results reported refer to the dataset after applying the SMOTE algorithm, a data augmentation technique.
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Emotional valence
When classifying participants’ ratings (from 1 to 7) in seven classes, the model performed with an F1-score of 
0.15 (random chance = 0.14). (see Table 2). The labels that were best predicted were 4 and 5, with an F1-score of 
0.19 and 0.18, followed by label 3 with an F1-score of 0.15. The labels that were least accurately predicted were 
the most positive ones, 6 and 7, with an F1-score of 0.10 and 0.08.

In order to simplify the classification problem and to balance the sample of each class, we then classified the 
emotional valence dividing it into three classes, i.e., negative (i.e., labels 1–2), neutral (3–4-5) and positive (6–7). 
The results reported in Table 3 of the random forest on the validation set show that the class with a higher F1-

Precision Recall F1-score N.examples

1 0.11 0.14 0.12 70

2 0.11 0.15 0.13 89

3 0.15 0.15 0.15 117

4 0.27 0.14 0.19 183

5 0.18 0.17 0.18 118

6 0.10 0.11 0.10 66

7 0.06 0.12 0.08 32

accuracy 0.14 675

macro avg 0.14 0.14 0.13 675

weighted avg 0.17 0.14 0.15 675

Table 2.  Classification report on the validation set of random forest applied to the emotional valence of the 
pictures with seven classes (one for each possible rating, from 1 to 7).

 

CONTRAST Marginal means differences Standard Error asymp. LCL asymp. UCL z-ratio p-value

LOOK N—REAPPRAISE N −0.527 0.106  −0.849  −0.204  −4.965  < 0.0001

LOOK N—SUPPRESS N  −0.469 0.118  −0.826  −0.112  −3.990 0.0009

REAPPRAISE N—SUPPRESS N 0.058 0.179  −0.486 0.602 0.323 0.9995

LOOK P—REAPPRAISE P 0.379 0.129  −0.014 0.771 2.932 0.0395

LOOK P—SUPPRESS P 0.352 0.087 0.088 0.616 4.052 0.0007

REAPPRAISE P—SUPPRESS P  −0.027 0.138  −0.446 0.392  −0.193 1

Table 1.  Results of the post-hoc tests performed on the mindset * emotional valence two-way interaction 
effect in the mixed-effect linear model on the emotional valence ratings reported by participants.

 

Fig. 1.  Average and standard deviation of emotional valence ratings in the different ER strategies. In blue, 
pictures assessed a priori as negative, in red those that were considered positive.
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score was the neutral one, with an F1-score of 0.64 and a general accuracy of 0.48. This may be the result of the 
unbalanced dataset, having a very represented neutral class and two other classes with fewer examples.

Given the unbalanced dataset, we then tried to classify data into two classes by merging positive (i.e., 6 and 
7) and negative samples (i.e., 1 and 2) in a “polarized” class. Table 4 reports the results of a binary classifier that 
showed a more balanced result, having an F1-score of 0.39 for the polarised class and 0.64 for the neutral one. 
Even the precision was more balanced, having respectively 0.40 and 0.63 for the polarised and neutral classes.

Emotion regulation
For what concerns the ER strategy classification, results can be observed in Table 5. The overall accuracy is 
0.33. The precision and F1-score were also similar for all classes, indicating that the model had a balanced 
performance across the classes. The model was slightly better at predicting the class Reappraise, which had the 
highest F1-score of 0.36. The model was slightly worse at predicting the class Suppress, which had the lowest 
F1-score of 0.30. The N.examples column shows that the validation set was balanced, with equal amounts of data 
for each class.

At this point, we began our analysis by training deep neural networks with different architectures using 
a curriculum learning approach. With this aim, we divided the dataset into three parts based on label noise 
computed with Cleanlab and for each deep learning architecture we created three deep learning models, trained, 
separately, with the easy part of the dataset, the easy and medium parts combined, and on the entire dataset. We 
then used an ensemble learning approach to combine the predictions of these three models to obtain the final 
result.

Convolutional neural networks
Table 6 shows the classification report for the MINI-VGG (Visual Geometry Group), a convolutive neural 
network with a shallow architecture.

When classifying valence and ER strategy the model obtained a weighted average F1-score of 0.42 on the 
test set. The model shows better performance in classifying emotional valence, with the highest F1-score for 
the Neutral class at 0.55, followed by the Polarised class with an F1-score of 0.51. The model performs poorly in 

Precision Recall F1-score N.examples

Look 0.33 0.32 0.33 225

Reappraise 0.33 0.39 0.36 229

Suppress 0.33 0.28 0.30 221

accuracy 0.33 675

macro avg 0.33 0.33 0.33 675

weighted avg 0.33 0.33 0.33 675

Table 5.  Classification report of the validation set of the Random Forest applied to ER Strategies.

 

Precision Recall F1-score N.examples

Polarised 0.40 0.38 0.39 257

Neutral 0.63 0.65 0.64 418

accuracy 0.55 675

macro avg 0.51 0.51 0.51 675

weighted avg 0.54 0.55 0.54 675

Table 4.  Classification report of the validation set of random forest applied to the emotional valence of the 
pictures with two classes (Neutral and Polarised).

 

Precision Recall F1-score N.examples

Negative 0.26 0.20 0.23 159

Neutral 0.65 0.62 0.64 418

Positive 0.17 0.26 0.20 98

accuracy 0.47 675

macro avg 0.36 0.36 0.36 675

weighted avg 0.49 0.47 0.48 675

Table 3.  Classification report on the validation set of the Random Forest applied to emotional valence of the 
pictures, with three classes (Negative, Neutral and Positive).

 

Scientific Reports |        (2024) 14:24046 5| https://doi.org/10.1038/s41598-024-75263-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


recognizing ER strategies. Indeed, the class Look is the best classified, with an F1-score of 0.36, while Reappraise 
and Suppress classes showed an F1-score of 0.27 and 0.29 respectively.

Convolutional neural networks + recurrent neural networks
Table 7 shows the results of the MINI-VGG with GRU layers. The model showed a weighted average F1-score 
of 0.43. Once again, the highest F1-score is for the Neutral class at 0.57, while the Polarised class showed an 
F1-score of 0.41. The ER classes totalized an F1-score of 0.31, 0.39 and 0.39 for Look, Reappraise and Suppress 
respectively.

Table 8 shows results of the MINI-VGG with bidirectional GRU layers. The model showed a weighted average 
F1-score of 0.43. In this case, the best performance concerned the Polarised class, having 0.50 points of F1-score, 
followed by Neutral with 0.43 points. The ER classes showed a 0.30, 0.43 and 0.42 F1-score for Look, Reappraise 
and Suppress respectively.

The ER strategies performed better than every other model tested, having an F1-score of 0.44, 0.38 and 0.36 
for Look, Reappraise and Suppress, respectively.

Transformers
Table 9 shows the results of the Transformer architecture. The model showed a weighted average F1-score of 
0.28. In this case, the best performance regards the Polarised class, having 0.56 points of F1-score, followed by 
neutral with 0.53 points. Each of the ER classes showed an F1-score of 0.02.

Explainability (Integrated gradient)
In Fig. 2, we reported an example of a matrix of the IG attribution score for each EEG feature (channels x time) 
in every deep learning model considered. All figures for other classes and classifications (i.e., True Negative, 
False Positive, False Negative) are reported in the supplementary materials. We find that each model showed a 
similar pattern of explainability for every predicted class. The CNN architecture reported a scattered and fuzzy 
attribution importance pattern across all features. Similarly, for both GRU and bidirectional GRU models, a 
scattered layout limited to the initial or final time parts of the data was underlined. On the other hand, the 
Transformer architecture evidenced a defined pattern, with some channels showing a more stable and consistent 
influence over time.

Precision Recall F1-score N.examples

Neutral 0.57 0.34 0.43 384

Polarised 0.44 0.58 0.50 302

Look 0.32 0.70 0.44 232

Reappraise 0.35 0.41 0.38 228

Suppress 0.31 0.41 0.36 226

weighted avg 0.42 0.48 0.43 1372

Table 8.  Classification report on test set of MINI-VGG with bidirectional GRU.

 

Precision Recall F1-score N.examples

Neutral 0.54 0.61 0.57 384

Polarised 0.46 0.38 0.41 302

Look 0.30 0.32 0.31 232

Reappraise 0.33 0.48 0.39 228

Suppress 0.32 0.49 0.39 226

weighted avg 0.41 0.47 0.43 1372

Table 7.  Classification report on test set of MINI-VGG with GRU.

 

Precision Recall F1-score N.examples

Neutral 0.60 0.50 0.55 384

Polarised 0.44 0.60 0.51 232

Look 0.34 0.40 0.36 302

Reappraise 0.30 0.24 0.27 228

Suppress 0.27 0.32 0.29 226

weighted avg 0.42 0.43 0.42 1372

Table 6.  Classification report on the test set of MINI-VGG.
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To test the observed differences in the IG data on a quantitative basis, we employed four random-intercept 
linear mixed-effect models (LMMs). The results of these analyses are summarized in Table 10 and the data are 
represented in Fig. 3.

In the CNN model, post-hoc comparisons performed on the Cluster main effect showed that the central 
cluster presented significantly higher IG scores than the posterior cluster (z = 8.18, p < 0.001), which in turn 
presented greater values than the anterior cluster (z = 2.7, p = 0.019). Comparisons based on time showed that, 
independently of different channel clusters, 150-200 ms was the time bin with the highest IG value, as it was 
significantly higher than 0-50 ms, 50-100 ms, 100-150 ms, and 250-300 ms time bins (all zs > 3.7, all ps < 0.01). 
The 450-500 ms time bin also showed greater IG values than the 50-100 ms time bin (z = 3.9, p = 0.004).

The unidirectional GRU showed the greatest importance of the central cluster again, as it showed higher 
values than both the anterior (z = 4.7, p < 0.001) and posterior (z = 2.7, p = 0.021) clusters, which, in reverse, did 
not differ significantly (z = 2.0, p = 0.111). The time main effect, with the highest effect size, showed that 400-
450 ms (all zs > 5.7, all ps < 0.001) and 450-500 ms time bins (all zs > 220, all ps < 0.001) presented significantly 
higher values than any other time bins. The post-hoc comparisons performed on the interaction effect showed 
that differences between clusters were present only in the 450-500 ms time bin, with significantly higher values 
in the central cluster than in the posterior one (z = 8.2, p < 0.001), which in turn was higher than the anterior 
one (z = 6.2, p < 0.001).

The bidirectional GRU showed the same pattern across clusters as the unidirectional GRU, with the central 
cluster showing higher values than both the anterior (z = 5.9, p < 0.001) and posterior (z = 5.4, p < 0.001) clusters, 
which, in reverse, did not differ significantly (z = 0.5, p = 0.875). The time main effect showed that 0-50  ms 

Fig. 2.  Graphic representation of IG attribution score for each model tested. Here we report as an example 
the condition when each model correctly classified the Neutral class (True Positive). The attribution value 
represents the relation intensity between each feature (time x channel) and the target class. The colour scale 
ranges from dark blue to yellow, representing positive and negative attribution scores (feature importance) 
respectively. All figures for other classes and classifications (i.e., True Negative, False Positive, False Negative) 
are reported in the supplementary materials.

 

Precision Recall F1-score N.examples

Neutral 0.57 0.50 0.53 384

Polarised 0.46 0.70 0.56 302

Look 0.33 0.01 0.02 232

Reappraise 0.23 0.01 0.02 228

Suppress 0.20 0.01 0.02 226

weighted avg 0.39 0.30 0.28 1372

Table 9.  Classification report on the test set of Transformer model.
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Fig. 3.  Graphic representation of results of the statistical comparisons of the IG attribution score for each 
model tested. Time bins of 50 ms are represented on the x-axis, while the mean of the IG absolute value is 
represented on the y-axis. The three colored lines represent three channel clusters (i.e., anterior, central and 
posterior). Error bars represent 95% confidence intervals.

 

Effect

Num Den

F p-value p-value code f2 marginal f2 conditionalDF DF

CNN

 Cluster 2 20547 64.1 < .001 *** 5.70E-03 6.20E-03

 Time 9 20547 4.64 < .001 *** 1.80E-03 1.90E-03

 Cluster*Time 18 20547 0.39 0.99 3.10E-04 2.60E-04

GRU-unidirectional

 Cluster 2 20547 11 < .001 *** 9.70E-04 9.80E-04

 Time 9 20547 10421 < .001 *** 4.5 4.5

 Cluster * Time 18 20547 10.4 < .001 *** 8.30E-03 8.40E-03

GRU-bidirectional

 Cluster 2 20547 21.4 < .001 *** 2.00E-03 2.00E-03

 Time 9 20547 10216 < .001 *** 4.4 4.4

 Cluster * Time 18 20547 10.5 < .001 *** 8.30E-03 8.50E-03

Transformer

 Cluster 2 20547 529 < .001 *** 5.00E-02 5.10E-02

 Time 9 20547 1.35 0.204 5.50E-04 5.60E-04

 Cluster * Time 18 20547 0.31 0.998 2.20E-04 2.10E-04

Table 10.  Integrated Gradients statistical comparisons.
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(all zs > 155, all ps < 0.001), 50-100 ms (all zs > 3.2, all ps < 0.045), and 450-500 ms time bins (all zs > 178, all 
ps < 0.001) presented significantly higher values than any other time bins. Concerning the interaction effect, the 
comparisons based on time showed that, when considered separately for each channel cluster, only the 0–50 ms 
(all zs > 86, all ps < 0.001) and 450-500 ms time bins (all zs > 97, all ps < 0.001) showed significantly higher values 
than any other time bins. The comparisons based on the cluster showed that, in the 0-50 ms time bin, the central 
cluster presented greater IG values than both the posterior (z = 7.8, p < 0.001) and anterior clusters (z = 5.9, 
p < 0.001), while these latter two did not differ significantly between each other (z = 1.9, p = 0.154); in the 450-
500 ms time bin, the central cluster presented greater IG values than the posterior one (z = 9.0, p < 0.001), which 
in turn was significantly greater than the anterior one (z = 3.4, p = 0.002).

The only statistically significant effect in the Transformer model was the Cluster main effect. This showed 
that the central cluster presented greater IG values than the anterior (z = 32.4, p < 0.001) and posterior clusters 
(z = 14.0, p < 0.001), the latest being also significantly higher than the anterior one (z = 18.4, p < 0.001).

Discussion
In this study, we employed a multilabel classification approach to classify the emotional valence of visual 
stimuli and emotion regulation strategies utilized by participants while looking at those visual stimuli, based on 
participants’ EEG signals. Our study aimed to provide a methodological framework to handle raw EEG data and 
provide reliable results in this context. Therefore, the first aim was to prepare the dataset for the deep learning 
models training via a data-centric approach. To reach this objective, we combined curriculum learning44 and 
confident learning 43 techniques. Subsequently, in the second aim we compared how different deep learning 
models took classifying decisions by using an XAI technique, namely IG 47.

First of all, we selected the proper labels based on the confident learning approach, thus resulting in two 
classes for emotional valence classification (i.e., neutral vs. polarised) and three classes for ER strategy (i.e., Look, 
Reappraise and Suppress).

To adopt the curriculum learning approach, we used an ensemble approach with three models having the 
same architecture. The only change was the training dataset, giving the three different models different training 
based on the dataset’s difficulties.

For the multilabel classification with 5 classes and 6 different combinations (i.e., 2 valence * 3 ER strategy 
classes) we chose four different models: a MINI-VGG, a MINI-VGG with GRU, a MINI-VGG with bidirectional 
GRU and a Transformer. The MINI-VGG48 is a simplified version of the VGG network49, which is a Convolutional 
Neural Network (CNN) designed to process data -in this case EEG data- by applying multiple convolutional 
layers to extract spatial features. The MINI-VGG with GRU model combines the MINI-VGG with a Gated 
Recurrent Unit (GRU), which is a type of Recurrent Neural Network (RNN) that processes sequential data by 
maintaining hidden states to capture temporal dependencies. The MINI-VGG with bidirectional GRU model 
further enhances the GRU by using bidirectional GRUs, which process the input sequence in both forward and 
backward directions to capture context from both past and future time steps. The Transformer model utilizes 
self-attention mechanisms to handle sequential data by allowing each position in the sequence to attend to 
all other positions, effectively capturing long-range dependencies without relying on recurrent structures. In 
general, the best classes’ performance was neutral and polarised. Regarding the ER strategies, the models still 
cannot predict those strategies properly.

Our results are interesting even considering that combining CNN with RNN, especially uni- and bidirectional 
GRU, is quite an unexplored approach in the domain of raw EEG data classification 50.

Our intuition was that the neurons of the long-term memory recurrent neural network have the benefit of 
memorizing both the long-term and short-term emotional information present in the EEG signal, facilitating 
the recognition of emotions.

Considering the architectures’ interpretability, (i.e., studying the attributions of the gradients of each model) 
we realised that RNN tends to memorize shorter sequences and that an array with 64 × 500 time points is too 
long to be learned.

In the statistical comparisons it can be seen that unidirectional GRU tend to consider only the last 100 ms of 
the input, while the bidirectional GRU only the first and last 100 ms. Further studies combining Convolutional 
and Recurrent architectures should therefore test shorter time series compared to our dataset (e.g., 50–100 ms). 
The CNNs, instead, seem to consider the whole data, but at the same time, the pattern of the importance of the 
feature is scattered, and it makes the interpretation very difficult. It looks like there are no specific channels or 
time points to influence the outcome of the classification. Based on IG, the Transformer is the model showing the 
most interpretable patterns. This model showed patterns of specific channels that can be positively or negatively 
correlated with the prediction of the model over time. For the Transformer model, the IG pattern is constant 
over time, thus showing that this architecture can learn from the whole epoch, unlike the GRU models. It is also 
interesting to notice that the Transformer model has the best score for the emotional valence domain and the 
worst in the ER strategy one.

Regarding the interpretability of the results, we interpreted the findings from our statistical comparisons 
(Fig.  3). In particular, differences between clusters were found consistently in all models. However, we can 
only interpret these differences in a speculative way given that we performed all analyses at sensor level. We 
found that central sensors were the most important in classifying polarised vs. neutral emotional valence, 
followed by posterior and anterior ones. It is well known that the insula and cingulate cortex (CC) are closely 
interconnected structures within a mesolimbic network, which is essential for generating and perceiving the 
motor and autonomic changes that occur during emotional experiences51. As affective experience intensifies, 
activity in the mesolimbic network also increases 52–55. The signal from at least part of these regions can be 
identified in EEG channels in this central cluster. Moreover, neuroscience literature considers the Late Positive 
Potential (LPP) as one of the most important ERP associated with emotion processing and it is observed in the 
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time interval from 400 to 500 ms averaged over sensors in centro-parietal regions56 having its source in the 
CC57. Therefore, these findings provide information about the validity of the models used. It appears that they 
focused on the electrodes showing the activity of areas most commonly involved in emotional experience, based 
on neuroscientific research.

We believe that our work is valuable for both research and applied purposes for two main reasons. Firstly, while 
most research in the literature focuses primarily on finding the best model by evaluating classic performance 
measures50 (e.g., F1-score, accuracy), we trust that research should focus on data first. In this vein, we have tested 
a robust methodological solution based on a data-centric approach for dealing with raw EEG data, which can be 
particularly challenging6 since artifacts in the signal can affect deep learning models.

Secondly, classic performance measures, which are widely used in the literature to evaluate deep learning 
models, do not reveal how these black box models make decisions. For this reason, we believe that it is always 
appropriate to adopt an XAI technique to turn models into explainable white boxes, rather than solely discussing 
their performance. This approach is valuable not only in choosing the best model for a classification problem but 
also in refining the architecture accordingly. For instance, in using the CNN + GRU architecture, we observed 
a temporal limit in the time series memorization only thanks to the XAI technique. Each step (i.e., data-centric 
approach and XAI) in our methodological framework could be useful to researchers and practitioners to study 
a specific dataset in other fields and build a personalised model that could be used for a real-time BCI. Also, it 
should be considered that there are many reasons for this result, despite the strict methodological and theoretical 
background of our work.

Indeed, choosing to divide the dataset into polarised and neutral is, from our point of view, an interesting 
approach. As shown in Fig. 1, several ratings for every condition range between 3 and 5, so the dataset itself 
hinted at studying the neutral values. Besides that, our model may be better suited for a particular kind of 
emotion recognition, meaning that we do not aim to recognize positive or negative emotions as many studies 
do17,58,59.

Those findings suggest that even after considering possible issues with label noise and the best training for 
the models, there is still work to do to improve those deep learning models, especially for the emotion regulation 
strategies adopted. By the way, the performance of emotional valence classification is above the chance level, 
especially in Transformer models, when considering that data were processed only for filtering the signal and 
rejecting bad epochs to approximate a possible BCI approach and that we were using a multilabel classifier60.

The interesting advantage of this approach is that it would be even more useful in everyday life, since a great 
part of the stimuli do not necessarily have strong emotional valence: everyday objects carry subtle affective 
valences, defined by some authors61 as “micro-valences”, which are intrinsic to their perceptual representations.

Besides, the novel aspect of this study is also the classification of the ER strategy, which has never been 
investigated in the field of artificial intelligence. However, despite all methodological checks, classification 
performance is poor in ER strategies: there are several reasons for these results. We first need to point out that 
we did not choose the train, validation and test set by randomly selecting epochs from all the participants, but 
we split the data based on random subjects. Kamrud62 and colleagues have mathematically shown that cross-
participant models, where samples are randomly taken from any subject, tend to have underestimated error 
rates between 35 and 3900%, thus overestimating the model’s performance. This can explain some apparently 
good results in the domain of raw EEG emotion classification. This is related to several reasons: first, EEG varies 
across participants due to non-stationarity and individual differences63. Thus, splitting the data based on subjects 
ensures that the training, validation, and test sets are independent and reduces the risk of overfitting. Randomly 
selecting epochs from all participants implies that data from the same subject could appear in both the training 
and test sets. This could lead to biased performance, as the model may learn to recognize specific characteristics 
of individual subjects rather than generalizing to new data. Second, splitting the data based on subjects allows 
us to evaluate the generalizability of our model to new subjects. By training our model on data from one set of 
subjects and testing it on data from a different set of subjects, we can assess how well our model can classify 
emotional valence in new individuals.

Still, the main limitation of this work is that our models do not outperform the current state-of-the-art, 
but we have adopted a challenging and specific dataset (EEG raw data), without any real benchmark in model 
performance. Since each example is potentially affected by artifacts, it is reasonable to obtain lower performance 
compared to a pre-processed EEG dataset. However, we obtained fairly good performance in emotional valence 
classification and this research line is potentially more useful in creating models classifying real-time data with 
minimal preprocessing (i.e., BCI).

Future directions could consist of applying and comparing the effectiveness of this data-centric and XAI 
approach to different classification problems using EEG raw data. For example, this work could be a seminal step 
in finding solutions when dealing with large artifacts such as movement.

Additionally, future studies might explore applying these data-centric techniques to different kinds of data 
within the field of affective computing. While curriculum learning has been experimented with in speech 
emotion recognition46, to the best of our knowledge the use of confident learning to assess the difficulty of 
examples remains unexplored. We suggest that integrating these methods could enhance model performance, 
particularly with data types where curriculum learning has already shown promising results. Moreover, using 
a dataset with more observations, or trying transfer learning from another dataset could increase the models’ 
performance. We also want to point out that we did not make use of synthetic (i.e., simulated) data, which could 
lead to risks such as bias in data diversity 64.

We also think that the state-of-the-art literature may show biased results considering the problem of cross-
participant training, validation, and test split. Indeed, out of six EEG deep learning models currently used in 
research, five are cross-participant models50. However, only one of these five models follows proper dataset 
partitioning methods to ensure that the model is tested on data from participants it has not evaluated before50.
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It must also be considered that a model’s performance can surpass the state-of-the-art literature. However, if 
there is no way to understand why or what it is classifying, the model cannot be deemed reliable. This is especially 
true in fields like healthcare, representing a possible application for BCIs, where decisions have significant 
consequences. Interpretable models allow us to gain insights into the model’s decision-making process, detect 
potential biases, and ensure that the model aligns with our expectations and requirements.

For these reasons, we believe that, despite the improvable performance, this work represents an important 
advance in the field of emotion classification using EEG, allowing a new methodological approach to disentangle 
the common issues of label noise and overestimated performance.

Methods
Participants
We collected data from thirty paid participants (17 females, mean age 26 ± 6.12). Our exclusion criteria 
comprised the presence of a history of any neurological or psychiatric disease, use of active drugs, abuse of any 
drugs (including nicotine within 2 h preceding the study and alcohol within 24 h preceding the study), as well 
as being informed about the aim of the study. Written informed consent was obtained from all participants 
according to the declaration of Helsinki; the IMT Ethical Committee approved the project.

Materials
We selected sixty stimuli from the Oasis database65. In this database, 900 images are present, rated by 822 
participants. Every image was rated via a Likert scale from 1 to 7 according to their valence and arousal.

Our aim was to have a small dataset with positive emotional valence for half of the stimuli and negative for 
the other half. We selected images that respected three criteria: (i) choosing images with no sensitive contents 
(i.e., sexual or violent scenes) based on the indications of the Ethical Committee; (ii) selecting images with high 
arousal values (> 4) to clearly elicit emotions; (iii) including images with the highest or lowest validation valence 
values to use strongly polarized positive and negative stimuli.

Overall, we included 60 stimuli, i.e., 30 positive images with mean ± sd valence and arousal respectively 
of 5.7 ± 1.06 and 4.7 ± 1.6, and 30 negative images with mean ± sd valence and arousal values of 2.1 ± 1.1 and 
4.7 ± 1.8, respectively.

In order to check that the stimuli had the same valence polarization for our participants, we compared valence 
scores for all images between the validation dataset and scores assigned by participants in this study. Even if 21 
images showed a significant difference between the means in independent samples t-tests, it is also shown in 
Fig. 4 that none of these stimuli showed an inversion of positive vs. negative valence, i.e., positive stimuli with 
mean valence ratings above 4 (= neutral valence) in the validation dataset showed mean valence ratings above 4 
also in our dataset, and vice-versa for negative stimuli below 4.

Procedure
After signing the informed consent module, participants were asked to sit on a comfortable chair in an electrically 
shielded and soundproof room while not crossing their legs or arms. A 19″ monitor was positioned in front of 
them, 1 mt distant.

The EEG cap was then prepared on the participant’s head. Resting state activity was then recorded for five 
minutes, but it will not be used in this study. Experimenters explained to the subjects the experimental procedure 

Fig. 4.  The mean valence of each stimulus assessed by our subjects during the experiment is in red compared 
with the mean valence rated in the Oasis dataset, in blue.
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before the experiment started. Moreover, written instructions were shown on the monitor to give them the 
information they needed.

The experimental design is shown in Fig. 5. The experiment consisted of three blocks in which participants 
were asked to assess the emotional valence of 60 pictures shown on the monitor while adopting three different 
emotion regulation strategies: ‘Look’, ‘Reappraise’ and ‘Suppress’, for a total of 180 stimuli seen during the 
experiment.

Each mindset was explained by a short training by experimenters and with written instructions at the 
beginning of each of the three blocks, which were shown in a counterbalanced order. Participants were free to 
ask the experimenters information about the different ER strategies at any moment via a microphone.

Once participants understood what mindset they had to adopt, they could press a key to begin the visualization 
and rating of the stimuli. The mindset was also reminded during the whole experimental block by showing a 
small text (i.e., ‘LOOK’, ‘REAPPRAISE’ and ‘SUPPRESS’) above the pictures.

Each stimulus, which was shown for 1000 ms, was preceded by a fixation cross of 1000 ms. After the stimulus 
visualization, participants were asked to rate the emotional valence of the picture, according to the mindset 
they adopted in that block, on a Likert scale ranging from 1 (absolutely negative) to 7 (absolutely positive). The 
response was self-paced.

The dataset generated during the current study is available in the Emotion Regulation Task repository, 
https://osf.io/yv468/.

EEG recording and preprocessing
The neurophysiological activity of each participant was recorded with a 64-channel EGI EEG system. Electrodes 
were positioned according to the 10–20 International System. The online reference was Cz and the sampling 
frequency was 1000 Hz with an impedance below 50KΩ.

All the pre-processing was performed using the MNE-Python package.
The raw signal was filtered (1–48 Hz bandpass with a 50 Hz notch filter). We used the RANSAC (random 

sample consensus) method66 to detect bad channels. The signal was then epoched: each epoch began 500 ms 
before the stimulus onset lasting 1000 ms. We then normalized the epoched signal considering a baseline from 
500 to 200 ms before the stimulus onset and cropped the signal before the appearance of the stimulus. At this 
point, each epoch lasted 500 ms.

We chose to use shorter epochs for our algorithm to be precise for real-time emotion recognition. Other 
studies in the literature used shorter window size67 and neuroscience literature offers evidence about early neural 
correlates linked to emotions68. The total was 180 epochs for each subject. We used the Autoreject algorithm69 to 
identify and reject bad epochs. We set the consensus from 0.2 to 0.5 in steps of 0.1. The consensus corresponds 
to the proportion of bad channels that are allowed in order to accept the epoch. If the number of bad channels 
allowed exceeds the real number of bad channels, the algorithm rejects the epoch, otherwise, it can interpolate 
the signal from 1 to 8 bad electrodes. The algorithm chooses the best value possible for each subject. The average 
number of rejected epochs was 9.16 ± 9.97 per participant. Then the signal was re-referenced offline to the 
average of all channels.

Data preprocessing
To prepare the data for analysis, we randomly assigned data from 22 participants to the training set, 4 participants 
to the validation set, and 4 to the test set. We also applied Principal Component Analysis (PCA)70 to reduce the 
dimensionality of the training set and balance the classes. We selected 100 principal components that explained 
87% of the total variance. We verified that the inverse PCA matrix was highly correlated with the original matrix 
(i.e., distance correlation coefficient71 = 0.99). We then used SMOTE72(Synthetic Minority Over-sampling 

Fig. 5.  Experimental Procedure: After being instructed about the ER strategies and their meaning, participants 
were asked to adopt two possible ER strategies (i.e., expressive suppression or cognitive reappraisal), or a 
control condition (i.e., “Look”) in three separate counterbalanced blocks. In each of the 60 trials per block, a 
fixation cross was displayed on the monitor for 1000 ms, followed by either a positive or a negative stimulus 
for 1000 ms. Participants then rated the emotional valence of the stimulus on a Likert scale from 1 (absolutely 
negative) to 7 (absolutely positive) with their mouse.
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Technique) to augment the data in the training set based on the principal components and reconstructed the 
original matrix shape by applying inverse PCA.

SMOTE works by selecting examples that are close to the feature space. For each instance in the minority 
class, SMOTE calculates the k-nearest neighbors. It then randomly selects one or more of these nearest neighbors 
and generates synthetic examples by interpolating between the selected neighbor and the original instance. In 
this function, the k parameter has to be set because, when a random example from the minority class is first 
chosen, k nearest neighbors are selected in order to decide where the algorithm can draw a line between the 
examples in the feature space and generating a new sample at a point along that line. We chose k = 5 because, in 
the literature, it is a frequently used default value73.

After preprocessing the data, we included 64 channels and a time window of 500 ms. With a sample frequency 
of 1000 Hz, the shape of each example was (1, 64, 500).

Data analysis
Behavioural
Statistical behavioral tests were conducted using R74. We adopted the standard 0.05 Alpha significance level 
to test against the null hypotheses. In particular, we used Linear Mixed-Effects Models (lmer) package75. We 
fitted a linear mixed-effects model testing how the rating of the images differs between mindsets (baseline, 
reappraisal or suppression) and emotional valence assessed a priori (negative or positive) while accounting for 
the variation across subjects and file images. The model has three fixed effects (mindset, emotional valence of 
the stimulus, and their two-way interaction) and two random effects (subject and file image). We then used 
Estimated Marginal Means (emmean) package76 to calculate the contrasts between each condition and correct 
for multiple comparisons using the Tukey method77.

Data-centric approach
In order to adopt a data-centric approach with confident and curriculum Learning, we used random forest (RF) 
algorithms.

A random forest (RF) is an ensemble learning method that consists of a collection of decision trees: it is called 
a “forest” because it is made up of many decision trees78.

A decision tree’s fundamental goal is to classify or predict data by iteratively splitting the data based on the 
values of particular attributes79. For instance, in this dataset, the random forest could split the data for each 
electrode or time point. The model incorporates randomness by randomly choosing the splitter and each tree 
from various random subsamples of data. Every node in the tree indicates a split in the data, and the leaf node is 
where the ultimate prediction is formed.

Random forests are often used in the literature because they reduce overfitting since every decision tree is 
trained on different subsets of the data and then the predictions are averaged together. We used this algorithm as 
a benchmark for deep learning to calculate the sanity of the labels (according to the confident learning approach) 
for several reasons: (i) as mentioned above, the model is very good at reducing overfitting; (ii) the random forest 
is one of the few algorithms that calculates the class weights, and it usually works properly with non-linear data 
such as EEG. In particular, we used the Cleanlab package. Cleanlab is an open-source framework for machine 
learning and analytics with noisy data. It provides methods to identify, quantify, and correct errors in datasets, 
measure and track dataset quality, and train reliable models with noisy labels. Cleanlab is based on rigorous 
theoretical foundations based on the work of Northcutt and colleagues43.

To create different datasets based on both the difficulty of the samples (curriculum learning) and the correct 
classification classes (confident learning), we trained two kinds of random forests (RFs). One type of RF was 
used to classify the emotional valence of the images and the other to classify the ER strategies.

We used three criteria to prepare our dataset in the most methodologically sound way: (i) ensuring that 
the dataset was as balanced as possible, (ii) making theoretical assumptions about both emotional valence and 
emotion regulation strategy, and (iii) simplifying the classification problem.

To achieve this, we trained the first RF for emotional valence with 7 classes, corresponding to the 7-point 
Likert scale used for assessment. The second RF had 3 classes (positive, neutral, and negative) and the third RF 
had just two classes (neutral and polarised). The other type of RF was used to classify the ER strategy of the 
participants into 3 classes, corresponding to the 3 emotion regulation strategies. We then calculated the class 
overlap for each model to determine the best labels for our dataset for multilabel classification of both emotional 
valence and emotion regulation. We first selected the best label match for emotional valence and ER strategy 
based on the above-mentioned criteria. Thus, we decided to use a binary classification for emotional valence 
(polarized and neutral), while maintaining the three original classes for emotion regulation strategy. Then, we 
measured the label quality for each example and averaged it with emotional valence and mindset. We divided 
the dataset into three parts based on the 33rd and 66th percentiles of the distribution: easy, intermediate, and 
difficult.

Deep learning architectures
In this study, we used four different ensemble deep learning architectures for our multilabel classification with 
five classes (Neutral, Polarised, Look, Reappraise, Suppress): (1) MINI-VGG, (2) MINI-VGG with GRU, (3) 
MINI-VGG with bidirectional GRU and (4) A Transformer model.

Multilabel classification involves N non-exclusive labels (in our case, N = 5). Each label is considered as a 
binary classification problem whose predicted probability is independent with respect to the other classes.

This multilabel classification approach allows us to avoid using three separate models (one for each ER 
strategy) and, therefore, training our data on emotional valence on a dataset split into three parts. Additionally, 
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given our experimental protocol, it was necessary for two labels to be present simultaneously (i.e., one label for 
emotional valence and one for ER strategy).

To make predictions, we used an ensemble majority voting classifier and trained three different models based 
on the difficulty of the training data. Each model was trained using the principles of curriculum learning. We 
started by training one model on easy examples, another one on easy and medium examples, and the third one 
trained on the entire dataset. We used this approach, as Bengio suggested44, because easy data are more easily 
learned by the model. Indeed, by training three models on datasets of increasing difficulty, we aimed to provide 
the ensemble models with a broader view of EEG signals, avoiding biased predictions.

In an ensemble majority voting classifier, the prediction with the highest number of votes was selected, thus a 
prediction was confirmed if at least two out of the three classifiers voted for it. We used a Sigmoid function in the 
last layer of each model, thus obtaining in output a prediction for each label independently. For each prediction, 
we set a threshold of 0.5 to classify the presence (i.e., probability > 0.5) or absence of the variable.

Regarding the specific deep learning architectures, we used a variant with 1D CNN of the MINI-VGG of 
Kranthi and colleagues 48 because some previous works50 demonstrated that shallow deep learning architectures 
achieve better performance on EEG data as features for classification tasks. The MINI-VGG we used consisted of 
two 1D convolutional blocks followed by a classification block. The convolutional blocks were composed of two 
convolutional layers, each with ReLU activation. In the first block, the convolutional layers used 32 filters with 
a kernel size of 3, while in the second block, 64 filters were used with a kernel size of 3. At the end of each block 
a pooling layer performed max pooling operation over a window of 2. There was always a batch normalization 
after the convolutional one. After each pooling a dropout layer was used. The dropout value was taken as 0.15. 
Finally, the output was passed through a Dense layer with sigmoid activation function to produce the final 
predictions.

With regards to the MINI-VGG + GRU and MINI-VGG + bidirectional GRU, we refer to the modification 
of the MINI-VGG by including three GRU (unidirectional or bidirectional) layers with 128 units and a tanh 
activation function after the second convolutional block. Instead of dropout, we used Monte Carlo Dropout 
(MCDropout). The output of the GRU blocks was then passed through a Batch Normalization layer and another 
MCDropout with a dropout percentage of 0.15. Finally, the output was passed through a Dense layer with 
sigmoid activation function to produce the final predictions.

For the Transformer, the model consisted of two encoders and a classification block. Each encoder block 
applies layer normalization and multi-head attention with 64 head size and 2 heads to the inputs, followed by 
a dropout with a rate of 0.4 and a normalization. Then, two convolutional layers with 64 filters with a kernel 
with size of 1 are applied. Only the first convolutional layer used a ReLU activation function. Between the two 
convolutional layers, a dropout with a dropout percentage of 0.15 was applied. The output of the final transformer 
block is then passed through a global average pooling layer and a series of dense layers with 128 units, ReLU 
activation, and a dropout rate of 0.4. The final output is produced by a dense layer with 5 units and a sigmoid 
activation function.

For every model, we used Adam optimizer80 with a learning rate of 1e-06.
For a graphical representation of each architecture employed, see Supplementary Materials.
We trained the model with a default of 20,000 epochs, but then we also used the early stopping callback from 

Keras81 (with patience of 20 epochs), taking as a benchmark the loss functions of the validation set.

Convolutional neural networks
Convolutional neural networks (CNN), which are a type of neural network used for multidimensional data82. 
The main component of the CNN are the convolutional layers.

A convolutional layer applies a set of filters (also called kernels or weights) to the input data. Every filter is a 
matrix applied to the data to produce a new feature map of the local region of the data to which has been applied. 
The process of applying a filter to the input data is called convolution. The input data is usually a multidimensional 
array. The filters are also multi-dimensional arrays smaller in size than the input data83.

The convolutional layer applies each filter to the input data by sliding it over the input data and performing 
an element-wise multiplication with the values at each position. It then sums the results and stores the result in 
a new feature map. This process is repeated for each filter, producing multiple feature maps.

The output of the convolutional layer is a multi-dimensional array called a feature map, which has the same 
number of dimensions as the input data (e.g., height, width, and depth) but the size of the feature map is usually 
smaller than the input data because the filters are smaller and do not overlap.

The convolutional layer may also have parameters called stride and padding, which control how filters are 
applied to the input data. Stride controls the step size with which the filters are applied, and padding controls 
how the input data is padded with additional values around the border before the filters are applied.

One of the main issues with convolutional layers is that the feature map generated by the filter is dependent 
on its location. As a result, during training, convolutional neural networks learn to associate the presence of 
specific features with their location in the input features.

To avoid this problem the pooling layers are generally used in the convolutional networks84. The CNN we 
are going to use is a variant with 1D of the MINI-VGG that derives from the VGG that is a convolutional neural 
network architecture that was introduced by the Visual Geometry Group (VGG) at the University of Oxford in 
2014 49.

Recurrent neural networks
Recurrent neural networks (RNNs) are a type of artificial neural network that can handle sequential data or time 
series data, such as speech, text, or video85. Unlike feedforward neural networks, which assume that the input 
and output data are independent of each other, RNNs have feedback connections that allow them to store and 
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reuse information from previous computations. This means that RNNs have connections between their hidden 
units that form loops so that the output of a unit can influence its own input in the next time step19,85. This allows 
RNNs to store information from previous inputs in their hidden state, which can be used to process the current 
input. This gives RNNs the ability to learn from long-term dependencies and temporal patterns in the data. 
However, RNNs also face some challenges, such as vanishing or exploding gradients and difficulty in handling 
long sequences86. To address these issues, several variants of RNNs have been proposed, such as long short-term 
memory (LSTM)87 or gated recurrent unit (GRU)88. They both use a gating mechanism to control the flow of 
information and avoid the vanishing gradient problem that affects standard RNNs. The main difference between 
them is that GRU has two gates (reset and update) while LSTM has three gates (input, output and forget). GRU 
is simpler and faster than LSTM, but LSTM has more flexibility and accuracy on larger datasets89.

Also, GRUs can be unidirectional or bidirectional: a unidirectional GRU processes the input sequence in one 
direction, while a bidirectional GRU processes the input sequence in both forward and backward directions. 
This allows the model to capture both past and future context when making predictions.

Transformer networks
The Transformer network26 is a type of neural network that utilizes a self-attention mechanism to achieve high-
quality results and lower computational requirements for language translation tasks compared to recurrent and 
convolutional models. This mechanism allows the model to directly compare all parts of the input, regardless 
of their position, and assign an attention score to each part based on its relevance to the current task. The 
Transformer network is composed of multiple encoders and decoders. The encoders are stacked on top of each 
other in the model, with each encoder containing two sub-layers: a multi-head self-attention mechanism and a 
position-wise fully connected feed-forward network. Residual connections are present around both sub-layers, 
followed by a normalization layer. Since we are working on time series, the decoder is not used in this case, as in 
other cases in literature90.

Unlike recurrent neural networks (RNNs) and LSTMs, Transformer networks do not have an inherent way to 
capture the relative positions of the input elements. To provide this contextual information, positional encoding 
is used in conjunction with each input vector. Positional encoding is not part of the model architecture itself but 
rather a pre-processing step. A positional encoding vector is generated for each input element and added to its 
corresponding embedding vector. This allows the model to learn spatial information from the “injected” pattern 
in the embedding vector.

Integrated gradients
In our implementation, we used the Integrated Gradients (IG) method to explain the predictions of our model. 
IG is an interpretability technique method originally proposed in Sundararajan 47 for deep neural networks 
that visualizes the importance of input features in relation to the model’s predictions. In the domain of XAI 
(Explainable Artificial Intelligence), interpretability emphasizes comprehending the internal mechanisms of 
models, thus understanding and detailing their internal functions, whereas explainability centers on clarifying 
the decision-making process. As a result, interpretability requires a higher degree of granularity compared to 
explainability91.

In particular, integrated gradients define an attribution value for each feature by considering the integral of 
the gradients taken along a straight path from a baseline instance x’ to the input instance x. Since we are using 
classifiers, the gradient usually refers to the output corresponding to the true class or to the class predicted by 
the model.

We used Alibi92, which is an open-source library in Python. We used a null baseline and the number of steps 
we used was 25.

We used the “explain” method of this instance to compute the attributions for our selected examples, passing 
in the examples, baselines, and target as arguments. The attributions were then obtained from the “attributions” 
attribute of the returned explanation object.

To explain the IG results on a quantitative basis, we tested the differences between channels and timepoints 
employing statistical inferential models. To reduce the probability of Type I errors, we clustered the gradient 
values of each trial in the test set in 10 time bins of 50 ms each and all EEG channels in 3 clusters (i.e., anterior 
– 23 channels, central – 23 channels, and posterior – 18 channels). The absolute value of the IG score was 
averaged across each of these 30 clusters (i.e., 10 time bins × 3 channel clusters). We then compared these clusters 
using four random-intercept linear mixed-effects models75 (LMMs) (i.e., one model for the CNN, one for the 
unidirectional GRU, one for the bidirectional GRU and one for the Transformer). Each model included the main 
effects of time and channels and their interaction as fixed factors. When encountering a statistically significant 
fixed effect, it was probed through post-hoc comparisons with Tukey’s correction for multiple comparisons. For 
each effect, the f2 effect size index was computed, according to the following formula:

	
f 2 =

R2
AB −R2

A

1−R2
AB

where R2
AB represents the coefficient of determination of the full model (i.e., with the effect of interest) and 

R2
A represents the coefficient of determination of the null model (i.e., without the effect of interest). LMMs 

present two possible methods to compute R2, i.e., marginal R2 (without the contribution of random effects) and 
conditional R2 (with the contribution of random effects). Therefore, two effect sizes were computed for each 
effect, i.e., marginal f2 and conditional f2.

To test how our methodological framework can be extended to different datasets, we replicated the same 
methodology using the DEAP dataset93. This is a comprehensive multimodal dataset designed for the analysis of 
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human affective states, validated and used in previous literature. Detailed results and discussion can be found in 
the Supplementary Materials (https://osf.io/yv468/).

Data availability
The dataset generated during the current study is available in the Emotion Regulation Task repository, https://
osf.io/yv468/.
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