

Genome-Wide Characterization and Analysis of the bHLH Transcription Factor Family in Suaeda aralocaspica, an Annual Halophyte With Single-Cell C₄ Anatomy

Xiaowei Wei, Jing Cao* and Haiyan Lan

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China

OPEN ACCESS

Edited by:

Million Tadege, Oklahoma State University, United States

Reviewed by:

Liu-Qiang Wang, Chinese Academy of Forestry, China Muhammad Waseem, Riphah International University, Pakistan

> *Correspondence: Jing Cao caojing@xju.edu.cn

Specialty section:

This article was submitted to Plant Genomics, a section of the journal Frontiers in Genetics

Received: 25 April 2022 **Accepted:** 02 June 2022 **Published:** 07 July 2022

Citation:

Wei X, Cao J and Lan H (2022) Genome-Wide Characterization and Analysis of the bHLH Transcription Factor Family in Suaeda aralocaspica, an Annual Halophyte With Single-Cell C₄ Anatomy. Front. Genet. 13:927830. doi: 10.3389/fgene.2022.927830 Basic helix-loop-helix (bHLH) transcription factors play important roles in plant growth, development, metabolism, hormone signaling pathways, and responses to abiotic stresses. However, comprehensive genomic and functional analyses of bHLH genes have not yet been reported in desert euhalophytes. Suaeda aralocaspica, an annual C₄ halophyte without Kranz anatomy, presents high photosynthetic efficiency in harsh natural habitats and is an ideal plant for identifying transcription factors involved in stress resistance. In this study, 83 bHLH genes in S. aralocaspica were identified and categorized into 21 subfamilies based on conserved motifs, gene structures, and phylogenetic analysis. Functional annotation enrichment revealed that the majority of SabHLHs were enriched in Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in the response to stress conditions, as transcription factors. A number of *cis*-acting elements related to plant hormones and stress responses were also predicted in the promoter regions of SabHLHs, which were confirmed by expression analysis under various abiotic stress conditions (NaCl, mannitol, low temperature, ABA, GA₃, MeJA, and SA); most were involved in tolerance to drought and salinity. SabHLH169 (076) protein localized in the nucleus was involved in transcriptional activity, and gene expression could be affected by different light qualities. This study is the first comprehensive analysis of the bHLH gene family in S. aralocaspica. These data will facilitate further characterization of their molecular functions in the adaptation of desert plants to abiotic stress.

Keywords: genome-wide identification, bHLH, single-cell C₄ anatomy, Suaeda aralocaspica, transcriptional expression

INTRODUCTION

Salinity, drought, and extreme temperatures are major abiotic stresses that severely affect plant growth and development. Plants have evolved adaptive strategies to cope with adverse environmental conditions, involving signaling cascades that activate transcription factors (TFs) (Mao et al., 2017). Various TFs act as molecular switches for abiotic stress tolerance by interacting with specific *cis*-elements in the promoters of stress-responsive genes (Yue et al., 2019). The basic helix-loop-helix

(bHLH) gene family is one of the largest TF families in eukaryotes (Ledent and Vervoort, 2001) and is involved in plant growth, development, and stress tolerance (Groszmann et al., 2010; Deng et al., 2017; Guo J. et al., 2020). bHLH TFs are named for their highly conserved bHLH domain, which is composed of a basic region distributed at the N-terminus and a helix-loop-helix (HLH) structure located at the C-terminus. The basic region, containing approximately 17 amino acids, participates in recognition that allows bHLH TFs to bind to the conserved hexanucleotide E-box (5'-CANNTG-3') or G-box (5'-CACGTG-3') cis-element of the target gene promoter (Atchley et al., 1999; Toledo-Ortiz et al., 2003). The HLH region consists of 40-50 hydrophobic amino acids with two amphipathic α-helices separated by a divergent loop, and functions as a dimerization domain, promoting the formation of homodimers or heterodimers and interactions between proteins (Massari and Murre, 2000). In addition, some atypical bHLH TFs have been identified in Arabidopsis thaliana, which carry a few basic regions that are critical for DNA binding (Hyun and Lee, 2006; Roig-Villanova et al., 2007).

With the completion of genome sequencing for multiple species, numerous plant bHLH proteins have been characterized, including 162 proteins in Arabidopsis (Toledo-Ortiz et al., 2003), 167 in rice (Li et al., 2006), 208 in maize (Zhang et al., 2018), 437 in cotton (Lu et al., 2018), 571 in wheat (Wei and Chen, 2018), and 602 in Brassica napus (Ke et al., 2020). The functions of many plant bHLH proteins have been described in detail, indicating their involvement in regulating diverse physiological and biochemical processes, such as light signal transmission (Buti et al., 2020), plant hormone signaling (Seo et al., 2011), iron uptake (Ogo et al., 2007), anthocyanin and flavonoid biosynthesis (Xu et al., 2017; Tian et al., 2018), and stomatal, root, and petal growth (Ohashi-Ito and Bergmann, 2006; Szecsi et al., 2006; Kanaoka et al., 2008). For example, the Arabidopsis bHLH proteins PIF3 and PIF4 can directly interact with phytochrome in the signaling network of photoreceptors to control the expression of light-regulated genes (Toledo-Ortiz et al., 2003). Furthermore, PIF4 acts as a central hub, integrating multiple signals to regulate thermosensory growth and architectural adaptation in plants (Kumar et al., 2012). Notably, a substantial increase in the number of bHLH proteins has been demonstrated to play an important role in the response to abiotic stresses, including cold, drought, and salt stress. For example, in tomatoes, SlPIF4 modulates cold tolerance in anthers via the temperaturedependent regulation of tapetal cell death (Pan et al., 2021). In rice, OsbHLH148 regulates drought tolerance via jasmonic acid signaling pathway (Seo et al., 2011). In the halophyte Chenopodium glaucum, CgbHLH001 could confer drought and salt tolerance to transgenic tobacco by improving its physiological performance in scavenging excess reactive oxygen species and accumulating the transcripts of stressrelated genes (Zhou et al., 2020). Although diverse and important functions of bHLH TFs have been reported, limited information is available regarding bHLH TFs from C₄ halophytes within desert communities. With the release of the draft genome assembly of Suaeda aralocaspica, it is now

possible to identify genome-wide bHLH TFs in *S. aralocaspica* (Wang et al., 2019a).

Suaeda aralocaspica (Bunge) Freitag & Schütze (Amaranthaceae), an annual euhalophyte with succulent leaves, is restricted to saline-alkaline sandy soils in the inland cold desert of the Junggar Basin in China (Commissione Redactorum Florae Xinjiangensis 1994). To survive the harsh conditions of its natural habitat (e.g., high salinity, high light intensity, and high daily temperature variation), S. aralocaspica has evolved a series of adaptive strategies, including the production of three distinct seed morphs with differences in germination behavior and salt tolerance (Wang et al., 2008; Cao et al., 2021). In addition, it presents delayed development at the seedling stage to maintain the balance between development and energy consumption (Cao et al., 2022). Interestingly, S. aralocaspica was the first terrestrial plant species found to possess a unique C₄ photosynthetic pathway without the Kranz anatomy, which enables photosynthesis to occur within an individual chlorenchyma cell (Voznesenskaya et al., 2001, 2004). These characteristics endow S. aralocaspica with abiotic tolerance and highly efficient photosynthesis (Liu et al., 2020); however, the molecular mechanism underlying stress tolerance remains poorly understood. Previously, we isolated the fulllength (FL) cDNA sequence of the phosphoenolpyruvate carboxylase (PEPC), the key photosynthetic enzyme in S. aralocaspica, which was named SaPEPC-1 (GenBank: KP985714.1), suggesting its role in development and stress tolerance in S. aralocaspica (Cheng et al., 2016; Cao et al., 2021). Recently, we identified a putative bHLH protein that may interact with the SaPEPC-1 promoter from S. aralocaspica, termed SabHLH169 (homology to Arabidopsis bHLH169), using an in vitro DNA-pull-down method combined with liquid chromatography-mass spectrometry technology (unpublished data; Zheng et al., 2022). To date, the subfamily classification, transcriptional characteristics, and biological functions of this protein remain uncertain. Therefore, the major aims of the present study were to: 1) characterize all members of bHLH genes in S. aralocaspica at the genome-wide level; 2) compare functional differences among SabHLH isoforms in terms of phylogenetic relationships, gene structure, protein motifs, cis-acting elements, and protein interaction networks; and 3) investigate the contribution of different SabHLHs to development, hormones, and abiotic stress. This research should facilitate future studies on investigating the roles of bHLH isoforms in S. aralocaspica and other euhalophytes, which will improve our understanding of the molecular mechanisms of desert plant adaptation to environmental stress.

MATERIALS AND METHODS

Sequence Retrieval and Identification of *bHLH* Genes in *S. aralocaspica*

The entire *S. aralocaspica* genome was obtained from the GigaScience GigaDB database (http://gigadb.org/dataset/100646; Wang et al., 2019b). The Hidden Markov Model

(HMM)-based profile of the bHLH domain (PF00010) downloaded from the Pfam database (http://pfam.xfam.org/) was used as a query to scan the *S. aralocaspica* proteome file using HMMER (http://hmmer.janelia.org/) with a default *E*-value. The online CD-search tool (https://www.ncbi.nlm.nih. gov/Structure/bwrpsb/bwrpsb.cgi) and SMART database (http:// smart.embl-heidelberg.de/) were used to verify the existence of the conserved bHLH domain in the putative *S. aralocaspica* bHLH proteins. Redundant sequences were removed manually, and the identified *bHLH* genes were named according to their order in the *S. aralocaspica* genomic sequence. The length, theoretical molecular weight (MW), and isoelectric point (*pI*) of SabHLH candidates were predicted using ExPASy (http://web. expasy.org/compute_pi/).

Phylogenetic Analysis of bHLH Proteins in *S. aralocaspica*

Multiple alignments were performed using FL amino acid sequences of putative bHLH proteins in *S. aralocaspica* with the ClustalW program of MEGA X using default settings (Kumar et al., 2018). A phylogenetic tree of bHLH proteins from *S. aralocaspica* and *Arabidopsis* was constructed using the unrooted Neighbor-Joining (NJ) method of MEGA X with the following parameters: Poisson correction, pairwise deletion, and a bootstrap analysis with 1,000 replicates. The resultant Newick tree output file was visualized using iTOL v.5 (https://itol.embl. de/). **Supplementary Table S1** provides a detailed description of previously used *Arabidopsis* proteins and their corresponding accession numbers.

Analysis of Gene Structures, Conserved Motifs, and *Cis*-Regulatory Elements

To analyze gene structure, the exons and introns of *SabHLH* genes were identified from the alignment of cDNA sequences with the corresponding genomic DNA sequences and illustrated using the TBtools software (Chen et al., 2020). MEME Version 5.4.1 software (http://meme-suite.org/tools/meme) was employed to identify and analyze the conserved motifs of candidate SabHLH proteins with the following parameters: number of motifs to find, 10; minimum width of motifs, 6; and maximum width of motifs, 250. The PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)

was used to analyze the *cis*-regulatory elements in the promoter sequences (2,000 bp upstream of the start codon) of *SabHLH* genes. The results from these analyses of gene structure, conserved motifs, and *cis*-acting elements were arranged according to the order shown in the phylogenetic tree using TBtools software (Chen et al., 2020).

Protein Association Network Predictions and Functional Classification

All putative SabHLH protein sequences were submitted to the STRING online server (http://string-db.org) to construct a network of functionally interacting orthologous genes between

S. aralocaspica and *Arabidopsis*, with default parameters. Genes that did not interact with any other gene were excluded. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations were performed by submitting all SabHLH protein sequences to the eggNOG-mapper online website (http://eggnog-mapper.embl.de/) and visualized using TBtools software (Chen et al., 2020).

Expression Profile Analysis of *bHLH* Genes in *S. aralocaspica*

The expression profiles of *bHLH* genes in *S. aralocaspica* were analyzed based on publicly released data. RNA-seq datasets for different tissues (BioProject: JNA428881; Wang et al., 2019a) and for dimorphic seeds during germination (BioProject: PRJNA325861; Wang L. et al., 2017) were downloaded from the NCBI Sequence Read Archive (SRP128359). Gene expression levels were estimated as fragments per kilobase of exons per million mapped reads (FPKM) using Cufflinks software (Trapnell et al., 2012). A heatmap was generated using TBtools software (Chen et al., 2020); the color scale represents FPKM counts, and the ratios were log₂ transformed.

Plant Materials and Treatments

Mature S. aralocaspica seeds were harvested from dry inflorescences in natural populations growing in the Gurbantunggut Desert at Wujiaqu 103 regiment (44°29'N, 87°31'E; 430 mH) in October 2017 in the Xinjiang Uygur Autonomous Region, China. The seeds were air-dried indoors, cleaned, and stored at 4°C in sealed brown paper bags. To collect samples for total RNA extraction, approximately 150 brown seeds were sown on two layers of moist filter paper in a 15 cm Petri dish and exposed to different treatment conditions. For different germination times, germinating seeds (seedlings) were harvested at 8, 12, 24 h, 2, 5, 10, and 15 days, and dry seeds at 0 h were used as the control. For different tissues, cotyledons, hypocotyls and radicles were harvested from 7-day-old seedlings, and leaves, stems, and roots were collected from 30-day-old mature plants. For salinity and drought stress, filter paper was saturated with 20 ml of distilled water (used as a control) or different concentrations of aqueous solutions, NaCl (100, 300, and 500 mmol L^{-1}) and PEG6000 [5%, 10% (v/v)], and seedlings were harvested after germination for 7 days. For different light qualities, the Petri dishes were covered with red, yellow, green, blue, and transparent (white light) plastic filters, respectively (Montero et al., 2016), and wrapped with tinfoil to prevent light penetration (darkness). All Petri dishes were placed in a 24-h normal light incubator, and the seedlings were harvested after 7-day germination. To simulate different hormone stress conditions, filter paper was saturated with 20 ml of the following aqueous solutions: ABA (0.5 μ mol L⁻¹), GA₃ (800 mg mL⁻¹), SA (1.5 mg mL⁻¹), or MeJA (0.5 μ mol L⁻¹); seedlings were harvested at 8 h and 3 days, and dry seeds harvested at 0 h were used as the control. All Petri dishes were maintained in an illumination incubator (RXZ-5000C, Ningbo Jiangnan Instrument Factory, China) at a constant temperature of 25°C under a photoperiod of 16 h light/8 h dark, with a light intensity of 500 μ mol m⁻²·s⁻¹. For

low-temperature stress, all Petri dishes were placed in a 4° C illumination incubator, in which light intensity and photoperiod remained unchanged, and the seedlings were harvested at 0 (dry seeds), 2, 4, 8, and 12 h, respectively. All samples were immediately frozen in liquid nitrogen for harvesting and then stored at -80°C until use. Three biological replicates were used per treatment.

Quantitative Real-Time PCR Analysis

Total RNA was extracted from seedlings using the E.Z.N.A Plant RNA Kit (Cat. R6827, OMEGA, United States), according to the manufacturer's instructions. Each reverse transcription reaction was performed with 1 µg of total RNA in a final volume of 20 µl using the M-MLV RTase cDNA Synthesis Kit (D6130, TaKaRa, Shiga, Japan) with 2.5 μ mol L⁻¹ oligo (dT) primer, according to the manufacturer's instructions. The cDNA was stored at -20°C until use. qRT-PCR was performed using BlasTaqTM 2X qPCR MasterMix (abm, Zhenjiang, China) in the LightCycler 96 Real-Time System (Roche, Basel, Switzerland). The relative expression of the β -tubulin gene of S. aralocaspica was used for normalization (Cao et al., 2016). The primers used for gRT-PCR analysis are listed in Supplementary Table S2. The reaction mixture consisted of 1 µl of cDNA, 0.5 µl each of forward and reverse primers, 10 µl of BlasTaqTM qPCR master mix, and 8 µl of RNase-free water in a final volume of 20 µl. The reaction conditions for qRT-PCR were as follows: initial denaturation at 94°C for 30 s, followed by 40 cycles of denaturation at 94°C for 5 s, and annealing at 60°C for 30 s. The relative expression levels of candidate genes were determined according to the mathematical model: $R = 2^{-\Delta\Delta CT}$ (Shi and Chiang, 2005), where $\Delta\Delta CT = \Delta CT_{target sample} - \Delta CT_{control sample}$, and $\Delta CT_{sample} = CT_{test gene} - CT_{reference gene}$. Relative quantification was presented as the normalized fold-change in gene expression of each target gene compared to the control. Data are expressed as the mean \pm standard error of three biological replicates and two technical replicates (n = 6).

Determination of Subcellular Localization

The Plant-mPLoc website (http://www.csbio.sjtu.edu.cn/bioinf/ plant-multi/) was used to predict the subcellular localization of total candidate bHLHs in S. aralocaspica. This was verified by transient expression of the SabHLH169 (identified as SabHLH076 in the present study) fusion protein in tobacco epidermal cells. The open reading frame sequence of SabHLH169(076) (with the stop codon deletion) was cloned into the pSuper1300-MCS-eGFP plant expression vector, which was then transformed into Agrobacterium tumefaciens strain GV3101 using the CaCl₂ method (Holsters et al., 1978). Primers used for vector construction are listed in Supplementary Table S2. Correct single colonies were cultivated, harvested, and resuspended in infiltration buffer (10 mmol L^{-1} MES, 10 mmol L^{-1} MgCl₂ and 150 µmol L^{-1} acetosyringone) at a final concentration of $OD_{600} = 0.8$. The A. tumefaciens suspension (A) of the abovementioned construct was evenly mixed with pSuper1300-P19/GV3101 suspensions (B) (P19 protein: promoted protein expression) in a volume ratio of 500 μ l (A): 500 μ l (B) and then held at room temperature for 2 h

in the dark before use. Approximately 5–6-week-old *Nicotiana benthamiana* plants were used for infiltration. A mixture of different *Agrobacterium* strains was infiltrated into fresh leaves, and the infiltration areas were labelled for recognition (Wang J. et al., 2017). Treated plants were left in the dark overnight and then transferred to normal growth conditions for 72 h. Cell nuclei were visualized with DAPI, which was injected into the marked area with a syringe after which plants were incubated in the dark for 4 h. The fluorescent signals in *N. benthamiana* leaves were visualized using a Zeiss LSM 800 confocal microscope (Carl Zeiss, Jena, Germany).

Transactivation Assay Analysis

The cDNA sequence of *SabHLH169(076)* was inserted into the pGBKT7 yeast expression vector. The pGBKT7-*SabHLH169(076)*, pGBKT7 (negative control), and pGBKT7-*CgbHLH001* (positive control; Zhou et al., 2020) plasmids were transformed into competent AH109 yeast cells. The transformed yeast cells were spread on yeast synthetic dropout medium without Trp and His (SD/-His-Trp) and incubated at 30°C for 3 days. To confirm activation of the reporter gene *alpha-galactosidase*, the X-alpha-gal colony-lift filter assay was performed according to the protocols provided in the Yeast Protocol Handbook (Clontech, Mountain View, CA, United States).

Statistical Analysis

All data were plotted using GraphPad Prism version 7.0 (GraphPad Software, San Diego, CA, United States) and analyzed using SPSS version 26.0 (SPSS Inc., Chicago, IL, United States). Univariate scatterplots displaying parametric data were presented as the mean ± standard deviation (SD) (Weissgerber et al., 2015). One-way ANOVA was performed to test the significance of different treatments, and Tukey's HSD test was performed for multiple comparisons to determine significant differences between samples at 0.05 significance level. When the homogeneity of variance assumption was not met, differences were analyzed using Welch's ANOVA and Games-Howell post-hoc tests (McDonald, 2014).

RESULTS

Identification and Characterization of *bHLH* Gene Family in *S. aralocaspica*

For genome-wide identification of *SabHLH* genes, the HMM file was used as a query to search for the *S. aralocaspica* proteome. All candidate sequences were filtered using SMART and CD-Search to confirm that they contained a complete bHLH domain. Overall, 83 *SabHLHs* were identified and named *SabHLH001* to *SabHLH083* in accordance with their order in the *S. aralocaspica* genomic sequence (Wang et al., 2019b). The SabHLH family members varied markedly in terms of protein sequence length, from 91 (SabHLH024) to 699 [SabHLH169 (076)] amino acids (aa), with an average length of 370 aa. The molecular weights of the proteins ranged from 10.031 kDa (SabHLH048) to 77.395 kDa [SabHLH169 (076)], and their theoretical *pI* values ranged

TABLE 1 | Characteristics of bHLH gene family in S. aralocaspica.

Sketh HUDC GOSA_0000276 AA ON400862 1.963 6.74 0.02712 556 Nurveus Sketh HUDC GOSA_0000235 FAA ON400805 1.431 4.72 53.04291 477 Nurveus Sketh HUDC GOSA_0000281 FAA ON400805 1.431 6.28 52.22281 477 Nurveus Sketh HUDC GOSA_0000281 FAA ON400805 1.631 6.28 52.22281 477 Nurveus Sketh HUDC GOSA_0000281 FAA ON400805 8.51 31.911 2.28 Nurveus Sketh HUD1 GOSA_00001377AA ON400805 8.52 5.51 31.9211 2.8 Nurveus Sketh HUD1 GOSA_00001377AA ON400805 1.692 6.017 7.23871 664 Nurveus Sketh HUD1 GOSA_00001377AA ON400805 1.692 6.71 7.107 7.10 Nurveus Sketh HUD1 GOSA_00001877AA ON400805 1.692 4.71077 2.8 Nurveus Sketh HUD1 GOSA_000002744 AA O	Gene name	Genome ID	GenBank	ORF (bp)	pl	MW (kDa)	Size (aa)	Subcellular location
Sheirt HU12 GORA_00000278-MA CMANDRES 1.325 6.57 50.485 4.47 Kacha Sign HU103 GORA_000001-RA CMANDRES 1.431 4.27 Shall 477 Nuclean Sign HU103 GORA_0000061-RA CMANDRES 1.201 8.56 33.107/17 344 Nuclean Sign HU103 GORA_0000061-RA CMANDRES 1.201 8.56 33.107/17 344 Nuclean Sign HU103 GORA_000013/6-RA CMANDRES 1.56 31.102/17 214 Nuclean Sign HU103 GORA_000013/6-RA CMANDRES 1.641 6.38 24.11017 214 Nuclean Sign HU113 GORA_000017/1-RA CMANDRES 1.641 6.38 24.11017 114 Nuclean Sign HU113 GORA_000017/1-RA CMANDRES 1.585 21.1207 112 Nuclean Sign HU113 GORA_000017/1-RA CMANDRES 1.585 21.1207 112 Nuclean Sign HU113 GORA_0000017/1-RA CMANDRES	SabHLH001	GOSA_00000076-RA	ON400862	1,668	5.74	60.27532	556	Nucleus
Sherh H103 GORA_00000418-FAA ON402085 1.411 4.72 Status 4.77 Nucleus Sherh H103 GORA_00000147-FAA ON402080 1.411 H22 52.20281 4.77 Nucleus Sherh H103 GORA_00000723-FA ON402087 635 0.13 31.3127 235 Nucleus Sherh H107 GORA_0000137-FA ON402087 645 31.30217 245 Nucleus Sherh H107 GORA_0000137-FA ON402085 652 7.75 31.90271 246 Nucleus Sherh H101 GORA_0000147-FA ON402085 652 7.75 31.90271 94 Nucleus Sherh H101 GORA_0000147-FA ON402085 1.982 5.91 7.2.30711 044 Nucleus Sherh H1016 GORA_0000147-FA ON402085 1.982 5.91 7.2.30711 042 Nucleus Sherh H1016 GORA_0000037-FA ON402085 1.987 7.1 51.19707 4.44 Nucleus Sherh H1016 GORA_000000	SabHLH002	GOSA_00000223-RA	ON400863	1,383	6.67	50.40351	461	Nucleus
Shirth Hork COSA_DODO03191 AA ONADDER 2.037 6.16 7.4 (569) 4.77 Nucleus Bank-Hork COSA_DODO03191 AA ONALDERS 1.020 8.68 38.82/371 340 Nucleus Bank-Hork COSA_DODO0177 AA ONALDERS 1.122 5.71 41.82/311 374 Nucleus Bank-Hork COSA_DODO0177 AA ONALDERS 1.122 5.71 41.82/311 374 Nucleus Bank-Hork COSA_DODO0177 AA ONALDERS 6.68 2.7.507 2.84 Nucleus Bank-Hork COSA_DODO0177 AA ONALDERS 6.68 2.7.20971 0.64 Nucleus Bank-Hork COSA_DOD0171 AA ONALDERS 6.66 8.6 2.1.2077 1.92 Nucleus Bank-Hork COSA_DOD0171 AA ONALDERS 6.66 8.6 2.1.2077 1.92 Nucleus Bank-Hork COSA_DOD0171 AA ONALDERS 7.53 8.1.2070 1.93 Nucleus Bank-Hork COSA_DOD0171 AA ONALDERS	SabHLH003	GOSA_00000435-RA	ON400865	1,431	4.72	53.86281	477	Nucleus
Saht-Hubbi OCSA_000000153-RA ONLOGE0 1.431 E.28 SE2.2831 4.77 Nucleus Subt-Hubbi OCSA_000000723-RA ONLOGE0 685 6.13 313.317 236 Nucleus Subt-Hubbi OCSA_00001730-RA ONLOGE0 685 6.13 313.317 236 Nucleus Subt-Hubbi OCSA_00001730-RA ONLOGE0 625 5.53 31.9201 224 Nucleus Subt-Hubbi OCSA_00001780-RA ONLOGE0 626 5.53 31.9201 224 Nucleus Subt-Hubbi OCSA_00001760-RA ONLOGE0 1.692 6.31 22.0071 502 Nucleus Subt-Hubbi OCSA_00001767-RA ONLOGE8 1.692 6.31 21.2077 152 Nucleus Subt-Hubbi OCSA_00002761-RA ONLOGE8 1.692 7.1 51.1212 4.44 Nucleus Subt-Hubbi OCSA_00002761-RA ONLOGE8 1.232 7.1 51.1212 4.44 Nucleus Subt-Hubbi O	SabHLH004	GOSA_0000601-RA	ON400861	2,037	6.16	74.15591	679	Nucleus
Sabell-Hood GOSA_0000073-FA ONMODE/E B46 B462797 S40 Nucleus Sabell-Hood GOSA_0000177-FA ONMODE/ B13 3133173 255 Nucleus Sabell-Hood GOSA_00001767-FA ONMODE/ B18 7.7 4138251 314 Nucleus Sabell-Hood GOSA_00001767-FA ONMODE/ B18 5.55 3132877 246 Nucleus Sabell-Hood GOSA_00001767-FA ONMODE/ B18 5.36 24,211007 216 Nucleus Sabell-Hood GOSA_00001767-FA ONMODE/ B18 5.98 24,21107 216 Nucleus Sabell-Hood GOSA_00001767-FA ONMODE/ 1188 5.96 24,2107 192 Nucleus Sabell-Hood GOSA_00001767-FA ONMODE/ 1187 5.43 24,51037 245 Nucleus Sabell-Hood GOSA_00001767-FA ONMODE/ 1126 5.43 24,5107 123 Nucleus Sabell-Hood GOSA_00001767-FA ONMODE/ <td>SabHLH005</td> <td>GOSA_0000643-RA</td> <td>ON400860</td> <td>1,431</td> <td>6.28</td> <td>52.52881</td> <td>477</td> <td>Nucleus</td>	SabHLH005	GOSA_0000643-RA	ON400860	1,431	6.28	52.52881	477	Nucleus
Sub-Hubbr GGBA_00010723-PA ONM00867 885 6.13 31.3137 216 Nucleus Sub-Hubbr GGBA_0001074-PA ONM00867 613 7.75 31.31978 397 Nucleus Sub-Hubbr GGBA_0001747-PA ONM00867 648 638 24.71007 214 Nucleus Sub-Hubbr GGBA_0001747-PA ONM00867 648 638 24.71007 214 Nucleus Sub-Hubbr GGBA_0001874-PA ONM00867 1.492 5.31 fL207 102 Nucleus Sub-Hubbr GGBA_0001874-PA ONM00867 1.195 5.18 2.12707 102 Nucleus Sub-Hubbr GGBA_00001747-PA ONM00887 1.195 5.18 2.12707 102 Nucleus Sub-Hubbr GGBA_00002741-PA ONM00887 1.195 5.18 2.12707 102 Nucleus Sub-Hub28 GGBA_00002747-PA ONM00887 1.202 7.1 5.112012 4.44 Nucleus Sub-Hub28 GGBA_000012747-PA	SabHLH006	GOSA_0000671-RA	ON400866	1,020	8.66	38.82797	340	Nucleus
Sabit-Hobb OCRA,000167-RA ONM0084 1,122 5,71 41.80251 374 Nucleus Sabit-Ho10 GGSA,0001567-RA ONM00568 B92 5,55 33.91263 297 Nucleus Sabit-Ho11 GGSA,0001444-H ONM00585 B48 6,36 24.71007 216 Nucleus Sabit-Ho11 GGSA,000144-H ONM00585 9,68 8.4 42.47107 192 Nucleus Sabit-Ho11 GGSA,000174-HA ONM00585 1,484 5.24 5.33.91630 48 Nucleus Sabit-Ho16 GGSA,0000174-HA ONM0088 1,182 5.44 4.13.972 375 Nucleus Sabit-Ho16 GGSA,0000174-HA ONM0087 1,188 5.38 4.52.003 39 Nucleus Sabit-Ho16 GGSA,0000174-HA ONM0088 1,392 7.1 5.11.997 4.44 Nucleus Sabit-Ho16 GGSA,0000375-FA ONM0072 7.44 6.11.977 7.94 9.20 7.94 9.20 9.94 Nucleus <td>SabHLH007</td> <td>GOSA_00000723-RA</td> <td>ON400867</td> <td>885</td> <td>6.13</td> <td>31.33137</td> <td>295</td> <td>Nucleus</td>	SabHLH007	GOSA_00000723-RA	ON400867	885	6.13	31.33137	295	Nucleus
Schiel.H0100 OCSA, 00010106-PA ONNO088 B91 7.75 S3.19261 294 Nucleus Subi-H011 GOSA, 0001079-PA ONNO0857 648 6.35 24.71007 214 Nucleus Subi-H013 GOSA, 0001079-PA ONNO0857 648 6.33 24.71007 264 Nucleus Subi-H013 GOSA, 0001079-PA ONNO0858 1,492 5.91 22.3867 164 Subi-H016 GOSA, 0001079-PA ONNO085 1,492 5.31 21.2777 152 Nucleus Subi-H016 GOSA, 00001274-PA ONNO085 1,122 7.4 41.3726 21.5 Nucleus Subi-H017 GOSA, 0000273-PA ONNO085 1,122 7.4 13.1828 29.8 Nucleus Subi-H012 GOSA, 0000274-PA ONNO085 1,52 3.3 27.55512 24.5 Nucleus Subi-H021 GOSA, 00000469-PA ONNO074 1,035 8.34 3.444418 231 Nucleus Subi-H022 GOSA, 00000469-PA ONNO074 </td <td>SabHLH008</td> <td>GOSA_00001077-RA</td> <td>ON400864</td> <td>1,122</td> <td>5.71</td> <td>41.83251</td> <td>374</td> <td>Nucleus</td>	SabHLH008	GOSA_00001077-RA	ON400864	1,122	5.71	41.83251	374	Nucleus
SoleH (101) COSA, (0001307-PA ON400857 682 5.55 91.92971 284 Nucleus SubHL1012 COSA, (0001444-PA ON400857 6.91 72.38971 664 Nucleus SubHL1013 COSA, (0001444-PA ON400855 9.65 8.6 24.2707 192 Nucleus SubHL1016 COSA, (000174-PA ON400858 1.1494 5.24 5.3816103 498 Nucleus SubHL1016 COSA, (0000747-PA ON400858 1.125 5.66 45.20038 306 Nucleus SubHL1016 COSA, (0000747-PA ON400858 1.322 5.60 45.20038 306 Nucleus SubHL1010 COSA, (000074-PA ON400858 7.35 5.39 27.50019 2.46 Nucleus SubHL1020 COSA, (000074-PA ON400858 7.35 5.39 27.50019 2.46 Nucleus SubHL1020 COSA, (000074-PA ON400857 1.055 5.49 3.51 Nucleus SubHL10205 COSA, (0000077	SabHLH009	GOSA_00001306-RA	ON400858	891	7.75	33.91263	297	Nucleus
Sacht-Holt COSA, 00001894 ON100897 648 6.38 42.7107 216 Nucleus Sacht-Holt COSA, 00001894 ON100898 1.92 5.91 7.238971 664 Nucleus Sacht-Holt COSA, 00001877A ON100888 1.945 5.84 5.81 6.85 21.2707 192 Nucleus Sacht-Holt COSA, 0000874 ON100888 1.125 5.62 41.90782 375 Nucleus Sacht-Holt COSA, 00002694-RA ON100885 1.262 7.1 51.10121 454 Nucleus Sacht-Holt COSA, 00002694-RA ON100888 1.241 6.19 47.11691 447 Nucleus Sacht-Holt COSA, 00002694-RA ON100882 6.24 9.17 23.1688 281 Nucleus Sacht-Holt COSA, 00002697 1.003 4.8 281 1.416 Nucleus Sacht-Holt COSA, 0000187 Nucleus 3.31 1.838 3.866735 51 Nucleus Sacht-Holt <td>SabHLH010</td> <td>GOSA_00001307-RA</td> <td>ON400856</td> <td>852</td> <td>5.55</td> <td>31.92971</td> <td>284</td> <td>Nucleus</td>	SabHLH010	GOSA_00001307-RA	ON400856	852	5.55	31.92971	284	Nucleus
Sabell-Uni2 GCSA_0000789FAA ON400859 1.992 5.91 7.2.8971 664 Nucleus Sabell-Uni3 GCSA_0000797-FAA ON400858 1.104 5.2.4 5.8.316-003 308 Nucleus Sabell-Uni5 GCSA_0000797-FAA ON400883 1.125 5.6.2 1.2.707 192 Nucleus Sabell-Uni5 GCSA_0000273-FAA ON400883 1.125 5.6.2 1.9.707 192 Nucleus Sabell-Uni5 GCSA_0000248-FAA ON400883 1.125 5.10 4.47 Nucleus Sabell-Uni5 GCSA_0000248-FAA ON400883 7.35 5.99 27.55012 2.45 Nucleus Sabell-Uni2 GCSA_0000248-FAA ON400892 6.43 3.83 3.84 3.83 3.85 Nucleus	SabHLH011	GOSA_00001444-RA	ON400857	648	6.36	24.71007	216	Nucleus
Sabil-H113 GOSA_D001977A OVA00858 906 8.6 94.0428 922 Nucleus Sabil-H115 GOSA_D001974A OVA00884 576 6.85 91.2707 192 Nucleus Sabil-H117 GOSA_D0002087A OVA00885 1,125 5.62 41.90782 375 Nucleus Sabil-H117 GOSA_D0002087A OVA00885 1,321 6.19 47.11091 447 Nucleus Sabil-H1013 GOSA_D0002087A OVA00885 1,341 6.19 47.11091 447 Nucleus Sabil-H1021 GOSA_D0002087A OVA00888 1,341 6.19 47.11091 477 Nucleus Sabil-H1021 GOSA_D0002087A OVA00898 7.35 3.80 21.858 3.81 Nucleus Sabil-H1021 GOSA_D000387A OVA00877 1.155 7.64 9.81 Nucleus Sabil-H1022 GOSA_D000387A OVA0077 1.151 7.0 5.64 9.85 Nucleus Sabil-H1023 GOSA_D0000487A OV	SabHLH012	GOSA_00001689-RA	ON400859	1,992	5.91	72.36971	664	Nucleus
SabH-UD14 GOSA_0000187-RA ON400288 1.414 5.24 52.81203 498 Nucleus SubH-UD16 GOSA_0000296-RA ON400287 1.125 5.68 45.26038 396 Nucleus SubH-UD17 GOSA_0000237-RA ON400285 1.125 5.62 41.9724 454 Nucleus SubH-UD17 GOSA_0000249-RA ON400286 1.322 7.1 51.12012 454 Nucleus SubH-UD20 OOSA_0000249-RA ON400286 624 9.17 23.1888 208 Nucleus SubH-H122 GOSA_0000389-RA ON400871 1.053 8.43 43.8765 51 Nucleus SubH-H122 GOSA_0000480-RA ON400877 1.055 7.94 10.50033 61 Nucleus SubH-H122 GOSA_0000480-RA ON400877 1.65 7.99 5.64953 615 Nucleus SubH-H226 GOSA_0000480-RA ON400879 1.63 8.38 4.35566 421 Nucleus SubHH126 GOSA_000068	SabHLH013	GOSA_00001701-RA	ON400855	906	8.6	34.04228	302	Nucleus
Shihl H115 OOSA_0000269-FA OH400864 576 6.86 21,2707 192 Nucleus Shihl H1017 GOSA_0000237-FA OH400863 1,125 5.62 41,93782 375 Nucleus Shihl H1019 GOSA_0000241-FA OH400868 1,341 6.19 47,1991 447 Nucleus Shihl H1019 GOSA_0000244-FA OH400868 1,341 6.19 47,1991 447 Nucleus Shihl H1012 GOSA_00003472-FA OH400872 643 8.29 31,4418 209 Nucleus Shihl H1022 GOSA_0000386-FA OH400871 1,653 6,49 37,11866 351 Nucleus Shihl H1024 OGSA_0000486-FA OH400876 1,105 4,9 37,11866 661 Nucleus Shihl H1024 OGSA_0000486-FA OH400878 1,863 4,64 75,61583 661 Nucleus Shihl H1024 OGSA_0000473-FA OH400879 1,263 8,38 4,3292 412 Nucleus Shihl H1035	SabHLH014	GOSA_00001967-RA	ON400888	1,494	5.24	53.81603	498	Nucleus
SabH-H016 COGA_0002290-FA ON40087 1.185 5.98 45.26038 396 Nucleus SabH-H0178 COGA_000237-FA ON400885 1.322 7.1 51.12012 454 Nucleus SabH-H0178 COGA_0002249-FA ON400886 1.342 7.1 51.12012 454 Nucleus SabH-H0120 COGA_0002249-FA ON400886 7.35 5.39 27.55012 245 Nucleus SabH-H022 COGA_0000389-FA ON400872 8.43 8.29 31.46418 281 Nucleus SabH-H022 COGA_0000499-FA ON400871 1.053 8.34 49.897.35 601 Nucleus SabH-H026 COGA_0000499-FA ON400871 1.053 8.34 49.897.35 601 Nucleus SabH-H026 COGA_0000490-FA ON400877 1.815 7.06 5.49633 601 Nucleus SabH-H028 COGA_0000781-FA ON400879 1.883 4.43 4.59686 7.01 Nucleus SabH-H028	SabHLH015	GOSA_00001974-RA	ON400884	576	6.85	21.2707	192	Nucleus
Sabrillentri GOSA_D000273-RA ON400885 1,125 5,62 41,53782 375 Nucleus Sabrillentri GOSA_D0002691-RA ON400866 1,341 6,19 47,16991 447 Nucleus Sabrillentri GOSA_D0002691-RA ON400883 7,35 5,39 27,5012 246 Nucleus Sabrillentri GOSA_D000369-RA ON400812 624 9,17 23,1888 208 Nucleus Sabrillentri GOSA_D000369-RA ON400972 843 8,267083 951 Nucleus Sabrillentri GOSA_D000469-RA ON400974 1,155 7,09 554,6033 505 Nucleus Sabrillentri GOSA_D000480-RA ON400876 1,163 4,64 75,6158 661 Nucleus Sabrillentri GOSA_D0004781-RA ON400879 1,723 8,38 4,3356 421 Nucleus Sabrillentri GOSA_D0006732-RA ON400879 977 6,16 32,80567 290 Nucleus Sabrillentri <t< td=""><td>SabHLH016</td><td>GOSA_00002069-RA</td><td>ON400887</td><td>1,188</td><td>5.98</td><td>45.26038</td><td>396</td><td>Nucleus</td></t<>	SabHLH016	GOSA_00002069-RA	ON400887	1,188	5.98	45.26038	396	Nucleus
SabHI-1018 GOSA_00002416-FA ON400885 1,382 7.1 51.12012 454 Nucleus SabHI-1020 GOSA_0000264-FA ON400883 7.35 5.39 27.55012 245 Nucleus SabHI-1020 GOSA_0000264-FA ON400892 624 9.17 23.1888 206 Nucleus SabHI-1022 GOSA_0000267-FA ON400972 843 8.29 31.46418 281 Nucleus SabHI-1024 GOSA_0000457-FA ON400971 1.151 7.09 55.49833 505 Nucleus SabHI-1026 GOSA_0000480-FA ON400977 1.151 7.09 55.49833 505 Nucleus SabHI-1026 GOSA_0000481-FA ON400977 1.513 7.61 35.9697 305 Nucleus SabHI-1026 GOSA_0000475-FA ON400979 1.83 4.64 7.56 1533 661 Nucleus SabHI-1028 GOSA_0000475-FA ON400979 9.45 8.79 35.55022 315 Nucleus SabHI-1030	SabHLH017	GOSA_00002373-RA	ON400883	1,125	5.62	41.93782	375	Nucleus
SabH-H019 COSA, 0002698-FA ON40288 1,341 6,19 47, 16991 447 Nucleus SabH-H021 COSA, 0002898-FA ON402892 624 9,17 23,188 208 Nucleus SabH-H023 COSA, 0002889-FA ON402872 843 829 31,46118 281 Nucleus SabH-H023 COSA, 0002889-FA ON400971 1,653 8,49 37,11858 355 Nucleus SabH-H025 COSA, 000289-FA ON400976 1,155 7,94 10,50083 91 Nucleus SabH-H025 COSA, 0000497-FA ON400976 1,155 7,94 10,50083 951 Nucleus SabH-H025 COSA, 0000497-FA ON400977 1,263 6,54 44,33966 421 Nucleus SabH-H026 COSA, 0000477-FA ON400897 94.5 8,79 35,53822 315 Nucleus SabH-H026 COSA, 0000683-FA ON400897 97.7 5,49 28,36967 29 Nucleus SabH-H030 C	SabHLH018	GOSA_00002416-RA	ON400885	1,362	7.1	51.12012	454	Nucleus
SabHU-1020 GOSA_00002840-FA ON400883 7.35 5.39 27.55012 245 Nucleus SabHU-1021 GOSA_00003596-FA ON400872 843 8.29 31.46418 281 Nucleus SabHU-1021 GOSA_00003596-FA ON400871 1.053 8.34 8.29 31.46418 281 Nucleus SabHU-1021 GOSA_00004359-FA ON400876 1.005 4.9 37.11856 325 Nucleus SabHU-1022 GOSA_00004680-FA ON400877 1.515 7.09 55.46433 505 Nucleus SabHU-1029 GOSA_00004751-FA ON400877 1.263 8.03 44.83566 421 Nucleus SabHU-1029 GOSA_0000475-FA ON400879 9.25 8.79 35.563922 415 Nucleus SabHU-1031 GOSA_0000633-FA ON400879 9.27 6.16 32.8067 299 Nucleus SabHU-1032 GOSA_0000783-FA ON400879 1.267 7.54 46.51908 419 Nucleus	SabHLH019	GOSA_00002694-RA	ON400886	1,341	6.19	47.16991	447	Nucleus
SabHLH21 GGSA,0003472-FA ON400592 624 9.17 23.188 206 Nucleus SabHLH23 GGSA,0003586-FA ON400571 1.053 8.34 38.86736 351 Nucleus SabHLH25 GGSA,0004505-FA ON400371 1.055 4.9 37.11863 355 Nucleus SabHL425 GGSA,0004505-FA ON400376 1.055 4.9 37.11863 661 Nucleus SabHL427 GGSA,000450-FA ON400378 1.883 4.64 75.6163 616 Nucleus SabHL429 GGSA,000282-FA ON400379 9.85 8.79 35.33822 315 Nucleus SabHL402 GGSA,000382-FA ON400389 9.85 8.79 35.33822 315 Nucleus SabHL402 GGSA,0000683-FA ON400897 9.85 8.79 35.33822 315 Nucleus SabHL402 GGSA,0000683-FA ON400880 7.75 5.46 5.0508 419 Nucleus SabHL4030 GGSA,0000703-FA	SabHLH020	GOSA_00002849-RA	ON400893	735	5.39	27.55012	245	Nucleus
SabHH022 COSA_00003886-FA ON400871 1.633 8.29 31.4618 281 Nucleus SabHH024 GOSA_00004355-FA ON400871 1.033 8.34 88.86735 351 Nucleus SabHH026 GOSA_0000459-FA ON400877 1.515 7.09 55.49533 565 Nucleus SabHH027 GOSA_0000489-FA ON400875 1.283 8.34 4.43566 4.21 Nucleus SabHH028 GOSA_0000489-FA ON400875 1.285 8.53 4.43566 4.21 Nucleus SabH1029 GOSA_0000482-FA ON400875 1.285 8.53 4.435566 4.21 Nucleus SabH1029 GOSA_0006347-FA ON400868 1.226 5.65 4.48252 402 Nucleus SabH1033 GOSA_0006634-FA ON400061 7.77 5.49 2.85867 269 Nucleus SabH1033 GOSA_0007033-FA ON400061 1.257 5.76 4.515198 419 Nucleus SabH10403 GOSA_000	SabHLH021	GOSA_00003472-RA	ON400892	624	9.17	23.1888	208	Nucleus
SabHH2023 COSA_00002869-FA ON400671 1.053 8.34 S8.85 S1 Nucleus SabHH2025 COSA_00004555-FA ON400876 1.005 4.9 37.1186 S35 Nucleus SabHH2025 COSA_00004755-FA ON400877 1.515 7.09 55.49633 505 Nucleus SabHH1028 COSA_00004781-FA ON400877 1.283 8.93 44.3566 4.21 Nucleus SabHH1028 COSA_00004781-FA ON400879 1.283 8.93 44.3566 4.21 Nucleus SabHH1030 COSA_00006132-FA ON4000897 945 8.79 35.8097 509 Nucleus SabHH1032 COSA_0000633-FA ON4000870 777 5.49 28.3564 419 Nucleus SabHH1034 COSA_0000703-FA ON4000870 7.76 4.69 24.2 Nucleus SabHH1035 COSA_0000703-FA ON400081 1.61 32.80651 242 Nucleus SabHH1036 COSA_0000703-FA ON400081	SabHLH022	GOSA_00003586-RA	ON400872	843	8.29	31.46418	281	Nucleus
SabHLH024 COSA_00004355-RA ON400870 2.73 7.94 10.508 91 Nucleus SabHLH026 GOSA_00004680-RA ON400877 1.515 7.09 55.49633 505 Nucleus SabHLH027 GOSA_00004882-RA ON400878 1.983 4.64 75.61583 661 Nucleus SabHLH029 GOSA_0000482-RA ON400878 1.263 8.33 44.35565 421 Nucleus SabHLH029 GOSA_0006410-RA ON400867 9.45 8.79 355.5922 315 Nucleus SabHLH031 GOSA_0006633-RA ON400868 822 5.68 30.68455 274 Nucleus SabHLH035 GOSA_00006633-RA ON400812 7.76 7.58 26.98551 242 Nucleus SabHLH036 GOSA_00007033-RA ON400811 1.267 7.48 45.1908 419 Nucleus SabHLH036 GOSA_00007033-RA ON400814 2.067 7.46 45.1908 422 Nucleus SabHLH036 GO	SabHLH023	GOSA_00003869-RA	ON400871	1,053	8.34	38.86735	351	Nucleus
SabH-H026 GOSA_0000480-RA ON400876 1,025 4.9 37.11866 336 Nucleus SabH-H027 GOSA_0000480-RA ON400877 1,983 4.64 76.61933 661 Nucleus SabH-H028 GOSA_0000480-RA ON400879 1,283 8.93 44.35866 421 Nucleus SabH-H029 GOSA_00006432-RA ON400807 945 8.79 35.38082 315 Nucleus SabH-H020 GOSA_0000633-RA ON400807 777 5.49 28.8567 259 Nucleus SabH-H032 GOSA_0000633-RA ON400806 1.257 5.76 46.51008 419 Nucleus SabH-H032 GOSA_000703-RA ON400850 1.131 6.27 41.48272 377 Nucleus SabH-H033 GOSA_000703-RA ON400851 2.067 6.4 32.8982 309 Nucleus SabH-H033 GOSA_000703-RA ON400875 1.011 6.27 41.6124 698 Nucleus SabH-H043 GOSA_0000	SabHLH024	GOSA_00004355-RA	ON400904	273	7.94	10.50083	91	Nucleus
SabHLH026 COSA_00004881-RA ON400877 1,515 7.09 E5.4633 505 Nucleus SabHLH028 COSA_00004881-RA ON400879 1,263 8.93 44.33566 421 Nucleus SabHLH029 COSA_0000482-RA ON400879 1,263 8.93 44.33566 421 Nucleus SabHLH029 COSA_00006132-RA ON400869 927 6.16 33.80817 309 Nucleus SabHLH031 COSA_0000683-RA ON400869 927 5.76 30.519027 259 Nucleus SabHLH033 COSA_0000683-RA ON400861 7.77 5.49 28.8587 249 Nucleus SabHLH035 COSA_00007383-RA ON400850 1.131 6.27 41.48272 377 Nucleus SabHLH036 COSA_00007383-RA ON400851 2.067 6.4 32.2992 309 Chioroplast/Nucleus SabHLH036 COSA_00007383-RA ON400851 2.067 6.4 32.2992 309 Chioroplast/Nucleus SabHL	SabHLH025	GOSA_00004508-RA	ON400876	1,005	4.9	37.11856	335	Nucleus
SabHLH027 GOSA_00004781-RA ON400878 1,883 4.44 7.6193 661 Nucleus SabHLH029 GOSA_00005410-RA ON400897 1,263 8.03 44.35566 421 Nucleus SabHLH020 GOSA_00005417-RA ON400897 9.45 8.79 35.38087 299 Nucleus SabHLH021 GOSA_00006832-RA ON400897 7.77 5.49 28.8567 259 Nucleus SabHLH032 GOSA_00006834-RA ON400896 822 5.26 30.63455 242 Nucleus SabHLH034 GOSA_00007033-RA ON400861 1,131 6.27 41.48272 377 Nucleus SabHLH035 GOSA_00007033-RA ON400851 2,067 6.45 7.41.48272 377 Nucleus SabHLH035 GOSA_00007033-RA ON400851 1,131 6.27 41.48272 377 Nucleus SabHLH036 GOSA_00007035-RA ON400851 1,266 7.41.48272 377 Nucleus SabHLH037 GOSA_00007082-	SabHLH026	GOSA_00004680-RA	ON400877	1,515	7.09	55.49633	505	Nucleus
SabHLH028 GOSA,00004810-FA ON400679 1,263 8.93 44,83566 421 Nucleus SabHLH030 GOSA,00005410-FA ON400869 1206 6.05 44,82322 315 Nucleus SabHLH031 GOSA,0000633-FA ON400869 927 6.16 33.80607 309 Nucleus SabHLH031 GOSA,0000633-FA ON400870 777 5.49 28.83607 259 Nucleus SabHLH033 GOSA,00006830-FA ON400870 777 5.49 28.83651 242 Nucleus SabHLH035 GOSA,0000738-FA ON40081 2.067 6.45 74.6124 689 Nucleus SabHLH038 GOSA,0000738-FA ON400841 2.067 6.45 74.6124 689 Nucleus SabHLH043 GOSA,0000738-FA ON400841 2.067 6.45 74.6124 689 Nucleus SabHLH043 GOSA,0000830-FA ON400841 1.266 6.64 74.6124 689 Nucleus SabHLH0404 GOSA,0	SabHLH027	GOSA_00004781-RA	ON400878	1,983	4.64	75.61593	661	Nucleus
SabHLH029 GOSA_00005470-RA ON400896 1_206 6.05 44.82922 402 Nucleus SabHLH031 GOSA_00006132-RA ON400899 927 6.16 33.86087 309 Nucleus SabHLH031 GOSA_00006132-RA ON400869 927 6.16 33.86087 309 Nucleus SabHLH032 GOSA_00006834-RA ON400868 822 5.26 30.83455 274 Nucleus SabHLH033 GOSA_00007033-RA ON400860 1.131 6.27 41.48272 377 Nucleus SabHLH036 GOSA_0000735-RA ON400850 1.131 6.27 41.48272 309 Chioropiast/Nucleus SabHLH037 GOSA_0000735-RA ON40087 927 6.4 32.26992 309 Chioropiast/Nucleus SabHLH039 GOSA_0000827-RA ON40087 1.011 6.26 8.6356 337 Nucleus SabHLH040 GOSA_0000672-RA ON40087 1.011 6.26 4.62626 402 Nucleus SabHLH043 </td <td>SabHLH028</td> <td>GOSA_00004882-RA</td> <td>ON400879</td> <td>1,263</td> <td>8.93</td> <td>44.33566</td> <td>421</td> <td>Nucleus</td>	SabHLH028	GOSA_00004882-RA	ON400879	1,263	8.93	44.33566	421	Nucleus
SabHLH030 GOSA_00006132-RA ON400897 945 8.79 8.53922 315 Nucleus SabHLH031 GOSA_0000633-RA ON400809 927 6.16 33.8087 309 Nucleus SabHLH033 GOSA_00006833-RA ON400870 777 5.49 28.83567 259 Nucleus SabHLH035 GOSA_00006833-RA ON400913 1.257 5.76 4.6151908 419 Nucleus SabHLH035 GOSA_00007393-RA ON400912 7.26 7.58 22.89851 2.42 Nucleus SabHLH036 GOSA_00007353-RA ON400851 2.067 6.45 7.4.6124 689 Nucleus SabHLH037 GOSA_0000834-RA ON400848 1.226 7.6.4 32.2992 309 ChioroplastNucleus SabHLH040 GOSA_0000834-RA ON400874 983 5.96 36.63039 321 Nucleus SabHLH041 GOSA_0001702-RA ON400875 1.016 6.54 46.26026 Nucleus SabHLH042 GOSA_0001707	SabHLH029	GOSA_00005410-RA	ON400896	1,206	6.05	44.62922	402	Nucleus
SabHLM031 GOSA_00006833-RA ON400869 927 6.16 33.80087 309 Nucleus SabHLM032 GOSA_00006833-RA ON400870 777 5.49 28.83567 259 Nucleus SabHLM033 GOSA_00006834-RA ON400913 1.257 5.76 46.51908 419 Nucleus SabHLM036 GOSA_00007038-RA ON400850 1.131 6.27 41.48272 377 Nucleus SabHLM037 GOSA_00007353-RA ON400850 1.131 6.27 41.48272 377 Nucleus SabHLM038 GOSA_00008204-RA ON400849 927 6.4 32.29992 309 Chioroplast/Nucleus SabHLM039 GOSA_0000887-RA ON400848 1.254 5.14 47.27305 418 Nucleus SabHLM041 GOSA_0000887-RA ON400875 1.011 6.26 36.6356 337 Nucleus SabHLM043 GOSA_0001627-RA ON400891 1.906 6.1 44.07488 402 Nucleus SabHLM045	SabHLH030	GOSA_00005475-RA	ON400897	945	8.79	35.53922	315	Nucleus
SabHLH032 GOSA_0000683-RA ON400870 777 5.49 28.8567 259 Nucleus SabHLH033 GOSA_00006830-RA ON400818 622 5.26 30.63455 274 Nucleus SabHLH036 GOSA_00007033-RA ON400912 726 7.58 46.51908 419 Nucleus SabHLH037 GOSA_00007033-RA ON400850 1.131 6.27 41.48272 377 Nucleus SabHLH038 GOSA_00008204-RA ON400851 2.067 6.45 74.6124 689 Nucleus SabHLH043 GOSA_00008204-RA ON400841 927 6.4 32.26992 309 Chioroplast/Nucleus SabHLH041 GOSA_00008204-RA ON400875 1.011 6.26 36.63039 321 Nucleus SabHLH042 GOSA_00010702-RA ON400803 1.206 6.1 44.07468 402 Nucleus SabHLH043 GOSA_00010702-RA ON400809 9.87 4.76 37.66619 329 Nucleus SabHLH044	SabHLH031	GOSA_00006132-RA	ON400869	927	6.16	33.86087	309	Nucleus
SabHLH033 GOSA_00006834-RA ON400868 822 5.26 30.63455 274 Nucleus SabHLH034 GOSA_00007033-RA ON400813 1.257 5.76 46.51908 419 Nucleus SabHLH036 GOSA_00007033-RA ON400850 1,131 6.27 41.48272 377 Nucleus SabHLH037 GOSA_0000733-RA ON400851 2.067 6.45 74.6124 689 Nucleus SabHLH038 GOSA_00008804-RA ON400849 927 6.4 32.26992 309 Chloroplast/Nucleus SabHLH043 GOSA_0000887-RA ON400874 963 5.96 36.6336 337 Nucleus SabHLH041 GOSA_00010211-RA ON400802 780 9.38 28.2595 260 Nucleus SabHLH042 GOSA_0001072-RA ON400801 1.206 6.54 45.62066 402 Nucleus SabHLH044 GOSA_0001172-RA ON400891 1.206 6.54 45.62066 402 Nucleus SabHLH045	SabHLH032	GOSA_00006633-RA	ON400870	777	5.49	28.83567	259	Nucleus
SabHLH034 GOSA_00007033-RA ON400913 1.257 5.76 46.51908 419 Nucleus SabHLH035 GOSA_00007033-RA ON400850 1.131 6.27 41.48272 377 Nucleus SabHLH036 GOSA_00007033-RA ON400850 1.131 6.27 41.48272 377 Nucleus SabHLH038 GOSA_00008203-RA ON400849 927 6.4 32.2892 309 ChioroplastNucleus SabHLH040 GOSA_00008834-RA ON400849 927 6.4 32.2892 309 ChioroplastNucleus SabHLH041 GOSA_00008720-RA ON400874 963 5.96 35.63039 321 Nucleus SabHLH041 GOSA_00010211-RA ON400803 1.206 6.1 44.07468 402 Nucleus SabHLH044 GOSA_00010702-RA ON400809 987 4.76 37.56619 329 Nucleus SabHLH044 GOSA_0001172-RA ON400890 987 4.76 37.56619 329 Nucleus SabHLH046<	SabHLH033	GOSA_00006634-RA	ON400868	822	5.26	30.63455	274	Nucleus
SabHLH035 GOSA_0007033-RA ON400812 726 7.58 26.98551 242 Nucleus SabHLH036 GOSA_00007933-RA ON400850 1.131 6.27 41.48272 377 Nucleus SabHLH037 GOSA_0000735-RA ON400851 2.067 6.45 74.6124 699 Nucleus SabHLH038 GOSA_00008387-RA ON400849 927 6.4 32.26992 309 Chioropiast/Nucleus SabHLH040 GOSA_00008887-RA ON400875 1.011 6.26 36.6356 337 Nucleus SabHLH041 GOSA_0001021-RA ON400875 1.011 6.26 36.6356 360 Nucleus SabHLH042 GOSA_0001021-RA ON400891 1.206 6.1 44.07468 402 Nucleus SabHLH044 GOSA_00010702-RA ON400890 9.87 4.76 37.56619 329 Nucleus SabHLH045 GOSA_0001172-RA ON400890 9.87 4.76 37.56619 329 Nucleus SabHLH044	SabHLH034	GOSA_00006830-RA	ON400913	1,257	5.76	46.51908	419	Nucleus
SabHLH036 GOSA_00007938-RA ON400850 1,131 6.27 41.48272 377 Nucleus SabHLH037 GOSA_00007353-RA ON400849 2,067 6.45 74.6124 689 Nucleus SabHLH038 GOSA_0000820-RA ON400849 927 6.4 32.26992 309 Chloroplast/Nucleus SabHLH041 GOSA_00008672-RA ON400875 1,011 6.26 36.6356 337 Nucleus SabHLH041 GOSA_0001672-RA ON400875 1,011 6.26 36.6356 660 Orucleus SabHLH042 GOSA_00010702-RA ON400875 1,011 6.26 36.6356 660 Orucleus SabHLH044 GOSA_00010702-RA ON400890 1,980 5.31 72.66926 660 Orucleus SabHLH044 GOSA_000172-RA ON400891 1,206 6.54 45.62066 402 Nucleus SabHLH044 GOSA_0001172-RA ON400919 1,209 5.56 42.58493 403 Nucleus SabHLH045 <td>SabHLH035</td> <td>GOSA_00007033-RA</td> <td>ON400912</td> <td>726</td> <td>7.58</td> <td>26.98551</td> <td>242</td> <td>Nucleus</td>	SabHLH035	GOSA_00007033-RA	ON400912	726	7.58	26.98551	242	Nucleus
SabHLH037 GOSA_0007353-RA ON400851 2.067 6.45 74.6124 669 Nucleus SabHLH038 GOSA_00008204-RA ON400849 927 6.4 32.26992 309 ChioroplastNucleus SabHLH039 GOSA_00008837-RA ON400848 1.254 5.14 47.27305 418 Nucleus SabHLH041 GOSA_00008720-RA ON400875 1.011 6.26 36.6356 337 Nucleus SabHLH042 GOSA_0001021-RA ON400903 1.206 6.1 44.07468 402 Nucleus SabHL044 GOSA_000102-RA ON400891 1.980 5.31 72.66926 660 Crytoplasm SabHL045 GOSA_0001072-RA ON400891 1.206 6.54 45.62066 402 Nucleus SabHL046 GOSA_0001172-RA ON400891 1.209 5.56 42.58493 403 Nucleus SabHL046 GOSA_00011177-RA ON400917 690 6.6 25.60963 230 Nucleus SabHL0451	SabHLH036	GOSA_00007093-RA	ON400850	1,131	6.27	41.48272	377	Nucleus
SabHLH038 GOSA_00008204-RA ON400849 927 6.4 32.26992 309 Chloroplast/Nucleus SabHLH039 GOSA_00008334-RA ON400874 1,54 5.14 47.27305 418 Nucleus SabHLH040 GOSA_00008720-RA ON400875 1,011 6.26 36.6336 337 Nucleus SabHLH041 GOSA_0001021-RA ON400875 1,011 6.26 36.6356 337 Nucleus SabHLH043 GOSA_00010702-RA ON400890 1,980 5.31 72.66926 600 Cytoplasm SabHLH044 GOSA_00010702-RA ON400899 1,980 5.31 72.66926 600 Cytoplasm SabHLH046 GOSA_00010766-RA ON400899 987 4.76 37.56619 329 Nucleus SabHLH046 GOSA_00011122-RA ON400919 1,209 5.56 42.58493 403 Nucleus SabHLH046 GOSA_00011122-RA ON400917 690 6.6 25.60963 230 Nucleus SabHLH051 <td>SabHLH037</td> <td>GOSA_00007353-RA</td> <td>ON400851</td> <td>2,067</td> <td>6.45</td> <td>74.6124</td> <td>689</td> <td>Nucleus</td>	SabHLH037	GOSA_00007353-RA	ON400851	2,067	6.45	74.6124	689	Nucleus
SabHLH039 GOSA_00008334-RA ON400848 1,254 5.14 47.27305 418 Nucleus SabHLH040 GOSA_0000887-RA ON400874 963 5.96 35.63039 321 Nucleus SabHLH041 GOSA_00008270-RA ON400875 1,011 6.26 36.6356 337 Nucleus SabHLH042 GOSA_00010211-RA ON400890 1,206 6.1 44.07488 402 Nucleus SabHLH044 GOSA_0001072-RA ON400890 1,206 6.54 45.62066 402 Nucleus SabHLH045 GOSA_00010765-RA ON400891 1,206 6.54 45.62066 402 Nucleus SabHLH047 GOSA_0001172-RA ON400891 1,206 5.54 25.6493 403 Nucleus SabHLH048 GOSA_00011171-RA ON400918 258 4.47 10.03095 86 Nucleus SabHLH049 GOSA_0001128-RA ON400916 762 5.4 29.04995 254 Nucleus SabHLH051 GOSA	SabHLH038	GOSA_00008204-RA	ON400849	927	6.4	32.26992	309	Chloroplast\Nucleus
SabHLH040 GOSA_00008687-RA ON400874 963 5.96 35.63039 321 Nucleus SabHLH041 GOSA_00008720-RA ON400875 1,011 6.26 36.6356 337 Nucleus SabHLH042 GOSA_00010462-RA ON400902 780 9.38 28.2595 260 Nucleus SabHLH045 GOSA_0001702-RA ON400889 1,980 5.31 72.66926 600 Cytoplasm SabHLH045 GOSA_0001702-RA ON400891 1,209 5.56 42.58493 403 Nucleus SabHLH047 GOSA_00011122-RA ON400918 258 4.47 10.03095 86 Nucleus SabHLH049 GOSA_00011177-RA ON400917 690 6.6 25.60963 230 Nucleus SabHLH051 GOSA_00011282-RA ON400917 690 6.6 25.60963 230 Nucleus SabHLH051 GOSA_00011283-RA ON400910 1,389 9.43 50.93376 463 Nucleus SabHLH054 GOSA	SabHLH039	GOSA_00008334-RA	ON400848	1,254	5.14	47.27305	418	Nucleus
SabHLH041 GOSA_00008720-RA ON400875 1.011 6.26 36.6356 337 Nucleus SabHLH042 GOSA_00010211-RA ON400903 1,206 6.1 44.07468 402 Nucleus SabHLH043 GOSA_00010702-RA ON400902 780 9.38 28.2595 260 Nucleus SabHLH044 GOSA_00010702-RA ON400891 1,206 6.54 45.62066 402 Nucleus SabHLH046 GOSA_00010765-RA ON400891 9.20 5.56 42.58493 403 Nucleus SabHLH047 GOSA_00011177-RA ON400918 258 4.47 10.03095 86 Nucleus SabHLH048 GOSA_00011177-RA ON400917 690 6.6 25.60963 230 Nucleus SabHLH051 GOSA_00011282-RA ON400917 690 6.6 25.60963 230 Nucleus SabHLH052 GOSA_00011847-RA ON400911 1,194 8.63 43.00472 389 Nucleus SabHLH053 GOSA	SabHLH040	GOSA_00008687-RA	ON400874	963	5.96	35.63039	321	Nucleus
SabHLH042 GOSA_00010211-RA ON400903 1,206 6.1 44.07468 402 Nucleus SabHLH043 GOSA_00010462-RA ON400902 780 9.38 28.2595 260 Nucleus SabHLH044 GOSA_00010702-RA ON400889 1,980 5.31 72.66926 660 Cytoplasm SabHLH045 GOSA_00010762-RA ON400890 987 4.76 37.56619 329 Nucleus SabHLH047 GOSA_0001172-RA ON400890 987 4.76 37.56619 329 Nucleus SabHLH047 GOSA_00011122-RA ON400918 258 4.47 10.03095 86 Nucleus SabHLH048 GOSA_00011128-RA ON400916 762 5.4 29.04995 254 Nucleus SabHLH051 GOSA_00011283-RA ON400910 1,389 9.43 50.93376 463 Nucleus SabHLH053 GOSA_00011283-RA ON400923 792 5.48 30.25622 264 Nucleus SabHLH056 GOSA	SabHLH041	GOSA_00008720-RA	ON400875	1,011	6.26	36.6356	337	Nucleus
SabHLH043 GOSA_00010462-RA ON400802 780 9.38 28.2595 260 Nucleus SabHLH044 GOSA_00010702-RA ON400889 1,980 5.31 72.66926 660 Cytoplasm SabHLH045 GOSA_00010732-RA ON400891 1,206 6.54 45.62066 402 Nucleus SabHLH047 GOSA_00011122-RA ON400891 1,209 5.56 42.58493 403 Nucleus SabHLH047 GOSA_00011177-RA ON400918 258 4.47 10.03095 86 Nucleus SabHLH049 GOSA_00011177-RA ON400916 762 5.4 29.04995 254 Nucleus SabHLH051 GOSA_0001182-RA ON400920 960 6.13 35.77709 320 Nucleus SabHLH053 GOSA_0001183-RA ON400910 1,389 9.43 5.93376 463 Nucleus SabHLH054 GOSA_0001398-RA ON400923 792 5.48 30.25622 264 Nucleus SabHLH055 GOSA	SabHLH042	GOSA_00010211-RA	ON400903	1,206	6.1	44.07468	402	Nucleus
SabHLH044 GOSA_00010702-RA ON400889 1,980 5.31 72.66926 660 Cytoplasm SabHLH045 GOSA_00010765-RA ON400890 987 4.76 37.56619 329 Nucleus SabHLH046 GOSA_00011765-RA ON400890 987 4.76 37.56619 329 Nucleus SabHLH047 GOSA_00011177-RA ON400918 258 4.47 10.03095 86 Nucleus SabHLH049 GOSA_00011177-RA ON400917 690 6.6 25.00963 230 Nucleus SabHLH051 GOSA_00011282-RA ON400917 690 6.13 35.77709 320 Nucleus SabHLH052 GOSA_00011283-RA ON400910 1,389 9.43 50.93376 463 Nucleus SabHLH054 GOSA_00012457-RA ON400926 960 5.36 35.7185 320 Nucleus SabHLH055 GOSA_0001301-RA ON400922 390 5.06 14.57895 130 Nucleus SabHLH056 GOSA_	SabHLH043	GOSA_00010462-RA	ON400902	780	9.38	28.2595	260	Nucleus
SabHLH045 GOSA_00010732-RA ON400891 1,206 6.54 45,62066 402 Nucleus SabHLH046 GOSA_00010765-RA ON400890 987 4.76 37,56619 329 Nucleus SabHLH047 GOSA_00011122-RA ON400919 1,209 5.56 42,55493 403 Nucleus SabHLH048 GOSA_00011177-RA ON400916 762 5.4 29,04995 254 Nucleus SabHLH050 GOSA_00011282-RA ON400917 690 6.6 25,60963 230 Nucleus SabHLH051 GOSA_00011287-RA ON400910 1,389 9,43 50,93376 463 Nucleus SabHLH052 GOSA_00011247-RA ON400910 1,389 9,43 50,93376 463 Nucleus SabHLH054 GOSA_00012457-RA ON400923 792 5,48 30,25622 264 Nucleus SabHLH055 GOSA_00013011-RA ON400921 804 8,37 30,67592 268 Nucleus SabHLH058 G	SabHLH044	GOSA_00010702-RA	ON400889	1,980	5.31	72.66926	660	Cytoplasm
SabHLH046 GOSA_00010765-RA ON400890 987 4.76 37.56619 329 Nucleus SabHLH047 GOSA_00011122-RA ON400919 1,209 5.56 42.58493 403 Nucleus SabHLH048 GOSA_00011171-RA ON400918 258 4.47 10.03095 86 Nucleus SabHLH050 GOSA_00011128-RA ON400917 690 6.6 25.60963 230 Nucleus SabHLH051 GOSA_00011283-RA ON400917 690 6.13 35.77709 320 Nucleus SabHLH053 GOSA_00011938-RA ON400910 1,389 9.43 50.93376 463 Nucleus SabHLH054 GOSA_00011938-RA ON400910 1,389 9.43 50.93376 463 Nucleus SabHLH055 GOSA_00012983-RA ON400922 390 5.06 14.57895 130 Nucleus SabHLH056 GOSA_00013017-RA ON400921 804 8.37 30.67592 268 Nucleus SabHLH056 GOS	SabHLH045	GOSA_00010732-RA	ON400891	1,206	6.54	45.62066	402	Nucleus
SabHLH047 GOSA_00011122-RA ON400919 1,209 5.56 42.58493 403 Nucleus SabHLH048 GOSA_00011171-RA ON400918 258 4.47 10.03095 86 Nucleus SabHLH049 GOSA_00011177-RA ON400916 762 5.4 29.04995 254 Nucleus SabHLH050 GOSA_00011282-RA ON400917 690 6.6 25.60983 230 Nucleus SabHLH051 GOSA_00011283-RA ON400910 1,389 9.43 50.93376 463 Nucleus SabHLH055 GOSA_00012983-RA ON400923 792 5.48 30.25622 264 Nucleus SabHLH055 GOSA_00013098-RA ON400921 804 8.37 30.67592 268 Nucleus SabHLH057 GOSA_00013013158-RA ON400921 804 8.37 30.67592 268 Nucleus SabHLH058 GOSA_00013158-RA ON400907 963 4.95 36.1451 321 Nucleus SabHLH059 GOSA	SabHLH046	GOSA_00010765-RA	ON400890	987	4.76	37.56619	329	Nucleus
SabHLH048 GOSA_00011171-HA ON400918 258 4.47 10.03095 86 Nucleus SabHLH049 GOSA_00011187-FA ON400916 762 5.4 29.04995 254 Nucleus SabHLH051 GOSA_00011282-FA ON400917 690 6.6 25.60963 230 Nucleus SabHLH051 GOSA_00011283-FA ON400911 1,194 8.63 43.00472 389 Nucleus SabHLH053 GOSA_000112457-FA ON400910 1,389 9.43 50.93376 463 Nucleus SabHLH054 GOSA_00012457-FA ON400923 792 5.48 30.25622 264 Nucleus SabHLH056 GOSA_00013009-FA ON400921 804 8.37 30.67592 268 Nucleus SabHLH057 GOSA_0001311-FA ON400921 804 8.37 30.67592 268 Nucleus SabHLH058 GOSA_00013161-FA ON400907 963 4.95 36.1451 321 Nucleus SabHLH059 GOSA_00	SabHLH047	GOSA_00011122-RA	ON400919	1,209	5.56	42.58493	403	Nucleus
SabHLH049 GOSA_00011177-HA ON400916 762 5.4 29.04995 254 Nucleus SabHLH050 GOSA_00011282-RA ON400917 690 6.6 25.60963 230 Nucleus SabHLH051 GOSA_00011283-RA ON400920 960 6.13 35.77709 320 Nucleus SabHLH052 GOSA_00011847-RA ON400910 1,194 8.63 43.00472 389 Nucleus SabHLH054 GOSA_00012457-RA ON400926 960 5.36 35.7185 320 Nucleus SabHLH055 GOSA_00012983-RA ON400923 792 5.48 30.25622 264 Nucleus SabHLH056 GOSA_0013011-RA ON400921 804 8.37 30.67592 268 Nucleus SabHLH058 GOSA_0013158-RA ON400921 804 8.37 30.67592 268 Nucleus SabHLH059 GOSA_0013158-RA ON400907 963 4.95 36.1451 321 Nucleus SabHLH059 GOSA_0013229	SabHLH048	GOSA_00011171-RA	ON400918	258	4.47	10.03095	86	Nucleus
SabHLH050 GOSA_00011282-RA ON400917 690 6.6 25.60963 230 Nucleus SabHLH051 GOSA_00011283-RA ON400920 960 6.13 35.77709 320 Nucleus SabHLH052 GOSA_00011847-RA ON400911 1,194 8.63 43.00472 389 Nucleus SabHLH053 GOSA_00012457-RA ON400910 1,389 9.43 50.93376 463 Nucleus SabHLH054 GOSA_00012457-RA ON400923 792 5.48 30.25622 264 Nucleus SabHLH055 GOSA_00013009-RA ON400923 792 5.48 30.267592 268 Nucleus SabHLH056 GOSA_00013017-RA ON400921 804 8.37 30.67592 268 Nucleus SabHLH058 GOSA_00013158-RA ON400907 963 4.95 36.1451 321 Nucleus SabHLH059 GOSA_00013229-RA ON400906 1,203 6.24 43.18755 401 Nucleus SabHLH060 GO	SabHLH049	GOSA_00011177-RA	ON400916	762	5.4	29.04995	254	Nucleus
SabHLH051 GOSA_00011283-RA ON400920 960 6.13 35.77709 320 Nucleus SabHLH052 GOSA_00011847-RA ON400911 1,194 8.63 43.00472 389 Nucleus SabHLH053 GOSA_00011938-RA ON400910 1,389 9.43 50.93376 463 Nucleus SabHLH054 GOSA_00012457-RA ON400926 960 5.36 35.7185 320 Nucleus SabHLH055 GOSA_00012983-RA ON400923 792 5.48 30.25622 264 Nucleus SabHLH056 GOSA_0001301-RA ON400921 804 8.37 30.67592 268 Nucleus SabHLH057 GOSA_00013158-RA ON400921 804 8.37 30.67592 268 Nucleus SabHLH059 GOSA_00013161-RA ON400906 1,203 6.24 43.18755 401 Nucleus SabHLH060 GOSA_00013229-RA ON400873 1,584 9.3 59.38059 528 Nucleus SabHLH061 GO	SabHLH050	GOSA_00011282-RA	ON400917	690	6.6	25.60963	230	Nucleus
SabHLH052 GOSA_00011847-HA ON400911 1,194 8.63 43.00472 389 Nucleus SabHLH053 GOSA_00011938-RA ON400910 1,389 9.43 50.93376 463 Nucleus SabHLH054 GOSA_00012457-RA ON400926 960 5.36 35.7185 320 Nucleus SabHLH055 GOSA_00012983-RA ON400923 792 5.48 30.25622 264 Nucleus SabHLH056 GOSA_0001309-RA ON400922 390 5.06 14.57895 130 Nucleus SabHLH057 GOSA_0001311-RA ON400921 804 8.37 30.67592 268 Nucleus SabHLH058 GOSA_00013158-RA ON400907 963 4.95 36.1451 321 Nucleus SabHLH059 GOSA_00013161-RA ON400906 1,203 6.24 43.18755 401 Nucleus SabHLH060 GOSA_00013409-RA ON400906 1,203 6.24 43.18755 401 Nucleus SabHLH061 GOS	SabHLH051	GOSA_00011283-RA	ON400920	960	6.13	35.77709	320	Nucleus
SabHLH053 GOSA_00011938-RA ON400910 1,389 9.43 50.937/6 463 Nucleus SabHLH054 GOSA_00012457-RA ON400926 960 5.36 35.7185 320 Nucleus SabHLH055 GOSA_00012983-RA ON400923 792 5.48 30.25622 264 Nucleus SabHLH056 GOSA_0001309-RA ON400922 390 5.06 14.57895 130 Nucleus SabHLH057 GOSA_00013011-RA ON400921 804 8.37 30.67592 268 Nucleus SabHLH058 GOSA_00013158-RA ON400908 1,017 5.35 37.85607 339 Nucleus SabHLH059 GOSA_00013161-RA ON400907 963 4.95 36.1451 321 Nucleus SabHLH060 GOSA_00013229-RA ON400906 1,203 6.24 43.18755 401 Nucleus SabHLH061 GOSA_00014741-RA ON40084 471 10.91 17.91746 157 Nucleus SabHLH063 GOSA	SabHLH052	GOSA_00011847-RA	ON400911	1,194	8.63	43.00472	389	Nucleus
SabHLH054 GOSA_00012457-RA ON400926 960 5.36 35.7185 320 Nucleus SabHLH055 GOSA_00012983-RA ON400923 792 5.48 30.25622 264 Nucleus SabHLH056 GOSA_0001309-RA ON400922 390 5.06 14.57895 130 Nucleus SabHLH057 GOSA_00013011-RA ON400921 804 8.37 30.67592 268 Nucleus SabHLH058 GOSA_00013158-RA ON400908 1,017 5.35 37.85607 339 Nucleus SabHLH059 GOSA_00013161-RA ON400907 963 4.95 36.1451 321 Nucleus SabHLH061 GOSA_00013229-RA ON400906 1,203 6.24 43.18755 401 Nucleus SabHLH061 GOSA_00013409-RA ON40084 471 10.91 17.91746 157 Nucleus SabHLH062 GOSA_00014741-RA ON400873 1,584 9.3 59.38059 528 Nucleus SabHLH063 GOSA_	SabhLH053	GOSA_00011938-RA	ON400910	1,389	9.43	50.93376	463	INUCIEUS
SabHLH055 GOSA_00012983-RA ON400923 792 5.48 30.25622 264 Nucleus SabHLH056 GOSA_00013009-RA ON400922 390 5.06 14.57895 130 Nucleus SabHLH057 GOSA_00013011-RA ON400921 804 8.37 30.67592 268 Nucleus SabHLH058 GOSA_00013158-RA ON400908 1,017 5.35 37.85607 339 Nucleus SabHLH059 GOSA_00013161-RA ON400907 963 4.95 36.1451 321 Nucleus SabHLH060 GOSA_00013229-RA ON400906 1,203 6.24 43.18755 401 Nucleus SabHLH061 GOSA_00013409-RA ON40084 471 10.91 17.91746 157 Nucleus SabHLH062 GOSA_00014741-RA ON400873 1,584 9.3 59.38059 528 Nucleus SabHLH063 GOSA_0001503-RA ON400852 933 5.93 33.2459 311 Nucleus SabHLH064 GOSA_	SabhLH054	GOSA_00012457-RA	ON400926	960	5.36	35.7185	320	Nucleus
SabhLH056 GOSA_00013009-RA ON400922 390 5.06 14.57895 130 Nucleus SabhLH057 GOSA_00013011-RA ON400921 804 8.37 30.67592 268 Nucleus SabhLH058 GOSA_00013158-RA ON400908 1,017 5.35 37.85607 339 Nucleus SabhLH059 GOSA_00013161-RA ON400907 963 4.95 36.1451 321 Nucleus SabhLH060 GOSA_00013229-RA ON400906 1,203 6.24 43.18755 401 Nucleus SabhLH061 GOSA_00013409-RA ON40084 471 10.91 17.91746 157 Nucleus SabhLH062 GOSA_00014741-RA ON400873 1,584 9.3 59.38059 528 Nucleus SabhLH063 GOSA_0001503-RA ON400852 933 5.93 33.2459 311 Nucleus SabhLH064 GOSA_00015812-RA ON400914 1,479 5.57 55.14247 493 Nucleus SabHLH065 GOS	Sabhlhuss	GUSA_00012983-RA	ON400923	792	5.48	30.25622	264	Nucleus
SabhLH057 GOSA_00013011-RA ON400921 804 8.37 30.07592 268 Nucleus SabhLH058 GOSA_00013158-RA ON400908 1,017 5.35 37.85607 339 Nucleus SabhLH059 GOSA_00013161-RA ON400907 963 4.95 36.1451 321 Nucleus SabhLH060 GOSA_00013229-RA ON400906 1,203 6.24 43.18755 401 Nucleus SabhLH061 GOSA_00013409-RA ON400894 471 10.91 17.91746 157 Nucleus SabhLH062 GOSA_00014741-RA ON400873 1,584 9.3 59.38059 528 Nucleus SabhLH063 GOSA_0001503-RA ON400852 933 5.93 33.2459 311 Nucleus SabHLH064 GOSA_00015228-RA ON400914 1,479 5.57 55.14247 493 Nucleus SabHLH065 GOSA_00015812-RA ON400905 441 10.26 16.50293 147 Nucleus Un	Sabhlhuso	GOSA_00013009-RA	ON400922	390	5.06	14.57895	130	Nucleus
SabhLh059 GOSA_00013156-HA ON400906 1,017 5.35 37.85007 339 Nucleus SabhLH059 GOSA_00013161-RA ON400907 963 4.95 36.1451 321 Nucleus SabhLH060 GOSA_00013229-RA ON400906 1,203 6.24 43.18755 401 Nucleus SabhLH061 GOSA_00014309-RA ON400894 471 10.91 17.91746 157 Nucleus SabhLH062 GOSA_00014741-RA ON400873 1,584 9.3 59.38059 528 Nucleus SabhLH063 GOSA_0001503-RA ON400852 933 5.93 33.2459 311 Nucleus SabHLH064 GOSA_00015228-RA ON400914 1,479 5.57 55.14247 493 Nucleus SabHLH065 GOSA_00015812-RA ON400905 441 10.26 16.50293 147 Nucleus		GUSA_UUUISUII-KA	ON400921	004	0.37	30.01392	200	Nucleus
SabHLH060 GOSA_00013229-RA ON400907 963 4.95 35.1451 321 Nucleus SabHLH060 GOSA_00013229-RA ON400906 1,203 6.24 43.18755 401 Nucleus SabHLH061 GOSA_00013409-RA ON400894 471 10.91 17.91746 157 Nucleus SabHLH062 GOSA_00014741-RA ON400873 1,584 9.3 59.38059 528 Nucleus SabHLH063 GOSA_0001503-RA ON400852 933 5.93 33.2459 311 Nucleus SabHLH064 GOSA_00015228-RA ON400914 1,479 5.57 55.14247 493 Nucleus SabHLH065 GOSA_00015812-RA ON400905 441 10.26 16.50293 147 Nucleus		GUSA_UUU IS 158-KA		1,017	0.00	0/.0000/ 26 1/51	303	Nucleus
Cash Li loos GOSA_00013228TrA ON400800 1,205 6,24 43,16755 401 NUcleus SabhLH061 GOSA_00013409-RA ON400894 471 10.91 17,91746 157 Nucleus SabhLH062 GOSA_00014741-RA ON400873 1,584 9.3 59.38059 528 Nucleus SabhLH063 GOSA_00015033-RA ON400852 933 5.93 33.2459 311 Nucleus SabHLH064 GOSA_00015228-RA ON400914 1,479 5.57 55.14247 493 Nucleus SabHLH065 GOSA_00015812-RA ON400905 441 10.26 16.50293 147 Nucleus (Continued on following page)	Sabhi Laco	GOSA_00013101-HA	ON400907	1 203	4.90	JU. 1401	32 I 401	Nucleus
Cabine Icorr COSA_0001540511K ON400854 471 10.91 17.91746 157 NUcleus SabhLH062 GOSA_00014741-RA ON400873 1,584 9.3 59.38059 528 Nucleus SabhLH063 GOSA_00015033-RA ON400852 933 5.93 33.2459 311 Nucleus SabHLH064 GOSA_00015228-RA ON400914 1,479 5.57 55.14247 493 Nucleus SabHLH065 GOSA_00015812-RA ON400905 441 10.26 16.50293 147 Nucleus (Continued on following page) Interview		GOSA_00013229-KA	011400900	1,203	10.24	40.10/00	401	Nucleus
SabHLH063 GOSA_00015033-RA ON400875 1,564 9.3 59.30059 526 NUcleus SabHLH063 GOSA_00015033-RA ON400852 933 5.93 33.2459 311 Nucleus SabHLH064 GOSA_00015228-RA ON400914 1,479 5.57 55.14247 493 Nucleus SabHLH065 GOSA_00015812-RA ON400905 441 10.26 16.50293 147 Nucleus (Continued on following page)		COSA_00010409-KA	ON400094	4/1	10.91	50 20050	500	Nucleus
SabHLH064 GOSA_00015228-RA ON400905 441 5.57 55.14247 493 Nucleus SabHLH065 GOSA_00015812-RA ON400905 441 10.26 16.50293 147 Nucleus (Continued on following page) Image: Continued on following page)	SabHI HOR2	GOSA_00014/41-KA	ON400873	1,004	9.0 5.02	33 3450	020 311	Nucleus
SabHLH065 GOSA_00015812-RA ON400905 441 10.26 16.50293 147 Nucleus (Continued on following page)	SabHI H064	GOSA 00015033-RA		900 1 470	5.50 5.57	55 14247	102	Nucleus
(Continued on following page)	SabHI H065	GOSA 00015812-RA	ON400905	441	10.26	16 50293	147	Nucleus
			0.1.00000				(Con	tinued on following page)

TABLE 1	(Continued	Characteristics	of bHI H at	ene familv in	S aralocaspica
	1001101000	onaraotonotioo	OI DI ILLI I GO		o. uruloouopiou.

Gene name	Genome ID	GenBank	ORF (bp)	pl	MW (kDa)	Size (aa)	Subcellular location
SabHLH066	GOSA_00016476-RA	ON400909	813	7.63	31.04324	271	Nucleus
SabHLH067	GOSA_00018427-RA	ON400853	1,008	5.68	37.65921	336	Nucleus
SabHLH068	GOSA_00018432-RA	ON400854	1,068	6.95	39.4324	356	Nucleus
SabHLH069	GOSA_00018520-RA	ON400887	828	9.14	30.15356	276	Nucleus
SabHLH070	GOSA_00018672-RA	ON400927	1,023	6.27	37.64574	341	Nucleus
SabHLH071	GOSA_00018673-RA	ON400928	1,188	5.84	33.1677	296	Nucleus
SabHLH072	GOSA_00018924-RA	ON400929	1,017	5.73	37.30524	339	Nucleus
SabHLH073	GOSA_00019477-RA	ON400901	765	5.77	27.0998	255	Nucleus
SabHLH074	GOSA_00019526-RA	ON400898	1,503	5.97	55.38031	501	Nucleus
SabHLH075	GOSA_00019527-RA	ON400900	1,530	5.97	56.18658	510	Nucleus
SabHLH076	GOSA_00019547-RA	ON400899	2,097	5.96	77.3953	699	Nucleus
SabHLH077	GOSA_00020011-RA	ON400924	1,071	4.83	38.69557	357	Nucleus
SabHLH078	GOSA_00020455-RA	ON400895	1,929	5.43	73.52925	643	Nucleus
SabHLH079	GOSA_00020680-RA	ON400925	1,791	5.3	65.85017	597	Nucleus
SabHLH080	GOSA_00022456-RA	ON400882	1,416	5.47	52.09624	472	Nucleus
SabHLH081	GOSA_00022501-RA	ON400880	1,593	5.62	57.19449	531	Nucleus
SabHLH082	GOSA_00022531-RA	ON400881	747	6.61	28.33789	249	Nucleus
SabHLH083	GOSA_00026973-RA	ON400915	945	7	35.06321	315	Nucleus

from 4.47 (SabHLH048) to 10.91 (SabHLH061). Predictions of subcellular localizations revealed that all SabHLH proteins were localized only in the nucleus, except for SabHLH038

was located in the chloroplast and nucleus, and SabHLH044 was located in the cytoplasm. Detailed information on *SabHLH* family members is shown in **Table 1**.

FIGURE 2 | Phylogenetic relationships, motifs analysis, and gene structure of *bHLHs* in *S. aralocaspica*. (A) Rootless Neighbor-Joining (NJ) phylogenetic tree of 83 full-length amino acid sequences of SabHLH proteins. The different subfamilies numbered from I to XIII were marked using different color backgrounds. (B) Conserved motifs of SabHLH proteins. Different motifs are indicated by different color boxes numbered 1–10, and motif sizes can be estimated by the scale (bp) at the bottom. (C) Exon-intron structure of *SabHLH* genes. Grey lines represent introns, orange boxes represent exons, and blue boxes represent untranslated regions (UTRs). The numbers 0, 1, and 2 represent the intron phases.

Phylogenetic Analysis of bHLHs in *S. aralocaspica*

To investigate the evolutionary relationships among SabHLH proteins, an unrooted NJ phylogenetic tree was constructed using the FL amino acid sequences of 83 SabHLH and 162 AtbHLH proteins (**Supplementary Table S1**). The SabHLH members were clustered into 21 subfamilies based on tree topology and classification of the bHLH superfamily in *Arabidopsis*, which is consistent with the finding that the bHLH family can be divided into 15–25 subfamilies (Toledo-Ortiz et al., 2003). The 21 subfamilies were designated as I a, I b, II, III a, III b, III c, III d+e, III f, IV a, IV c, IV d, V a, V b, VI, VII a + b, VIII a, VIII b + c, IX, XI, XII, and XIII (**Figure 1**). Subfamily VIII b+c contained the

largest number of SabHLHs (9) and AtbHLHs (11), while subfamilies XIII, II, IV d, and VIII a were smaller, containing only one SabHLH, with the remaining subfamily containing 2–8 SabHLH members. No SabHLHs were found in subfamily X, possibly due to the loss of individual *SabHLH* genes during evolution.

Gene Structure and Conserved Motif Analysis of *SabHLHs*

Structure analyses revealed that different isoforms of *SabHLH* genes exhibited large differences in their exon/intron structures, and the number of introns varied from 0 to 12, corresponding to one to 11 exons (**Figure 2**). While most

SabHLH genes contained one to eight introns, 34 SabHLH genes were intron-less and distributed across all subfamilies, particularly subfamilies VIII b+c and IIId+e, which contain four intron-less genes (Figure 2C). Ten conserved motifs were identified in the SabHLH gene family, and the length of the conserved motifs ranged from nine (motif 7) to 41 (motifs 5 and 10) amino acids (Figure 2B). These patterns of motif composition tended to be consistent with the phylogenetic tree, and the SabHLHs within each subfamily shared similar motif compositions; however, these varied greatly among different subfamilies. Most sequences exhibited two types of highly conserved protein motifs: green (motif 1) and yellow (motif 2) blocks, representing the position of the bHLH domain. Some of the other eight motifs were present only in certain groups, such as motif 5 present in superfamily XI, motif 9 in superfamily VIII b + c, motif 10 in superfamilies I b, V b, III d + e, III a + b + c, and III f; motif 6 in superfamilies III d + e, IV c, and V a; and motif 3 in superfamilies IX and XII. Superfamily III d + e possessed the most motifs, and genes in the other groups presented more complex structures. Different motifs may be related to the unique functions of the individual subfamilies.

Cis-Acting Regulatory Element Analysis of SabHLH Promoters

The retrieved 2,000 bp sequences upstream of the start codon of SabHLH genes were queried to predict cis-regulatory elements using the PlantCARE database. Fourteen varieties of cis-elements were detected from 83 SabHLHs genes, which are involved in the response to light (i.e., G-box, GT1-motif, MRE, and ACE), phytohormones [ABA (abscisic acid, ABRE), JA (methyl jasmonate, CGTCA-motif), GA3 (gibberellin, GARE-motif), SA (salicylic acid, TCA-element), and auxin (TGA-element)], abiotic stresses [including drought (MBS), low temperature (LTR), and wound-responsive (WUN-motif)], defense- and stressresponsive (TC-rich repeats), anoxic specific inducibility (GCmotif), biotic stress (anaerobic induction, ARE), circadian control (circadian, CAAAGATATC), and seed-specific regulation (RYelement) (Supplementary Figure S1). The number of cis-acting elements involved in the light response was the highest, followed by hormone and stress responses. Notably, two genes, SabHLH056 and SabHLH057, contained the largest numbers of low temperature-response and JA-response elements, respectively. These findings indicated that the SabHLHs family may participate in various plant hormone signaling pathways and

are linked to stress resistance, plant growth, and development in *S. aralocaspica*.

Interaction Network Prediction and Functional Classification of SabHLHs

To predict the functions of SabHLHs, a putative interaction network was constructed using the STRING database based on ortholog proteins in *Arabidopsis* (Figure 3), which is consistent with previous reports that the binding activity of bHLH proteins depends on the formation of homodimers or heterodimers among bHLH proteins (Carretero-Paulet et al., 2010). A total of 58 SabHLH proteins had orthologs in *Arabidopsis*, and 52 SabHLHs were predicted to have a protein-interaction relationship. Overall, several important interactions were predicted, as shown in Figure 3. ICE1 (homolog of SabHLH014 and SabHLH028) can interact with FMA (homolog of SabHLH079), SPCH (homolog of SabHLH077), and MUTE (homolog of SabHLH021) to regulate stomatal differentiation in *Arabidopsis* (Marcos et al., 2017). PIF3 (homolog of SabHLH037) interacts with PIL5 (homolog of SabHLH031 and SabHLH051), which is involved in the regulation of plant photomorphogenesis (Bu et al., 2011). PYE (homolog of SabHLH020) interacts with ILR3 (homolog of SabHLH035) to maintain iron homeostasis under low-iron conditions and positively regulates growth and development under iron-deficient conditions (Long et al., 2010; Selote et al., 2015). HEC2 (homolog of SabHLH069) and HEC3 (homolog of SabHLH061) can interact with SPT (homolog of SabHLH042) to regulate pistil development (Gremski et al., 2007). These results illustrate the functional diversity of TF genes. Although further experiments are needed to evaluate all potential interactions, the predicted network provides insights for studies on the functions of SabHLH family members.

The functions of *SabHLH* genes were subjected to GO and KEGG analyses (**Figure 4**). GO functions are divided into three aspects: cell component (CC), molecular function (MF), and biological process (BP). The MF and BP aspects mainly

describe the molecular activities of multiple genes, and the CC aspect describes the locations where gene products are active. In the MF category, *SabHLH* genes were significantly enriched for binding (n = 26, 43.3%) and transcription regulator activity (n = 60, 100%). In the BP category, genes were enriched in biological regulation (n = 60, 100%), metabolic processes (n = 60, 100%),

cellular processes (n = 60, 100%), developmental processes (n = 24, 40%), reproductive processes (n = 6, 10%) and multiorganism processes (n = 6, 10%). In the CC category, genes were enriched in cells (n = 35, 58.3%) and organelles (n = 35, 58.3%) (**Figure 4A**). The results for GO function enrichment showed that members of the plant *bHLH* gene family possess

FIGURE 6 | Gene expression of eight *SabHLH* candidate genes under different abiotic stresses at seedling stages based on qRT-PCR. 100, 300, and 500 mmol L⁻¹ NaCl were used to simulate salt stress. 5% and 10% PEG were used to simulate drought stress. Cold stress was exposure to 4°C treatment for 0, 2, 4, 8 and 12 h. Different lowercase letters indicate a significant difference of the same gene at different treatments. Values are means \pm SD of three biological replicates.

multiple functions and are important for plant resistance, growth, and development. KEGG enrichment analysis also indicated that the SabHLH family functions in various transduction pathways as TFs, and some members are involved in plant hormone signal transduction, environmental information processing, and genetic information processing (**Figure 4B**). These functions and processes are closely related to the main function of the SabHLH protein, which functions as a TF that regulates the expression of downstream genes.

Spatial and Temporal Expression Patterns of *SabHLH* Genes

The expression patterns of SabHLH genes in different tissues (leaf, fruit, stem, root, and mixed tissue) and germination of dimorphic seeds (dry, imbibed, and germinated seeds) were analyzed based on available RNA-Seq data (Wang L. et al., 2017; Wang et al., 2019a). As shown in Figure 5A, a large number of SabHLH genes accumulated more transcripts during dimorphic seed germination compared to dry seeds, and the brown seedlings responded quicker and more highly than the black ones. Twenty-two SabHLH genes presented similar expression patterns in BIS and BrS, and half of these genes were highly expressed in seedlings germinated from brown (SabHLH-032, -050, -051, -056, -058, -059, -065, -071, -075, -078, and -083) and black (SabHLH-008, -018, -022, -023, -039, -042, -045, -048, -060, -062, and -073) seeds, respectively, suggesting that these genes may play distinct roles in dimorphic seed germination and seedling development. As shown in Figure 5B, among 83 SabHLH genes, four were specifically detected in mixed tissues, and eight were not expressed in any of the detected tissues. The majority of SabHLH genes presented different expression patterns, whereas a few exhibited similar expression profiles, and could be divided into two groups. Group I genes were expressed at relatively high levels in roots, steam, and leaves, and at low levels in fruits, whereas group II genes were expressed at high levels in fruits. In addition, several SabHLHs were expressed at very high levels in specific tissues. For example, eight genes (SabHLH-008, -030, -031, -047, -061, -064, -069, and -071) were expressed at the highest levels in fruit and may play specific roles in fruit development. Overall, most SabHLH genes were expressed in roots, and the number of expressed genes in different tissues followed the order root > fruit > stem > leaf.

Expression Profiles of SabHLH Genes in Response to Abiotic Stresses

To investigate the responses of *SabHLHs* to NaCl, PEG, low temperature, and different phytohormones in developing seedlings, the transcriptional expression patterns of the eight *SabHLH* genes were analyzed by qRT-PCR. These genes were selected because they are highly expressed in different tissues and developing seedlings. The majority of these eight *SabHLH* genes were significantly upregulated with the increasing degree of salt and drought stress and downregulated under extended durations of cold treatment (**Figure 6**). In addition, high expression levels of most *SabHLHs* were observed under ABA, MeJA, and SA treatments, while some genes were downregulated under GA₃ treatment (**Figure 7**).

After salt treatment, seven genes (*SabHLH-011*, -014, -026, -028, -038, -048, and -059) were more highly expressed under 100 mmol L^{-1} NaCl, while *SabHLH037* expression was not changed. The expression levels of five genes (*SabHLH011*, -014, -028, -038, and -059) were significantly increased by at least 20-fold. Under 300 mmol L^{-1} salt treatment, the expression of *SabHLH011* and *SabHLH014* increased 26.6- and 6-fold, respectively, while the expression of other genes did not

FIGURE 7 | Gene expression of eight SabHLH candidate genes under different hormone treatments at seeding stage based on qRT-PCR. Treatment with 0.5μ mol L⁻¹ abscisic acid (ABA), 0.5μ mol L⁻¹ methyl jasmonate (MeJA), 1.5 mg mL^{-1} salicylic acid (SA), and 800 mg mL⁻¹ gibberellic acid (GA₃) for 0 h, 8 h, and 3 days, respectively. Different lowercase letters indicate a significant difference of the same gene at different treatments. Values are means ± SD of three biological replicates.

change. Under high concentrations (500 mmol L^{-1}) of salt, the relative expression levels of *SabHLH026* and *SabHLH048* increased by 3- and 2-fold, respectively (**Figure 6**).

The relative expression levels of SabHLH028, SabHLH037 and SabHLH038 were significantly upregulated under increasing concentrations of PEG. The relative expression levels of five genes (SabHLH-011, -014, -026, -048, and -059) showed a similar trend, being significantly increased under 5% PEG treatment, but downregulated under 10% PEG treatment. The expression of SabHLH011, SabHLH014 and SabHLH026 increased 11.6-, 5.5- and 24.5-fold, respectively; notably, SabHLH059 gene expression peaked at an 80-fold increase. However, the relative expression levels of SabHLH028 and SabHLH037 increased under 10% PEG treatment but were not significantly different from the control. SabHLH028 and SabHLH037 were increased 11.1- and 1.3-fold, respectively (Figure 6).

After cold stress treatment, the expression levels of five genes (SabHLH-011, -014, -037, -038, and -048) were downregulated, while those of SabHLH028 and SabHLH059 were significantly upregulated and then downregulated, respectively, whereas the opposite was true for SabHLH026. The expression levels of SabHLH028 and SabHLH059 increased by 1.15- and 2.01-fold after 2 h of treatment (Figure 6).

Many SabHLHs responded to more than one hormone treatment in S. aralocaspica, and four genes were partially induced by the four hormone (ABA, GA₃, MeJA, and SA) treatments. Interestingly, SabHLH011 and SabHLH026 were upregulated under all four hormone treatments, whereas SabHLH028 and SabHLH038 were downregulated (Figure 7). Four genes (SabHLH-011, -014, -026, and -037) were induced under ABA treatment (Figure 7), two genes (SabHLH011 and SabHLH026) were induced under GA₃ treatment (Figure 7), and four genes (SabHLH-011, -026, -037, and -048) were upregulated under MeJA and SA treatments (Figure 7). Notably, SabHLH011 presented low or no expression in different tissues but was highly expressed following hormone treatment. Conversely, some genes that were normally highly expressed in different tissues were unresponsive to hormone treatment. Overall, most SabHLH genes responded to hormone treatments, indicating that this gene family plays important roles in hormone regulation in S. aralocaspica.

Among the eight SabHLH genes, SabHLH011 was expressed at the highest level. Moreover, genes from the same clade presented similar expression patterns under certain hormonal treatments. For example, SabHLH014 and SabHLH028 from the III b subfamily followed similar expression patterns under ABA and GA₃ treatments (**Figure** 7). However, their expression differed under ABA, MeJA and SA treatments, where SabHLH059 was significantly downregulated and SabHLH011 was significantly upregulated. In addition, analysis of cis-acting elements revealed that the promoter regions of these eight SabHLHs contained more than one cis-acting element related to the hormone response. Moreover, qRT-PCR analyses confirmed the hormoneinduced expression characteristics of the eight SabHLH genes.

The Expression Level, Subcellular Localization and Transcriptional Assay of SabHLH169(076)

We previously screened the SabHLH169 (076) protein by DNApull down, but its function remains unknown, so we systematically explored its spatio-temporal expression pattern, its response to different light qualities, hormones, and abiotic stresses, and its subcellular localization and transcriptional selfactivating activity. Based on the available RNA-Seq data, *SabHLH169(076)* accumulated more transcripts with the germination progression in brown seedlings and was preferentially expressed in roots (**Figure 5**). In the present study, the transcriptional expression level of *SabHLH169(076)* increased gradually from 0 to 8 h and was the highest at 2 days after germination. Meanwhile, the expression pattern of *SabHLH169(076)* in different tissues was consistent with the RNA-Seq data and was significantly detected in developing radicles (**Figure 8**).

To investigate the response of SabHLH169(076) to salt, drought, cold stress, and different light qualities in developing seedlings, the expression patterns of SabHLH169(076) were (Figure analvzed 9). According to the results. SabHLH169(076) was significantly upregulated by low salt concentration (100 mmol L^{-1} NaCl) and drought stress (5% PEG), but downregulated by 4°C cold stress, decreasing significantly at 2 h and returning to control levels at 4-12 h after germination. Under different light qualities, SabHLH169(076) expression was the highest under dark conditions, followed by under red, yellow, and blue light. The expression was the lowest under white and green light, suggesting that SabHLH169(076) expression was significantly inhibited by white light. Under different hormone treatments, SabHLH169(076) expression significantly increased at 8 h but decreased at 3 days after germination when exposed to ABA treatment. No significant change in SabHLH169(076) expression was observed under the GA₃, MeJA, and SA treatments. Overall, the trend of SabHLH169(076) expression at the transcriptional level was relatively moderate over the ranges of the tested hormone concentrations.

Prediction of in silico subcellular localization showed that approximately 98% SabHLH proteins were most likely localized in the nucleus (Table 1). A transient transformation assay in tobacco epidermal cells found a strong fluorescent signal for SabHLH169(076) in the nucleus, which is consistent with the prediction by the Plant-mPLoc software (Figure 10B). For the transactivation assay, the FL sequences of SabHLH169(076) and CgbHLH001 (positive control) were fused to the vector pGBKT7 containing the GAL4 DNA-binding domain and subsequently transformed into yeast AH109. The yeast cells grew well on the selection media SD/-Trp and SD/-His-Trp/X-alpha-Gal and exhibited alpha-galactosidase activity. In contrast, AH109 containing the empty vector pGBKT7 (negative control), which lacks the transcriptional activation domain GAL4 AD, was unable to grow on the SD/-His-Trp medium. These results revealed that SabHLH169(076) possesses individual transcriptional activity in yeast (Figure 10D).

DISCUSSION

The bHLH TF family is one of the largest TF gene families in eukaryotic organisms, and regulates multiple aspects of plant growth, development, and stress responses (Riechmann et al., 2000). Therefore, it is necessary to identify the different *bHLH* isoforms and their expression characteristics to further understand their functions. The rapid development of plant genome sequencing technology has boosted the recent identification of *bHLH* gene families in at least 20 plant varieties. However, there have been few reports on desert halophytes. *S. aralocaspica*, a euhalophyte with a unique single-cell C₄ (SCC₄) pathway, has high photosynthetic efficiency and strong stress resistance in heterogeneous habitats (Smith et al., 2009; Sharpe and Offermann, 2014). Previously, we screened a putative SabHLH169 protein (named SabHLH076 in the present study) that may interact with the promoter of the SaPEPC-1 gene (unpublished data), the key photosynthetic enzyme in S. aralocaspica; however, its biological function remains unknown. In the present study, we systemically characterized 83 SabHLH genes from the S. aralocaspica genome, which were clustered into 21 subfamilies. Members of different subfamilies showed large differences in protein sequence length, molecular weight, theoretical pI values and exon/intron structures; however, all were enriched in the nucleus based on the subcellular localization predictions, which is similar to the results in Arabidopsis and other plants (Carretero-Paulet et al., 2010). All SabHLHs contained motifs 1 and 2, the position of the bHLH domain that plays important roles in DNA binding and protein dimerization (Atchley and Fitch, 1997). Expression profiles derived from transcriptome data indicated that a large number of SabHLH genes were highly expressed in roots and fruits, and mainly detected in brown seed during postgermination growth. The expression levels of eight SabHLH genes

were upregulated under abiotic stress and various hormone treatments, which may be partially related to the *cis*-elements distributed on the promoter. In addition, subcellular localization and transcriptional activity experiments showed that the SabHLH169(076) protein was mainly located in the nucleus and was self-activating, which further supports its functions as a TF that is involved in responses to light quality, drought and salt stress. Our results suggest that SabHLH may play an important role in improving the ability of *S. aralocaspica* to resist abiotic stresses during growth and development.

The number of bHLH gene family members is around 100–200 in the vast majority of species (Li et al., 2006; Zhang et al., 2018; Wang et al., 2019b), with other species having notable quantities, such as peach (95) (Zhang et al., 2018) and soybean (319) (Hudson and Hudson, 2015); relatively few (83) bHLH superfamily genes were identified in *S. aralocaspica* in the present study. This finding may be associated with differences in evolution and genome duplication or genome sizes in the plants. Gene duplication is considered one of the primary drivers of gene family

expansion in plants and plays an important role in the evolution of new gene functions and adaptation (Flagel and Wendel, 2009). However, a decrease in the number of genes can also produce important genetic variation, which can in turn have positive effects on plant survival and reproduction. The current "less is more" hypothesis proposes that genenumber reduction events such as pseudogenization or loss of genes are as important as increase events (Yong et al., 2019). Owing to the imperfect state of the current genomic data, further covariance analysis and chromosomal localization of the gene cannot be performed to clarify the evolutionary relationships and localization of the SabHLH gene family. Perhaps the hypothesis can explain why the number of members of the bHLH gene family in S. aralocaspica is low, possibly as a result of selective evolution of S. aralocaspica to adapt to external conditions. The distributions of introns, exons and UTRs vary widely among various bHLH genes. There are 365 exons in the S. aralocaspica bHLH gene family, and 193 exons are symmetric. Among the 371 introns found in the SabHLH genes, 319 were in phase 0,

38 were in phase 1, and 14 were in phase 2. Exons with the same splicing phase at both ends are termed symmetric exons, and an excess of symmetric exons and phase 0 introns is likely to facilitate exon shuffling, recombinational fusion, and protein domain exchange (Gilbert, 1987; Patthy, 1987). Therefore, the analysis of the *bHLH* gene structures in *S. aralocaspica* indicated a large diversity of bHLH TFs, which has also been reported in *Salvia miltiorrhiza* (Zhang et al., 2015) and *Vitis vinifera* (Wang et al., 2018).

Currently, there is no specific classification for grouping the plant *bHLH* gene family, and the subgroups contained in the bHLH gene families of different species vary. The Arabidopsis bHLH gene family contains 15 clades and some orphans (Toledo-Ortiz et al., 2003), rice contains 22 clades (Li et al., 2006), grape contains 15 clades (Wang et al., 2018), and apple contains 18 clades (Ma et al., 2017). These subfamilies are common in most species, suggesting that bHLH proteins in conserved subfamilies might play an important role in plant evolution. The S. aralocaspica bHLH gene family contains 21 clades (Figure 1), with subgroup X containing 10 AtbHLHs, but no SabHLHs, indicating that the species is evolving in multiple directions. Non-conserved bHLH subfamilies among certain plant species may have evolved to meet the developmental needs of plants or in response to stress (Zhang et al., 2020). Considering that approximately 40% of Arabidopsis bHLH proteins have been functionally characterized (Sun et al., 2015; Wang et al., 2018). The clustering and comparison of SabHLH proteins with AtbHLHs can facilitate the prediction of their functions via ortholog analysis. In the present study, there were 16 SabHLHs tightly grouped with the AtbHLH, in which 11 AtbHLH functions were known. For example, AtFIT (AtbHLH029) was the essential protein involved in iron uptake responses (Colangelo and Guerinot, 2004), and AtFAMA (AtbHLH097) could interact with AtSPCH and AtMUTE (AtbHLH045) to regulate stomata formation (Ohashi-Ito and Bergmann, 2006). Therefore, the corresponding SabHLH065, SabHLH079 and SabHLH021 may perform functions similar to those of their Arabidopsis orthologs (Supplementary Table S3).

Patterns of gene expression are important for determining the function and characteristics of the *bHLH* gene family. In the present study, the majority of SabHLH genes were activated in dimorphic seeds and more transcripts were accumulated with the progression of brown seed germination (Figure 5A). According to Wang L. et al. (2017), during the germination process of dimorphic seeds of S. aralocaspica, the secondary metabolism (flavonoid and flavonol biosynthesis) pathway was activated earlier in brown seed compared with in black seed, with the seeds showing different germination behaviors in order to cope with the harsh and unpredictable environment (Guo W. L. et al., 2020). In sheepgrass (Leymus chinensis), LcbHLH92 negatively regulates the accumulation of anthocyanins, with effects on seed coat color and reduction of seed dormancy (Zhao et al., 2019). The yellow seed sheepgrass germplasm was

found to possess lower anthocyanidin contents and germinated more quickly compared with brown seeds. *In S. aralocaspica*, PIF (SabHLH026), was expressed at the highest level in Brs and Bls, which helps seeds to break dormancy and regulate germination during seed development (Wang L. et al., 2017), which is also observed in sheepgrass (Li et al., 2019).

Through KEGG analysis, we observed that SabHLHs also participated in plant hormone signal transduction pathways, so that it may also influence the process of seed germination. ABA and GA3 are key endogenous signaling molecules involved in seed dormancy acquisition or release. Low ABA concentration promoted seed germination and seedling growth in S. aralocaspica (Cao et al., 2015). Consistently, in the present study, exogenous ABA and GA3 treatment significantly upregulated the expression of SabHLH genes (Figure 7). Similar to the functions of bHLH in Brassica napus, SabHLH was highly expressed in root, which may mainly be involved in the regulation of root development, salt and drought stress response, and hormone responses. ABA plays an important role in plant responses to abiotic stresses, such as low temperature, drought, and salinity. In Arabidopsis, AtbHLH17 (AIB) positively responds to NaCl and mannitol stress, AtbHLH129 regulates root elongation and the ABA response, and AtbHLH006 (MYC2) and AtbHLH112 are involved in root growth and tolerance to salt stress (Gupta et al., 2014; Tian et al., 2015; Chen et al., 2017; Du et al., 2018; Peñuelas et al., 2019). bHLH TF AtPRE6 is involved in the ABA-mediated regulation of salt response, and AtPRE6 gene expression levels are reduced in response to ABA treatment but increased during salt treatment (Zheng et al., 2019). In the present study, SabHLH028, SabHLH038 and SabHLH059 exhibited similar trends under ABA and salt treatment (Figures 6, 7), suggesting that they have similar functions in responses to ABA and salt stress responses. Salicylic acid, a simple phenolic compound existing widely in higher plants, not only regulates plant growth and metabolism, but also plays a leading role in plant immunity against disease and environmental stress, such as salt, cold, and heavy metal stress (Zhang et al., 2016). In the present study, only two out of the eight candidate genes were upregulated after exogenous SA treatment, and most of them were downregulated or non-responsive (Figure 7). In Salvia miltiorrhiza, a total of 99 SmbHLH genes were found to respond to SA, but only three were upregulated and 12 were downregulated (Zhang et al., 2016). In the present study, SabHLH037 and SabHLH169(076) highly expressed in roots, were significantly upregulated by ABA, MeJA, and SA treatments. This indicated that the SabHLH genes may play important roles in seed dormancy, germination, root development and hormone signal transduction.

The regulation of gene expression via specific *cis*-regulatory elements in promoter regions has evolved as a major adaptive mechanism in the response of plants to environmental conditions (Walther et al., 2007). *Cis*-element analyses revealed a wide range of stress-responsive elements in the promoters of *SabHLH* genes (**Supplementary Figure S1**). For

example, the promoter regions of SabHLH011, SabHLH028 and SabHLH037 contained 2, 2 and 1 MBS elements (MYB binding sites involved in drought-inducibility), respectively, leading to significantly high expression of these genes under drought stress treatments (Figure 6). This is consistent with the findings of a previous study on pepper bHLH (Liu et al., 2021). Arabidopsis AtUNE12 belongs to the bHLH TF superfamily, which can be induced by NaCl, mannitol and ABA to confer salt and osmotic stress tolerance in plants (He et al., 2021). In the present study, the expression levels of eight candidate SabHLH genes were all increased under NaCl treatment, especially SabHLH038 (homologous to AtUNE12) was significantly upregulated under both NaCl and PEG treatments, and may play a role similar to that of AtUNE12 in S. aralocaspica. SabHLH gene promoters have been observed to harbor 63 LTR elements, indicating that they may be regulated by low temperature (Xu et al., 2014). The CBF cold response pathway plays a central role in cold acclimation (Thomashow, 2001). ICE, a member of the bHLH family, can directly interact with CBF protein to enhance plant tolerance to low temperature (Zarka et al., 2003). In addition, OsICE1 and OsICE2 overexpression significantly enhanced the cold tolerance of Arabidopsis seedlings and improved the expression of cold-response genes (Deng et al., 2017). In the present study, we identified two ICE genes, SabHLH014 and SabHLH028, which positively responded to PEG and NaCl treatments. Under low-temperature stress, SabHLH014 expression tended to decrease, while SabHLH028 expression tended to increase for 2-4 h. Studies have shown that within 6 h of cold stress, upregulated early cold-response genes are mainly associated with transcription and cell signal transduction, while the 24 h cold-response genes are mostly related to gene transcription and metabolic activities (Lee et al., 2005). There were abundant ABA-, MeJA-, GA₃-, and SA-responsive elements in the promoter sequences of SabHLH genes, suggesting that these genes may be involved in the transcriptional control of hormone responses. For example, the SabHLH026 gene, which contains ABA (ABRE) and MeJA (CGTCA-motif) responsive elements in its promoter regions, was significantly upregulated by exogenous hormone treatment. Similarly, the promoter region of SabHLH037 contains the SA-responsive element (TCA-motif), which was significantly upregulated by exogenous SA hormone treatment (Figure 7). Similar results have been found for grapes, and the promoters of VvbHLH genes contained ABRE and DRE elements, which are involved in ABA-dependent or ABA-independent stress tolerance (Wang et al., 2018). In addition, most SabHLH gene promoters contain G-box elements, indicating that they may be regulated by other S. aralocaspica bHLHs and may form a regulatory network that responds to different stresses. This is consistent with our predicted results for the bHLH protein interaction network in S. aralocaspica (Figure 3).

bHLH TFs are not only universally involved in plant response to stress, but also play an important role in light

signal transduction and photomorphogenesis. Among them, the best characterized is the PIF families of bHLH TFs that act mainly as negative regulators of photosynthesis gene expression in response to light availability (Pham et al., 2018). SabHLH169(076) was the first bHLH gene cloned in S. aralocaspica, in addition to positively responding to salt, drought and cold stress, we found that the relative expression of SabHLH169(076) was much higher in darkness than in light (any color), especially normal light (Figure 8), which is similar to the results of ZmbHLH80 and ZmbHLH90 identified in maize (Górska et al., 2019, 2021). ZmbHLH80 and ZmbHLH90 had the same expression profiles with a peak at night or at the beginning of the day and a decline after dawn until the end of the photoperiod. Moreover, the transcript levels of ZmbHLH80 and ZmbHLH90 were higher in roots, stems, and etiolated leaves than in green leaves, which is consistent with the results of the present study. SabHLH169(076) was expressed in all tissues at the germination stage with expression levels in the order of radicle > hypocotyl > cotyledon. These results suggest that SabHLH169(076) may be negatively regulated by light and preferentially expressed in cells and tissues with lower photosynthetic activity.

CONCLUSIONS

To the best of our knowledge, this is the first comprehensive and systematic genome-wide analysis of the S. aralocaspica bHLH superfamily. In the present study, 83 SabHLH genes were identified and the divergent biochemical characteristics of SabHLH proteins were analyzed. Based on the results of conserved motif and intron-exon organization and phylogenetic analyses, the SabHLH family was classified into 21 groups. Protein association network predictions and functional classification analysis revealed multiple functions of the SabHLH proteins. Cis-elements analysis revealed that SabHLH contains many promoter elements related to hormone and stress responses. RNA-seq and qRT-PCR analyses illustrated that SabHLH genes are expressed in dimorphic seeds during germination and in different tissues, and respond to different abiotic stresses at the transcriptional level. SabHLH169(076) is localized in the nucleus with transcriptional self-activating activity and may function as a TF to regulate numerous physiological processes. Overall, these data provide a reference for further studies on the abiotic stress resistance mechanisms of the *bHLH* gene in *S*. aralocaspica.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

HL, JC, and XW designed the experiments and methodology. XW and JC wrote the manuscript. XW conducted the experiments and collected the data. XW analyzed the data. All authors contributed critically to the manuscript and gave final approval for publication.

FUNDING

Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01C95); National Natural Science Foundation of China (32160057; 31460043).

REFERENCES

- Atchley, W. R., and Fitch, W. M. (1997). A Natural Classification of the Basic Helix-Loop-Helix Class of Transcription Factors. *Proc. Natl. Acad. Sci. U.S.A.* 94, 5172–5176. doi:10.1073/pnas.94.10.5172
- Atchley, W. R., Terhalle, W., and Dress, A. (1999). Positional Dependence, Cliques, and Predictive Motifs in the bHLH Protein Domain. J. Mol. Evol. 48, 501–516. doi:10.1007/PL00006494
- Bu, Q., Castillon, A., Chen, F., Zhu, L., and Huq, E. (2011). Dimerization and Blue Light Regulation of *PIF1* Interacting bHLH Proteins in *Arabidopsis. Plant Mol. Biol.* 77, 501–511. doi:10.1007/s11103-011-9827-4
- Buti, S., Pantazopoulou, C. K., van Gelderen, K., Hoogers, V., Reinen, E., and Pierik, R. (2020). A Gas-and-Brake Mechanism of bHLH Proteins Modulates Shade Avoidance. *Plant Physiol.* 184, 2137–2153. doi:10.1101/2020.05.07.08273510. 1104/pp.20.00677
- Cao, J., Cheng, G., Wang, L., Maimaitijiang, T., and Lan, H. (2021). Genome-Wide Identification and Analysis of the Phosphoenolpyruvate Carboxylase Gene Family in *Suaeda aralocaspica*, an Annual Halophyte with Single-Cellular C₄ Anatomy. *Front. Plant Sci.* 12, 665279. doi:10.3389/fpls.2021.665279
- Cao, J., Li, X., Wang, C., Wang, L., Lan, X., and Lan, H. (2015). Effects of Exogenous Abscisic Acid on Heteromorphic Seed Germination of *Suaeda aralocaspica*, a Typical Halophyte of Xinjiang Desert Region (in Chinese). Acta Ecol. Sin. 35, 6666–6677. doi:10.5846/stxb201405130978
- Cao, J., Li, X. R., Chen, L., He, M. X., and Lan, H. Y. (2022). The Developmental Delay of Seedlings with Cotyledons Only Confers Stress Tolerance to *Suaeda aralocaspica* (Chenopodiaceae) by Unique Performance on Morphology, Physiology and Gene Expression. *Front. Plant Sci.* 13, 844430. doi:10.3389/ fpls.2022.844430
- Cao, J., Wang, L., and Lan, H. (2016). Validation of Reference Genes for Quantitative RT-PCR Normalization in *Suaeda aralocaspica*, an Annual Halophyte with Heteromorphism and C₄ Pathway without Kranz Anatomy. *Peer J.* 4, e1697. doi:10.7717/peerj.1697
- Carretero-Paulet, L., Galstyan, A., Roig-Villanova, I., Martínez-García, J. F., Bilbao-Castro, J. R., and Robertson, D. L. (2010). Genome-Wide Classification and Evolutionary Analysis of the bHLH Family of Transcription Factors in Arabidopsis, Poplar, Rice, Moss, and Algae. *Plant Physiol.* 153, 1398–1412. doi:10.1104/pp.110.153593
- Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., et al. (2020). Tbtools: an Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. *Mol. Plant* 13, 1194–1202. doi:10.1016/j.molp.2020. 06.009
- Chen, H. C., Hsieh-Feng, V., Liao, P. C., Cheng, W. H., Liu, L. Y., Yang, Y. W., et al. (2017). The Function of OsbHLH068 Is Partially Redundant with its Homolog, AtbHLH112, in the Regulation of the Salt Stress Response but Has Opposite Functions to Control Flowering in Arabidopsis. Plant Mol. Biol. 94, 531–548. doi:10.1007/s11103-017-0624-6
- Cheng, G., Wang, L., and Lan, H. (2016). Cloning of PEPC-1 from a C₄ Halophyte Suaeda aralocaspica without Kranz Anatomy and its Recombinant Enzymatic

ACKNOWLEDGMENTS

The authors thank the reviewers and all of the editors for their helpful comments and suggestions on this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.927830/full#supplementary-material

Supplementary Figure S1 | Predicted *cis*-elements on promoters of 83 *bHLH* genes in *S. aralocaspica*. The promoter regions (2,000 bp) of *SabHLH* genes were analyzed using PlantCARE software. Different colored boxes indicate the *cis*-elements related to growth, development, plant hormones, and stresses.

Activity in Responses to Abiotic Stresses. *Enzyme Microb. Technol.* 83, 57–67. doi:10.1016/j.enzmictec.2015.11.006

- Colangelo, E. P., and Guerinot, M. L. (2004). The Essential Basic Helix-Loop-Helix Protein FIT1 Is Required for the Iron Deficiency Response. *Plant Cell*. 16, 3400–3412. doi:10.1105/tpc.104.024315
- Commissione Redactorum Florae Xinjiangensis (1994). Flora Xinjiangensis. Urumchi: Xinjiang Science & Technology & Hygiene Publishing House.
- Marcos, A. D., Houbaert, A., Triviño, M., Delgado, D., Martín-Trillo, M., Russinova, E., et al. (2017). A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-dependent Mechanism for Stomatal Development. *Plant Physiol.* 174, 823–842. doi:10.1104/pp.17.00615
- Deng, C., Ye, H., Fan, M., Pu, T., and Yan, J. (2017). The Rice Transcription Factors OsICE Confer Enhanced Cold Tolerance in Transgenic Arabidopsis. Plant Signal. Behav. 12, e1316442. doi:10.1080/15592324.2017.1316442
- Du, T., Niu, J., Su, J., Li, S., Guo, X., Li, L., et al. (2018). SmbHLH37 Functions Antagonistically with SmMYC2 in Regulating Jasmonate-Mediated Biosynthesis of Phenolic Acids in Salvia miltiorrhiza. Front. Plant Sci. 9, 1720. doi:10.3389/fpls.2018.01720
- Flagel, L. E., and Wendel, J. F. (2009). Gene Duplication and Evolutionary Novelty in Plants. New Phytol. 183, 557–564. doi:10.1111/j.1469-8137.2009.02923.x
- Gao, F., Robe, K., Gaymard, F., Izquierdo, E., and Dubos, C. (2019). The Transcriptional Control of Iron Homeostasis in Plants: a Tale of bHLH Transcription Factors? *Front. Plant Sci.* 10, 6. doi:10.3389/fpls.2019.00006
- Gilbert, W. (1987). The Exon Theory of Genes. Cold Spring Harb. Symposia quantitative Biol. 52, 901–905. doi:10.1101/SQB.1987.052.01.098
- Górska, A. M., Gouveia, P., Borba, A. R., Zimmermann, A., Serra, T. S., Carvalho, P., et al. (2021). ZmOrphan94 Transcription Factor Downregulates *ZmPEPC1* Gene Expression in Maize Bundle Sheath Cells. *Front. Plant Sci.* 12, 246. doi:10. 3389/fpls.2021.559967
- Górska, A. M., Gouveia, P., Borba, A. R., Zimmermann, A., Serra, T. S., Lourenço, T. F., et al. (2019). ZmbHLH80 and ZmbHLH90 Transcription Factors Act Antagonistically and Contribute to Regulate *PEPC1* Cell-specific Gene Expression. *Plant J.* 99, 270–285. doi:10.1111/tpj.14323
- Gremski, K., Ditta, G., and Yanofsky, M. F. (2007). The HECATE Genes Regulate Female Reproductive Tract Development in Arabidopsis thaliana. Development 134, 3593–3601. doi:10.1242/dev.011510
- Groszmann, M., Bylstra, Y., Lampugnani, E. R., and Smyth, D. R. (2010). Regulation of Tissue-specific Expression of SPATULA, a bHLH Gene Involved in Carpel Development, Seedling Germination, and Lateral Organ Growth in Arabidopsis. J. Exp. Bot. 61, 1495–1508. doi:10.1093/jxb/erq015
- Guo, J., Liu, L., Du, M., Tian, H., and Wang, B. (2020). Cation and Zn Accumulation in Brown Seeds of the Euhalophyte Suaeda salsa Improves Germination under Saline Conditions. Front. Plant Sci. 11, 602427. doi:10.3389/ fpls.2020.602427
- Guo, W. L., Chen, B. H., Guo, Y. Y., Chen, X. J., Li, Q. F., Yang, H. L., et al. (2020). Expression of Pumpkin *CmbHLH87* Gene Improves Powdery Mildew Resistance in Tobacco. *Front. Plant Sci.* 11, 163. doi:10.3389/fpls.2020.00163
- Gupta, N., Prasad, V. B. R., and Chattopadhyay, S. (2014). LeMYC2 Acts as a Negative Regulator of Blue Light Mediated Photomorphogenic Growth, and

Promotes the Growth of Adult Tomato Plants. *BMC Plant Biol.* 14, 38. doi:10. 1186/1471-2229-14-38

- He, Z., Wang, Z., Nie, X., Qu, M., Zhao, H., Ji, X., et al. (2021). Unfertilized Embryo Sac 12 Phosphorylation Plays A Crucial Role in Conferring Salt Tolerance. *Plant Physiol.* 188, 1385–1401. doi:10.1093/plphys/kiab549
- Holsters, M., De Waele, D., Depicker, A., Messens, E., Van Montagu, M., and Schell, J. (1978). Transfection and Transformation of Agrobacterium Tumefaciens. *Molec. Gen. Genet.* 163, 181–187. doi:10.1007/BF00267408
- Hudson, K. A., and Hudson, M. E. (2015). A Classification of Basic Helix-Loop-Helix Transcription Factors of Soybean. Int. J. Genomics 2015, 1–10. doi:10. 1155/2015/603182
- Hyun, Y., and Lee, I. (2006). KIDARI, Encoding a Non-DNA Binding bHLH Protein, Represses Light Signal Transduction in *Arabidopsis thaliana*. *Plant Mol. Biol.* 61, 283–296. doi:10.1007/s11103-006-0010-2
- Kanaoka, M. M., Pillitteri, L. J., Fujii, H., Yoshida, Y., Bogenschutz, N. L., Takabayashi, J., et al. (2008). SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation. *Plant Cell.* 20, 1775–1785. doi:10.1105/tpc.108.060848
- Ke, Y. Z., Wu, Y. W., Zhou, H. J., Chen, P., Wang, M. M., Liu, M. M., et al. (2020). Genome-wide Survey of the *bHLH* Super Gene Family in *Brassica napus*. *BMC Plant Biol*. 20, 115. doi:10.1186/s12870-020-2315-8
- Kondou, Y., Nakazawa, M., Kawashima, M., Ichikawa, T., Yoshizumi, T., Suzuki, K., et al. (2008). Retarded Growth of Embryo1, a New Basic Helix-Loop-Helix Protein, Expresses in Endosperm to Control Embryo Growth. *Plant Physiol.* 147, 1924–1935. doi:10.1104/pp.108.118364
- Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. *Mol. Biol. Evol.* 35, 1547–1549. doi:10.1093/molbev/msy096
- Kumar, S. V., Lucyshyn, D., Jaeger, K. E., Alós, E., Alvey, E., Harberd, N. P., et al. (2012). Transcription Factor PIF4 Controls the Thermosensory Activation of Flowering. *Nature* 484, 242–245. doi:10.1038/nature10928
- Ledent, V., and Vervoort, M. (2001). The Basic Helix-Loop-Helix Protein Family: Comparative Genomics and Phylogenetic Analysis. *Genome Res.* 11, 754–770. doi:10.1101/gr.177001
- Lee, S. C., Lee, M. Y., Kim, S. J., Jun, S. H., An, G., and Kim, S. R. (2005). Characterization of an Abiotic Stress-Inducible Dehydrin Gene, OsDhn1, in Rice (Oryza sativa L.). Mol. Cells 19, 212–218.
- Li, X., Duan, X., Jiang, H., Sun, Y., Tang, Y., Yuan, Z., et al. (2006). Genome-wide Analysis of Basic/helix-Loop-Helix Transcription Factor Family in Rice and *Arabidopsis. Plant Physiol.* 141, 1167–1184. doi:10.1104/pp.106.080580
- Li, X., Liu, S., Yuan, G., Zhao, P., Yang, W., Jia, J., et al. (2019). Comparative Transcriptome Analysis Provides Insights into the Distinct Germination in Sheepgrass (*Leymus chinensis*) during Seed Development. *Plant Physiology Biochem.* 139, 446–458. doi:10.1016/j.plaphy.2019.04.007
- Liu, R., Song, J., Liu, S., Chen, C., Zhang, S., Wang, J., et al. (2021). Genome-wide Identification of the *Capsicum* bHLH Transcription Factor Family: Discovery of a Candidate Regulator Involved in the Regulation of Species-specific Bioactive Metabolites. *BMC Plant Biol.* 21, 1–18. doi:10.1186/s12870-021-03004-7
- Liu, Y., Maimaitijiang, T., Zhang, J., Ma, Y., and Lan, H. (2020). The Developmental Enhancement of a C₄ System with Non-typical C₄ Physiological Characteristics in Salsola ferganica (Kranz Anatomy), an Annual Desert Halophyte. Front. Plant Sci. 11, 152. doi:10.3389/fpls.2020.00152
- Long, T. A., Tsukagoshi, H., Busch, W., Lahner, B., Salt, D. E., and Benfey, P. N. (2010). The bHLH Transcription Factor *POPEYE* Regulates Response to Iron Deficiency inArabidopsisRoots. *Plant Cell.* 22, 2219–2236. doi:10.1105/tpc.110. 074096
- Lu, R., Zhang, J., Liu, D., Wei, Y. L., Wang, Y., and Li, X. B. (2018). Characterization of *bHLH/HLH* Genes that Are Involved in Brassinosteroid (BR) Signaling in Fiber Development of Cotton (*Gossypium hirsutum*). *BMC Plant Biol.* 18, 1–13. doi:10.1186/s12870-018-1523-y
- Mao, K., Dong, Q., Li, C., Liu, C., and Ma, F. (2017). Genome Wide Identification and Characterization of Apple bHLH Transcription Factors and Expression Analysis in Response to Drought and Salt Stress. *Front. Plant Sci.* 8, 480. doi:10. 3389/fpls.2017.00480
- Massari, M. E., and Murre, C. (2000). Helix-loop-helix Proteins: Regulators of Transcription in Eucaryotic Organisms. *Mol. Cell. Biol.* 20, 429–440. doi:10. 1128/MCB.20.2.429-440.2000

- McDonald, J. H. (2014). *Handbool of Biological Statistics*. 3rd Edn. Baltimore, Maryland: Sparky House Publishing.
- Montero, O., Velasco, M., Sanz-Arranz, A., and Rull, F. (2016). Effect of Different Broad Waveband Lights on Membrane Lipids of a Cyanobacterium, Synechococcus sp., as Determined by UPLC-QToF-MS and Vibrational Spectroscopy. Biology 5 (2), 22. doi:10.3390/biology5020022
- Ogo, Y., Nakanishi Itai, R., Nakanishi, H., Kobayashi, T., Takahashi, M., Mori, S., et al. (2007). The Rice bHLH Protein OsIRO2 Is an Essential Regulator of the Genes Involved in Fe Uptake under Fe-Deficient Conditions. *Plant J.* 51, 366–377. doi:10.1111/j.1365-313X.2007.03149.x
- Ohashi-Ito, K., and Bergmann, D. C. (2006). Arabidopsis FAMA Controls the Final Proliferation/differentiation Switch during Stomatal Development. *Plant Cell*. 18, 2493–2505. doi:10.1105/tpc.106.046136
- Ohashi-Ito, K., and Bergmann, D. C. (2007). Regulation of the Arabidopsis Root Vascular Initial Population by LONESOME HIGHWAY. Development 134, 2959–2968. doi:10.1242/dev.006296
- Pagnussat, G. C., Yu, H.-J., Ngo, Q. A., Rajani, S., Mayalagu, S., Johnson, C. S., et al. (2005). Genetic and Molecular Identification of Genes Required for Female Gametophyte Development and Function in *Arabidopsis. Development* 132, 603–614. doi:10.1242/dev.01595
- Pan, C., Yang, D., Zhao, X., Liu, Y., Li, M., Ye, L., et al. (2021). *PIF4* Negatively Modulates Cold Tolerance in Tomato Anthers via Temperature-dependent Regulation of Tapetal Cell Death. *Plant Cell*. 33, 2320–2339. doi:10.1093/plcell/koab120
- Patthy, L. (1987). Intron-dependent Evolution: Preferred Types of Exons and Introns. FEBS Lett. 214, 1–7. doi:10.1016/0014-5793(87)80002-9
- Peñuelas, M., Monte, I., Schweizer, F., Vallat, A., Reymond, P., García-Casado, G., et al. (2019). Jasmonate-related MYC Transcription Factors Are Functionally Conserved in *Marchantia polymorpha*. *Plant Cell*. 31, 2491–2509. doi:10.1105/tpc.18.00974
- Pham, V. N., Kathare, P. K., and Huq, E. (2018). Phytochromes and Phytochrome Interacting Factors. *Plant Physiol.* 176 (2), 1025–1038. doi:10.1104/pp.17.01384
- Pillitteri, L. J., Sloan, D. B., Bogenschutz, N. L., and Torii, K. U. (2007). Termination of Asymmetric Cell Division and Differentiation of Stomata. *Nature* 445, 501–505. doi:10.3410/f.1056799.50874210.1038/nature05467
- Rampey, R. A., Woodward, A. W., Hobbs, B. N., Tierney, M. P., Lahner, B., Salt, D. E., et al. (2006). An Arabidopsis Basic Helix-Loop-Helix Leucine Zipper Protein Modulates Metal Homeostasis and Auxin Conjugate Responsiveness. *Genetics* 174, 1841–1857. doi:10.1534/genetics.106.061044
- Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C. Z., Keddie, J., et al. (2000). Arabidopsis Transcription Factors: Genome-Wide Comparative Analysis among Eukaryotes. *Science* 290 (5499), 2105–2110. doi:10.1126/ science.290.5499.2105
- Roig-Villanova, I., Bou-Torrent, J., Galstyan, A., Carretero-Paulet, L., Portolés, S., Rodríguez-Concepción, M., et al. (2007). Interaction of Shade Avoidance and Auxin Responses: a Role for Two Novel Atypical bHLH Proteins. *EMBO J.* 26, 4756–4767. doi:10.1038/sj.emboj.7601890
- Selote, D., Samira, R., Matthiadis, A., Gillikin, J. W., and Long, T. A. (2014). Iron-Binding E3 Ligase Mediates Iron Response in Plants by Targeting Basic Helix-Loop-Helix Transcription Factors. *Plant Physiol.* 167, 273–286. doi:10.1104/pp.114.250837
- Seo, J. S., Joo, J., Kim, M. J., Kim, Y. K., Nahm, B. H., Song, S. I., et al. (2011). OsbHLH148, a Basic Helix-Loop-Helix Protein, Interacts with OsJAZ Proteins in a Jasmonate Signaling Pathway Leading to Drought Tolerance in Rice. *Plant J. Cell. Mol. Biol.* 65, 907–921. doi:10.1111/j.1365-313X.2010.04477.x
- Sharpe, R. M., and Offermann, S. (2014). One Decade after the Discovery of Single-Cell C₄ Species in Terrestrial Plants: what Did We Learn about the Minimal Requirements of C₄ Photosynthesis? *Photosynth Res.* 119, 169–180. doi:10. 1007/s11120-013-9810-9
- Shi, R., and Chiang, V. L. (2005). Facile Means for Quantifying microRNA Expression by Real-Time PCR. *Biotechniques* 39, 519–525. doi:10.2144/000112010
- Smith, M. E., Koteyeva, N. K., Voznesenskaya, E. V., Okita, T. W., and Edwards, G. E. (2009). Photosynthetic Features of Non-kranz Type C_4 versus Kranz Type C_4 and C_3 Species in Subfamily Suaedoideae (Chenopodiaceae). *Funct. Plant Biol.* 36, 770–782. doi:10.1071/FP09120
- Sorensen, A.-M., Kröber, S., Unte, U. S., Huijser, P., Dekker, K., and Saedler, H. (2003). The Arabidopsis ABORTED MICROSPORES (AMS) Gene Encodes a MYC Class Transcription Factor. *Plant J.* 33, 413–423. doi:10.1046/j.1365-313X.2003.01644.x
- Sun, H., Fan, H. J., and Ling, H. Q. (2015). Genome-wide Identification and Characterization of the *bHLH* Gene Family in Tomato. *BMC genomics* 16, 1–12. doi:10.1186/s12864-014-1209-2

- Szécsi, J., Joly, C., Bordji, K., Varaud, E., Cock, J. M., Dumas, C., et al. (2006). BIGPETALp, a bHLH Transcription Factor Is Involved in the Control of *Arabidopsis* Petal Size. *EMBO J.* 25, 3912–3920. doi:10.1038/sj.emboj.7601270
- Thomashow, M. F. (2001). So What's New in the Field of Plant Cold Acclimation? Lots!. Plant Physiol. 125, 89–93. doi:10.11042Fpp.125.1.8910.1104/pp.125.1.89
- Tian, H., Guo, H., Dai, X., Cheng, Y., Zheng, K., Wang, X., et al. (2015). An ABA Down-Regulated *bHLH* Transcription Repressor Gene, *bHLH129* Regulates Root Elongation and ABA Response when Overexpressed in *Arabidopsis. Sci. Rep.* 5, 1–11. doi:10.1038/srep17587
- Tian, M., Zhang, X., Zhu, Y., Xie, G., and Qin, M. (2018). Global Transcriptome Analyses Reveal Differentially Expressed Genes of Six Organs and Putative Genes Involved in (Iso) flavonoid Biosynthesis in *Belamcanda chinensis*. Front. Plant Sci. 9, 1160. doi:10.3389/fpls.2018.01160
- Toledo-Ortiz, G., Huq, E., and Quail, P. H. (2003). The Arabidopsis Basic/Helix-Loop-Helix Transcription Factor Family. *Plant Cell.* 15, 1749–1770. doi:10. 1105/tpc.013839
- Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., et al. (2012). Differential Gene and Transcript Expression Analysis of RNA-Seq Experiments with TopHat and Cufflinks. *Nat. Protoc.* 7, 562–578. doi:10.1038/nprot.2012.016
- Voznesenskaya, E. V., Franceschi, V. R., and Edwards, G. E. (2004). Light-dependent Development of Single Cell C₄ Photosynthesis in Cotyledons of *Borszczowia* aralocaspica (Chenopodiaceae) during Transformation from a Storage to a Photosynthetic Organ. Ann. Bot. 93, 177–187. doi:10.1093/aob/mch026
- Voznesenskaya, E. V., Franceschi, V. R., Kiirats, O., Freitag, H., and Edwards, G. E. (2001). Kranz Anatomy Is Not Essential for Terrestrial C₄ Plant Photosynthesis. *Nature* 414, 543–546. doi:10.1038/35107073
- Walther, D., Brunnemann, R., and Selbig, J. (2007). The regulatory code for transcriptional response diversity and its relation to genome structural properties in A. thaliana. PLoS Genet. 3 (2), e11. doi:10.1371/journal.pgen.0030011
- Wang, J., Cheng, G., Wang, C., He, Z., Lan, X., Zhang, S., et al. (2017). The bHLH Transcription Factor CgbHLH001 Is a Potential Interaction Partner of CDPK in Halophyte Chenopodium glaucum. Sci. Rep. 7, 1–16. doi:10.1038/s41598-017-06706-x
- Wang, L., Huang, Z., Baskin, C. C., Baskin, J. M., and Dong, M. (2008). Germination of Dimorphic Seeds of the Desert Annual Halophyte Suaeda aralocaspica (Chenopodiaceae), a C₄ Plant without Kranz Anatomy. Ann. Bot. 102, 757–769. doi:10.1093/aob/mcn158
- Wang, L., Ma, G., Wang, H., Cheng, C., Mu, S., Quan, W., et al. (2019a). A Draft Genome Assembly of Halophyte Suaeda aralocaspica, a Plant that Performs C₄ Photosynthesis within Individual Cells. Gigascience 8, giz116. doi:10.1093/ gigascience/giz116
- Wang, L., Wang, H. L., Yin, L., and Tian, C. Y. (2017). Transcriptome Assembly in Suaeda aralocaspica to Reveal the Distinct Temporal Gene/miRNA Alterations between the Dimorphic Seeds during Germination. BMC Genomics 18, 1–21. doi:10.1186/s12864-017-4209-1
- Wang, L., Xiang, L., Hong, J., Xie, Z., and Li, B. (2019b). Genome-wide Analysis of bHLH Transcription Factor Family Reveals Their Involvement in Biotic and Abiotic Stress Responses in Wheat (*Triticum aestivum* L.). 3 Biotech. 9, 1–16. doi:10.1007/s13205-019-1742-4
- Wang, P., Su, L., Gao, H., Jiang, X., Wu, X., Li, Y., et al. (2018). Genome-wide Characterization of *bHLH* Genes in Grape and Analysis of Their Potential Relevance to Abiotic Stress Tolerance and Secondary Metabolite Biosynthesis. *Front. Plant Sci.* 9, 64. doi:10.3389/fpls.2018.00064
- Wei, K., and Chen, H. (2018). Comparative Functional Genomics Analysis of bHLH Gene Family in Rice, Maize and Wheat. BMC Plant Biol. 18, 1–21. doi:10. 1186/s12870-018-1529-5
- Weissgerber, T. L., Milic, N. M., Winham, S. J., and Garovic, V. D. (2015). Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. *PLoS Biol.* 13, e1002128. doi:10.1371/journal.pbio.1002128
- Xing, Q., Creff, A., Waters, A., Tanaka, H., Goodrich, J., and Ingram, G. C. (2013). ZHOUPI Controls Embryonic Cuticle Formation via a Signalling Pathway Involving the Subtilisin Protease ABNORMAL LEAF-SHAPE1 and the Receptor Kinases GASSHO1 and GASSHO2. Development 140, 770–779. doi:10.1242/dev.088898
- Xu, H., Wang, N., Liu, J., Qu, C., Wang, Y., Jiang, S., et al. (2017). The Molecular Mechanism Underlying Anthocyanin Metabolism in Apple Using the *MdMYB16* and *MdbHLH33* Genes. *Plant Mol. Biol.* 94, 149–165. doi:10.1007/s11103-017-0601-0
- Xu, J., Ding, Z., Vizcay-Barrena, G., Shi, J., Liang, W., Yuan, Z., et al. (2014). ABORTED MICROSPORES Acts as a Master Regulator of Pollen Wall Formation in Arabidopsis. Plant Cell. 26, 1544–1556. doi:10.1105/tpc.114.122986

- Xu, Y. C., Niu, X. M., Li, X. X., He, W., Chen, J. F., Zou, Y. P., et al. (2019). Adaptation and Phenotypic Diversification in *Arabidopsis* through Loss-Of-Function Mutations in Protein-Coding Genes. *Plant Cell.* 31, 1012–1025. doi:10.1105/tpc.18.00791
- Yang, S., Johnston, N., Talideh, E., Mitchell, S., Jeffree, C., Goodrich, J., et al. (2008). The Endosperm-specific ZHOUPI Gene of Arabidopsis thaliana Regulates Endosperm Breakdown and Embryonic Epidermal Development. Development 135, 3501–3509. doi:10.1242/dev.026708
- Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., and Chory, J. (2005). A New Class of Transcription Factors Mediates Brassinosteroid-Regulated Gene Expression in *Arabidopsis. Cell.* 120, 249–259. doi:10.1016/j.cell.2004. 11.044
- Yue, X., Zhang, G., Zhao, Z., Yue, J., Pu, X., Sui, M., et al. (2019). A Cryophyte Transcription Factor, CbABF1, Confers Freezing, and Drought Tolerance in Tobacco. *Front. Plant Sci.* 10, 699. doi:10.3389/fpls.2019.00699
- Zarka, D. G., Vogel, J. T., Cook, D., and Thomashow, M. F. (2003). Cold Induction of *Arabidopsis CBF* Genes Involves Multiple ICE (Inducer of CBF Expression) Promoter Elements and a Cold-Regulatory Circuit that Is Desensitized by Low Temperature. *Plant Physiol.* 133, 910–918. doi:10.11042Fpp.103.02716910. 1104/pp.103.027169
- Zhang, C., Feng, R., Ma, R., Shen, Z., Cai, Z., Song, Z., et al. (2018). Genome-wide Analysis of Basic Helix-Loop-Helix Superfamily Members in Peach. *PLoS One* 13, e0195974. doi:10.1371/journal.pone.0195974
- Zhang, X. Y., Qiu, J. Y., Hui, Q. L., Xu, Y. Y., He, Y. Z., Peng, L. Z., et al. (2020). Systematic Analysis of the Basic/helix-Loop-Helix (bHLH) Transcription Factor Family in Pummelo (*Citrus grandis*) and Identification of the Key Members Involved in the Response to Iron Deficiency. *BMC Genomics* 21, 1–16. doi:10.1186/s12864-020-6644-7
- Zhang, X., Dong, J., Liu, H., Wang, J., Qi, Y., and Liang, Z. (2016). Transcriptome Sequencing in Response to Salicylic Acid in *Salvia miltiorrhiza*. *Plos One* 11, e0147849. doi:10.1007/s11240-021-02135-x10.1371/journal.pone.0147849
- Zhang, X., Luo, H., Xu, Z., Zhu, Y., Ji, A., Song, J., et al. (2015). Genome-wide Characterisation and Analysis of bHLH Transcription Factors Related to Tanshinone Biosynthesis in *Salvia miltiorrhiza*. *Sci. Rep.* 5, 1–10. doi:10. 1038/srep11244
- Zhao, P., Li, X., Jia, J., Yuan, G., Chen, S., Qi, D., et al. (2019). bHLH92 from Sheepgrass Acts as a Negative Regulator of Anthocyanin/proanthocyandin Accumulation and Influences Seed Dormancy. J. Exp. Bot. 70, 269–284. doi:10. 1093/jxb/erz01710.1093/jxb/ery335
- Zheng, K., Wang, Y., and Wang, S. (2019). The Non-DNA Binding bHLH Transcription Factor Paclobutrazol Resistances Are Involved in the Regulation of ABA and Salt Responses in Arabidopsis. Plant Physiology Biochem. 139, 239–245. doi:10.1016/j.plaphy.2019.03.026
- Zheng, W., Guo, J., Lu, X., Qiao, Y., Liu, D., Pan, S., et al. (2022). cAMP-response Element Binding Protein Mediates Podocyte Injury in Diabetic Nephropathy by Targeting lncRNA DLX6-AS1. *Metabolism* 129, 155155. doi:10.1016/j.metabol. 2022.155155
- Zhou, Z., Wang, J., Zhang, S., Yu, Q., and Lan, H. (2020). Investigation of the Nature of CgCDPK and CgbHLH001 Interaction and the Function of bHLH Transcription Factor in Stress Tolerance in *Chenopodium glaucum*. Front. Plant Sci. 11, 2173. doi:10.3389/fpls.2020.603298

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Wei, Cao and Lan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.