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Abstract

Introduction: Visual assessment and imaging of the donor liver are inaccurate in

predicting fibrosis and remain surrogates for histopathology. We demonstrate that

3‐s scans using a handheld near‐infrared‐spectroscopy (NIRS) instrument can

identify and quantify fibrosis in fresh human liver samples.

Methods: We undertook NIRS scans on 107 samples from 27 patients, 88 from 23

patients with liver disease, and 19 from four organ donors.

Results: Liver disease patients had a median immature fibrosis of 40% (interquartile

range [IQR] 20–60) and mature fibrosis of 30% (10%–50%) on histopathology. The

organ donor livers had a median fibrosis (both mature and immature) of 10% (IQR

5%–15%). Using machine learning, this study detected presence of cirrhosis and

METAVIR grade of fibrosis with a classification accuracy of 96.3% and 97.2%,

precision of 96.3% and 97.0%, recall of 96.3% and 97.2%, specificity of 95.4% and
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98.0% and area under receiver operator curve of 0.977 and 0.999, respectively.

Using partial‐least square regression machine learning, this study predicted the

percentage of both immature (R2 = 0.842) and mature (R2 = 0.837) with a low margin

of error (root mean square of error of 9.76% and 7.96%, respectively).

Conclusion: This study demonstrates that a point‐of‐care NIRS instrument can

accurately detect, quantify and classify liver fibrosis using machine learning.

K E YWORD S

chemometrics, liver, near‐infrared spectroscopy, spectromics, transplant, vibrational
spectroscopy

1 | BACKGROUND

Liver disease is the 11th leading cause of mortality globally, with two

million deaths annually and an incidence that has risen by over 500%

in the last four decades.1 An aging society combined with rising rates

of obesity, diabetes, and nonalcoholic steatohepatitis has resulted in

liver transplantation being the second most common form of solid

organ transplantation. However, less than 10% of global transplanta-

tion needs are currently met.

Many donor livers are currently declined on measures such as

subjective visual assessment, or moderately sensitive imaging

methods such as ultrasound, FibroScan2, and computed tomogra-

phy which may only demonstrate positive findings with gross

deformity.3,4 These methods have marginal sensitivity and do not

quantify the degree of fibrosis or steatosis,5 subject to inter-

observer bias and remain surrogates for tissue biopsies, the routine

clinical use of which is hindered by traumatic tissue resection,

time‐intensive histopathology, laboratory‐based processing and

need for expert analysis by a histologist or pathologist with optical

microscopy.6,7 The nonspecific and delayed assessment of liver

fibrosis and steatosis, amplified by rapidly increasing global disease

burden, leads to an economic, social, and healthcare burden

mounting into millions of dollars.8,9 A point‐of‐care instrument for

assessment of fibrosis and steatosis therefore has potential to

increase the number of livers available for transplantation and

bolster surgical outcomes.

Recent advancements in vibrational spectroscopy combined

with machine learning make point‐of‐care real‐time diagnosis of

liver fibrosis and steatosis possible.10–18 Historically spectrometric

techniques, such as mass spectrometry, have been confined to

laboratory use as they require extensive tissue preparation before

analysis, and are time, resource, and personnel‐intensive.19 In

contrast, vibrational spectroscopy techniques possess the potential

of point‐of‐care applications. NIRS obtains absorption patterns from

the delivery of laser or light waves, providing nonperturbative,

rapid, and label free assessment of tissue structure and composi-

tion15,17,20,21 at a molecular level.22,23 There are emerging data

demonstrating that it can discriminate fibrosis11 by exploring

collagen subtypes,24–27 cross linking,28,29 and distribution.27,30 Early

investigations have shown promising results in identifying hepatic

fibrosis10,14–16,31–36 using machine learning techniques such as

Stochastic Gradient Descent, Neural Networks, and Logistic

regression. Spectroscopic studies in formalin‐fixed tissue32,33 have

demonstrated spectroscopy can distinguish fibrotic regions from

neighboring hepatocytes. In frozen tissue,34–36 studies have been

able to distinguish hepatocellular carcinoma from surrounding

cirrhosis using a combination of Raman and Infrared spectroscopy.

However, there is a paucity of data in analyzing fresh tissue, which

poses a significant hurdle to clinical translation. We believe this can

be overcome with NIRS as it doesn't require sample preparation.

Due to greater penetration depth, NIRS lends itself to miniaturiza-

tion since it is more resistant to losses in spatial resolution, and is

comparatively low cost compared to spectroscopy using Mid‐IR

(InfraRed) and Raman techniques.37

2 | AIM

This study demonstrates, as a proof of concept, that NIRS scans using

handheld instruments correlate with those of histopathology. This is

the next iterative step to making real‐time diagnosis of fibrosis and

steatosis in liver surgery possible.

3 | EXPERIMENTAL PROCEDURES

3.1 | Sample retrieval

An outline of the methods has been provided in Figure 1. Samples of

1 cm3 size from random positions within the liver (both surface and

core) were obtained from both pathological and control patients.

Pathological samples of liver were retrieved from the Victorian Liver

Biobank of the Liver Transplant Unit (LTU), Austin Health, Mel-

bourne, Victoria. LTU is the sole liver transplant center for the states

of Victoria and Tasmania, Australia and prospectively stores samples

from the time of liver explant as part of an ethically approved Liver

Biobank. A series of 23 patients with liver disease were selected at

random for use in this study.
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F IGURE 1 The method for tissue analysis. Samples were collected from both explanted livers at time of transplantation and control organ
donor livers not suitable for transplant. All samples were analyzed using near infrared spectroscopy and then with histopathology with
Picrosirius Red and Van Geison stains. Data from both were compared using artificial intelligence. Data were filtered using NIPPY preprocessing
and split into training (70%) and test (30%) datasets. The model was assessed stochastic gradient descent (SGD), neural network (NN), logistic
regression (LR), partial least square regression (PLS‐R) and a combined “combined ML” algorithm. The model was assessed using area under
receiver operator curve (AUROC), classification accuracy (CA), precision, recall, and specificity.
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Physiological control samples of liver were prospectively obtained

from consecutive deceased organ donors by the Australian Donation and

Transplantation Biobank (ADTB).38 These were acquired intra‐

operatively at the time of organ retrieval in organ donors with consent

for donation to the ADTB. Samples were transported on ice and

immediately stored into 2mL Eppendorf tubes, snap‐frozen in liquid

nitrogen and stored in cryogenic tanks at −80°C.

For analysis, samples were thawed under standard laboratory

conditions. All samples were deidentified and source blinded for all

subsequent analysis.

3.1.1 | Demographics

In total, this study used a series of 27 patients, from which 107

samples were obtained. 100 of these were pathological samples were

from 23 liver disease patients at the time of liver explanation and 20

fresh tissue samples from four organ donors whose liver did not meet

viability criteria for transplantation at the time of DCD (donation

after circulatory death) donation.

The median age was 53 years (interquartile range [IQR] 40‐57) in

liver disease patients and 56 years in organ donors, 66.7% (n= 18) male

in liver disease cohort and 75% in the organ donor (n=3) cohort. The

indication for transplantation and other co‐morbidities are as described

inTable 1. Of all explanted liver samples, 54% (n =54) had cirrhosis, with

a median quantified immature fibrosis of 40% (IQR 20–60) and mature

fibrosis of 30% (10%–50%). Explanted samples represented multiple

stages of fibrosis, with the percentage of fibrosis ranging from 0% to

90%, and exhibiting a normal distribution as shown in the kernel density

plots (Figure 2A–F). The donor livers were noncirrhotic, with median

fibrosis (both mature and immature) of 10% (IQR 5%–15%).

3.2 | Near‐infrared spectroscopy (NIRS) scans

Liver samples underwent a 3‐s scan using a handheld near‐infrared

spectrometer (DWARF‐Star‐NIR, StellarNet incorporated, Carlson Circle,

Tampa, Florida). This instrument was equipped with high performance

InGaAs (Indium Gallium Arsenide) detectors and halogen light source

(AvaLight HAL‐(S)‐mini, Avantes BV, Netherlands). A thermo‐electric

cooling system was integrated with the detector to ensure stable

temperature (±0.1°C) was maintained. Spectral data (wavelength range:

900–1700 nm, resolution≈2 nm) were acquired via a custom‐built

reusable stainless‐steel fiber optic probe (Avantes BV). Spectral

acquisition was done by a software program written in Python (Python

Software Foundation. Python Language Reference, version 3.1) and

operated over a raspberry Pi Moodle.

3.2.1 | Histopathology (Gold Standard)

Results from NIRS Scans were compared to the gold standard of

histopathology. Samples were embedded in paraffin, sectioned and

stained with Haemotoxylin and Eosin, picrosirius red (PSR) and Van

Geison's (VG) stains for assessment of fibrosis. Samples were assessed

visually for fibrosis and steatosis by a blinded Anatomical Pathologist

(Department of Anatomical Pathology, Austin Health, Melbourne,

TABLE 1 Demographic details of patients from whom liver
samples were acquired, stratified by pathological samples from end‐
stage liver failure patients and normal controls from organ donors.

Variable

Pathological
Normal
control

p‐Value(n = 23) (n = 4)

Demographics

Age 53 (40–57) 56 (50–62) 0.41

Male sex 14 (60.8%) 3 (75.0%) 0.71

Diagnoses

Acute liver failure 4 (17.4%) 0 (0.0%)

Amyloidosis 1 (4.3%) 0 (0.0%)

Cirrhosis 13 (56.5%) 0 (0.0%) NA

Hepatic artery
thrombosis

1 (4.3%) 0 (0.0%)

Hepatocellular cancer 1 (4.3%) 0 (0.0%)

Other/unknown 3 (13.0%) 0 (0.0%)

Etiology

Alcoholic liver disease 3 (13.0%) 0 (0.0%)

Autoimmune hepatitis 2 (8.7%) 0 (0.0%)

Familial transtherin

amyloidosis

1 (4.3%) 0 (0.0%)

Hepatitis A 1 (4.3%) 0 (0.0%)

Hepatitis B 2 (8.7%) 0 (0.0%)

Hepatitis C 7 (30.4%) 0 (0.0%) NA

Wilson's disease 1 (4.3%) 0 (0.0%)

Primary sclerosing
cholangitis

1 (4.3%) 0 (0.0%)

Primary biliary cirrhosis 1 (4.3%) 0 (0.0%)

Nonalcoholic
steatohepatitis

1 (8.7%) 0 (0.0%)

Other/unknown 3 (13.0%) 0 (0.0%)

Analysis

Number of samples 100 20 NA

Number of spectra 565 120

Presence of cirrhosis
(>30% fibrosis)

54/100 (54.0%) 0/20 (0.0%) <0.01

Median quantified
immature

fibrosis (IQR)

40% (20–60) 10% (5–15) <0.01

Median quantified
mature fibrosis (IQR)

30% (10–50) 10% (5–15) <0.01

Note: The extent of fibrosis and cirrhosis from each sample was
histopathologically validated.
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Victoria) to assess the presence of fibrosis (defined as >30% fibrosis),

grade of fibrosis using the METAVIR (meta‐analysis of histopathology

data for viral hepatitis) scale39,40 (F0–F4), underlying diagnoses and

percentage of both immature (PSR stain) and mature (VG stain) fibrosis

using standardized international guidelines.41

3.2.2 | Clinical data analysis

Study data were collected and managed using Research Electronic

Data Capture (REDCap) electronic data capture tools hosted at

ADTB. Analysis of clinical data was done using Stata v15.0

(StataCorp. 2017. Stata Statistical Software: Release 15. College

Station, TX: StataCorp LLC), with clinical variables reported as

either counts with corresponding percentages, or median averages

with IQR. Differences between sexes were assessed using student

t‐tests for proportions and rank‐sum tests for continuous

variables. Correlations between clinical and pathological variables

were carried our using linear regression analysis and reported as

correlation coefficients and 95% confidence intervals.

3.2.3 | Machine learning

First, NIR scans were visualized using PLS toolbox (Eigenvector

Research Inc), an extensive suite of machine learning and statistical

tools for advanced data analysis, which can be operated within the

MATLAB environment (MathWorks). This study employed the

following data cleaning strategies: (i) Data were visually examined

to ensure that all absorption bands were consistent with those

reported in literature.25,29,32–34 (ii) Principal component analysis

(PCA) was employed for outliers' detection and the resulting

hotelling's T‐squared distribution (T2) and leverage score were used

to determine outliers. (iii) All outliers were excluded while the rest of

the data set was passed on for modeling. Optimal pre‐processing

steps to obtain smoothed spectra were determined via Nippy python

module.42,43

NIRS were entered into a standardized preprocessing algorithm

using Quasar.42,43 This was done by keeping spectra from 600 to

1750 nm, Savitzky‐Golay filter (window = 15, polynomial order = 2,

derivative order = 2), area normalization peak from 0 and baseline

correction. Data were then entered into Stochastic Gradient

Descent (SGD), neural networks (NN), logistic regression (LR)

machine learning (ML) algorithms using a 70–30 training test data

split.44,45 SGD used an optimal learning rate with 1000 iterations

and a tolerance of 0.001, Lasso (L1) regularization with strength

0.01, and the Loss function was classified by Squared loss with

Huber regression at 0.1. LR had regularization type Lasso (L1) and

strength C = 3. SVM used v‐SVM with regression cost = 1.0,

complexity bound = 0.5, RBF Kernel with g = auto, numerical

tolerance of 0.01 and iteration limit of 100. The Combined ML

algorithm combines all methods and is reported separately.

(A) (B)

(D) (E)
(F)

(C)

F IGURE 2 Distribution of quantified fibrosis in control donor and pathological explanted samples. Immature fibrosis stains, as seen on
picrosirius red (PSR) stains are shown in (A) normal tissue, (B) fibrotic tissue with 60% fibrosis, with (C) distribution across of all samples in control
(brown) and pathological (orange) samples. Mature fibrosis, as seen on Van Geison (VG) stains, are shown on (D) normal tissue, (E) fibrotic tissue
with 60% fibrosis, with (F) distribution across of all samples in control (brown) and pathological (orange) samples.
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Averages of the technical replicates acquired from each sample

were used to avoid overfitting of models thereby avoiding the

“technical replicate trap.” Model accuracy was assessed using

precision, recall, specificity, and area‐under‐curve (AUC) of

corresponding receiver‐operator‐curves (ROC). The diagnostic

capability of the model was assessed using confusion matrices with

classification rates. To assess the percentage of fibrosis, we used

partial least square regression (PLS‐R). PLS‐R score plots of the

F IGURE 3 Averaged and postprocessed near infrared spectroscopy scans from (A) each METAVIR grade of fibrosis and (B) F0/F1 versus F2
versus F3/F4 METAVIR grades. AU, absorption unit; nm, nanometers.

(A)

(B) (C)

F IGURE 4 Near infrared spectroscopy scans ability to predict the histopathological presence of cirrhosis with (A) confusion matrices using a
combined machine learning algorithm, (B) metrics of performance, and (C) corresponding receiver operator (ROC) curve. AUC, area under
ROC curve; CA, classification accuracy; LR, logistic regression; NN, neural network; Prec., precision; SGD, stochastic gradient descent;
Spec., specificity.
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model (latent variable = 6) were developed using the leave one out

cross validation (LOOCV). The PLS‐R models were evaluated using

the correlation coefficient (R2), the root‐mean‐square error (RMSE).

4 | RESULTS

4.1 | Identifying Cirrhosis

This study undertook NIRS scans of all 107 samples, with

representative spectra for each grade of fibrosis (F0–F4) after

preprocessing shown in Figure 3. There was a notable difference in

the NIRS absorption spectra between cirrhotic (F4) and disease‐free

samples (F0). These are most prominent in regions typically

associated with collagen (1484 and 1585 nm).46 This suggests that

the most prominent distinguishing feature between NIRS scans of

different fibrosis grades are regions associated with collagen.

4.2 | Detecting fibrosis

Data from NIRS scans were entered into ML algorithms (Figures 4–7)

to assess its ability to identify the fibrosis. Confusion matrices

compare ML predictions to measured values using histopathology

and are presented with metrics of performance and corresponding

receiver operator curves (ROC).

In distinguishing cirrhotic tissue, the ML models produced AUROC of

0.997, with a classification accuracy (CA), precision and recall of 96.3%

and specificity of 96.2%. In identifying grades of METAVIR fibrosis, there

was an AUC of 0.997, with classification accuracy of 92.5%, precision of

91.4%, recall of 92.5% and specificity of 95.4%.

Separate analyses were undertaken for identify tissue represent-

ing no or early (F0/1), intermediate (F2), and advanced fibrosis (F3/4)

(Figure 6). This model produced an AUC of 0.999, with a classification

accuracy of 97.2%, precision of 97.0%, recall of 97.2%, and specificity

of 98.0%.

4.3 | Quantifying fibrosis

We entered the blinded NIRS Scan data into a partial‐least square

regression (PLS‐R) ML model to assess its ability to quantify fibrosis

(Figure 7). In predicting immature fibrosis (PSR stain data), we

obtained an R2 of 0.842 in with a margin of error of 9.763% (RMSE).

For mature fibrosis, we obtained an R2 of 0.837 with a margin of error

of 7.96% (RMSE).

(A)

(B) (C)

F IGURE 5 Near infrared spectroscopy scans ability to predict histopathological METAVIR grade of fibrosis, with (A) confusion matrices using a
combined machine learning algorithm, (B) metrics of performance, and (C) corresponding receiver operator (ROC) curve. AUC, area under ROC curve;
CA, classification accuracy; LR, logistic regression; NN, neural network; Prec., precision; SGD, stochastic gradient descent; Spec., specificity.
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5 | DISCUSSION

We use a point‐of‐care NIRS instrument to scan fresh pathological and

normal liver tissue from explanted livers, all of which are then

compared to findings of conventional histopathology, with the

following key findings. First, the NIRS spectra for diseased (F4

cirrhosis) and normal (F0) are unique at a crude visual level. Second,

when we combine the spectral data with machine learning algorithms,

NIRS has an accuracy of 96% in identifying cirrhosis and greater than

93% in grading or classifying the degree of fibrosis. Third, we find that

we find that NIRS can accurately predict both immature and mature

fibrosis (R2 > 0.80) to within 10% (RMSE< 10%).

This study is the first to describe point‐of‐care NIRS in fresh

human tissue to detect hepatic fibrosis. Current data for use of

spectroscopy for analyzing fibrosis in biological tissue are emer-

ging, but the majority use bulky benchtop instruments that are

restricted to laboratory use.10–18 This is one of a small number of

studies where miniaturized handheld instruments that carry point‐

of‐care potential. However, most studies have used Raman

spectroscopy, where we use NIR spectroscopy which benefits

from greater penetration depth and reduced fluorescence of

thermal perturbance of underlying tissue. Furthermore, the

majority of previous studies were performed on animal tissue,

fixed tissue or were based on less than 10 samples. In scanning

107 fresh samples with a 3‐s NIRS scan with a high degree of

accuracy, we believe we are the first to demonstrate NIRS as a

potential point‐of‐care clinical instrument for hepatic fibrosis,

especially in transplant surgery.

The clinical implications for such a tool are considerable. At the

time of retrieval, point‐of‐care NIRS could provide a rapid assessment

of fibrosis, potentially predicting biopsy results, and therefore risk of

adverse events; findings of viability may help to increase the number

of livers available for transplantation (i.e., transplanting livers that

would otherwise be rejected). The accuracy point‐of‐care NIRS

exceeds other clinical assessments, such as Fibroscan which has a

reported AUC of 0.70–0.89.47 Furthermore, our findings are from a

heterogenous range of aetiologies, including hepatitis, alcoholic liver

disease and nonalcoholic steatohepatitis; all of which have historically

been difficult to diagnose using other imaging modalities. As samples

have been obtained using a fibreoptic probe with a diameter less than

10mm, with the technique being nonperturbative and autoclave safe,

it can be safely applied to whole organs without the need for tissue

(C)(B)

(A)

F IGURE 6 Near infrared spectroscopy scans ability to predict histopathological METAVIR grade of fibrosis, classified as F0/1 versus F2
versus F3/4, with (A) confusion matrices using a combined machine learning algorithm, (B) metrics of performance, and (C) corresponding
receiver operator (ROC) curve. AUC, area under ROC curve; CA, classification accuracy; LR, logistic regression; NN, neural network;
Prec., precision; SGD, stochastic gradient descent; Spec., specificity.
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excision. This has the potential for use with a minimally invasive

laparoscopic approach.

Our study is unique due to the large number of fresh pathological

and control human liver samples studied, which are typically challenging

to obtain.36. NIR instrumentation is readily available, as it is already used

extensively in industrial chemistry, with multiple combinations available

for spectrometers, light sources, and fiber‐optic probes.37 Costs are under

20,000USD, which are still cheaper than many of the imaging

instruments used in clinical practice. Training to use instruments is

becoming increasingly easier, with some instruments now available via

smartphone applications with a “single‐click” user interface. The spectral

range from 900 to 1700 nm and 785 scans, provides ample data for

machine‐learning algorithms to yield high levels of accuracy. This allows

us to not only diagnose fibrosis, but also quantify and typify it. With

larger‐scale studies with in vivo validation, this is a tool that has

immediate clinical applications. Future studies would also benefit from

F IGURE 7 Partial least square regression analysis using near infrared spectroscopy data for predictions and histopathology for the ground
truth. Predictions are shown separately for (A) immature fibrosis, as quantified on picrosirius red stains and (B) mature fibrosis, as quantified
on Van Geison stains. PSR, picrosirius red; RMSE, root mean square error; VG, Van Geison stain.
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multi‐modal spectroscopic unsupervised evaluation and, that could

compile a complementary array of data from Raman and Infrared (mid‐

IR and near‐IR) spectroscopy. External validation at other centers with

other instruments would also be required to validate the findings from

this report.

6 | CONCLUSION

This study demonstrates a point‐of‐care NIRS instrument can

accurately detect, quantify, and classify liver fibrosis with the aid of

machine learning algorithms.

AUTHOR CONTRIBUTIONS

Varun J. Sharma: Conceptualization; data curation; formal analysis;

funding acquisition; investigation; methodology; project administration;

resources; software; supervision; validation; visualization; writing—

original draft; writing—review and editing. John A. Adegoke: Data

curation; formal analysis. Michael Fasulakis: Formal analysis. Alexander

Green: Formal analysis. Su K. Goh: Data curation. Xiuwen Peng: Formal

analysis. Yifan Liu: Formal analysis. Louise Jackett: Data curation;

formal analysis. Angela Vago: Formal analysis; funding acquisition. Eric

K. W. Poon: Formal analysis; funding acquisition. Graham Starkey:

Formal analysis; writing—review and editing. Sarina Moshfegh: Data

curation; formal analysis. Ankita Muthya: Data curation. Rohit D'Costa:

Methodology; project administration; writing—review and editing.

Fiona James: Data curation; funding acquisition; investigation; meth-

odology; project administration; writing—review and editing. Claire L.

Gordon: Data curation; formal analysis; funding acquisition; investiga-

tion; methodology; project administration; resources; supervision;

visualization; writing—original draft; writing—review and editing. Robert

Jones: Methodology; resources; supervision; visualization. Isaac O.

Afara: Formal analysis. Bayden R. Wood: Formal analysis; supervision.

Jaishankar Raman: Conceptualization; data curation; formal analysis;

funding acquisition; investigation; methodology; project administration;

resources; software; supervision; writing—original draft; writing—

review and editing.

ACKNOWLEDGMENTS

We gratefully acknowledge the generosity of the deceased organ

donors and their families in providing valuable tissue samples. Varun J.

Sharma is a recipient of the Heart Foundation PhD Scholarship and

University of Melbourne Graduate Research Scholarship. John A.

Adegoke and Claire L. Gordon are recipients of the Monash University

graduate students' scholarship. Isaac O. Afara acknowledges Academy

Research Fellowship and Sigrid Jusélius Senior Fellowship funding

from the Academy of Finland (315820) and the Sigrid Jusélius

Foundation (210528), respectively. We gratefully acknowledge the

generosity of the deceased organ donors and their families in providing

valuable tissue samples to advance medical research. Claire L. Gordon

was supported by a National Health and Medical Research Council

(NHMRC) Early Career Fellowship (GNT 1160963) and Royal

Australasian College of Physicians Research Establishment Grant.

Open access publishing facilitated by The University of Melbourne, as

part of the Wiley ‐ The University of Melbourne agreement via the

Council of Australian University Librarians.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

ETHICS STATEMENT

This study was approved by the Human Resources and Ethics

Committee (HREC) at Austin Hospital, Heidelberg, Melbourne,

Victoria (HREC/73660/Austin‐2021). Approval acquisition of human

tissue from organ donors was as part of the Australian Donation and

Transplantation Biobank (HREC/4814/Austin‐2019) and Donate Life

Victoria (DLV) through the Australian Red Cross Lifeblood Health

Human Research and Ethics Committee (Ethics 2019#08).

TRANSPARENCY STATEMENT

The lead author Jaishankar Raman affirms that this manuscript is an

honest, accurate, and transparent account of the study being

reported; that no important aspects of the study have been omitted;

and that any discrepancies from the study as planned (and, if relevant,

registered) have been explained.

ORCID

Varun J. Sharma https://orcid.org/0000-0002-5008-4113

Alexander Green http://orcid.org/0000-0002-2998-1127

REFERENCES

1. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver
diseases in the world. J Hepatol. 2019;70(1):151‐171.

2. Foucher J. Diagnosis of cirrhosis by transient elastography (FibroS-
can): a prospective study. Gut. 2006;55(3):403‐408.

3. Turner R. Uses, misuses, new uses and fundamental limitations of
magnetic resonance imaging in cognitive science. Philos Trans R Soc

B. 2016;371(1705):20150349.

4. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for
the diagnosis and treatment of acute and chronic heart failure: the
task force for the diagnosis and treatment of acute and chronic heart

failure of the European Society of Cardiology (ESC) developed with
the special contribution of the Heart Failure Association (HFA) of
the ESC. Eur Heart J. 2016;37(27):2129‐2200.

5. Jellis C, Martin J, Narula J, Marwick TH. Assessment of nonischemic
myocardial fibrosis. JACC. 2010;56(2):89‐97.

6. Edwards WD. Current problems in establishing quantitative histo-

pathologic criteria for the diagnosis of lymphocytic myocarditis by
endomyocardial biopsy. Heart Vessels. 1985;1:138‐142.

7. Hammond MEH, Stehlik J, Snow G, et al. Utility of histologic
parameters in screening for antibody‐mediated rejection of the

10 of 12 | SHARMA ET AL.

https://orcid.org/0000-0002-5008-4113
http://orcid.org/0000-0002-2998-1127


cardiac allograft: a study of 3,170 biopsies. J Heart Lung Transplant.
2005;24(12):2015‐2021.

8. Urbich M, Globe G, Pantiri K, et al. A systematic review of medical
costs associated with heart failure in the USA (2014‐2020).
Pharmacoeconomics. 2020;38(11):1219‐1236.

9. Lesyuk W, Kriza C, Kolominsky‐Rabas P. Cost‐of‐illness studies in
heart failure: a systematic review 2004‐2016. BMC Cardiovasc

Disord. 2018;18(1):74.
10. Afara IO, Shaikh R, Nippolainen E, et al. Characterization of

connective tissues using near‐infrared spectroscopy and imaging.
Nat Protoc. 2021;16(2):1297‐1329.

11. Zimmermann E, Mukherjee SS, Falahkheirkhah K, et al Detection and
quantification of myocardial fibrosis using stain‐free infrared
spectroscopic imaging. Arch Pathol Lab Med. 2021;145(12):

1526‐1535. https://meridian.allenpress.com/aplm/article/145/12/
1526/463083/Detection-and-Quantification-of-Myocardial

12. Tiwari S, Raman J, Reddy V, et al. Towards translation of discrete
frequency infrared spectroscopic imaging for digital histopathology
of clinical biopsy samples. Anal Chem. 2016;88(20):10183‐10190.

13. Tiwari S, Reddy VB, Bhargava R, Raman J. Computational chemical
imaging for cardiovascular pathology: chemical microscopic imaging
accurately determines cardiac transplant rejection. PLoS One.
2015;10(5):e0125183.

14. Linus A, Ebrahimi M, Turunen MJ, et al. High‐resolution infrared
microspectroscopic characterization of cartilage cell micro-
environment. Acta Biomater. 2021;134:252‐260. https://pubmed.
ncbi.nlm.nih.gov/34365039/

15. Virtanen V, Nippolainen E, Shaikh R, et al. Infrared fiber‐optic
spectroscopy detects bovine articular cartilage degeneration.
Cartilage. 2021;13(2_suppl):285S‐294S. https://pubmed.ncbi.nlm.
nih.gov/33615831/

16. Sarin JK, Te Moller NCR, Mohammadi A, et al. Machine learning
augmented near‐infrared spectroscopy: in vivo follow‐up of cartilage

defects. Osteoarth Cartil. 2021;29(3):423‐432.
17. Sarin JK, Nykänen O, Tiitu V, et al. Arthroscopic determination of

cartilage proteoglycan content and collagen network structure
with near‐infrared spectroscopy. Ann Biomed Eng. 2019;47(8):
1815‐1826.

18. Porcari A, Falco L, Lio V, et al. Cardiac amyloidosis: do not forget to
look for it. Eur Heart J Suppl. 2020;22(suppl E):E142‐E147.

19. Chen J, Wang W, Lv S, et al. Metabonomics study of liver cancer
based on ultra performance liquid chromatography coupled to mass

spectrometry with HILIC and RPLC separations. Anal Chim Acta.
2009;650(1):3‐9.

20. Belbachir K, Noreen R, Gouspillou G, Petibois C. Collagen types
analysis and differentiation by FTIR spectroscopy. Anal Bioanal

Chem. 2009;395(3):829‐837.
21. Baykal D, Irrechukwu O, Lin PC, Fritton K, Spencer RG, Pleshko N.

Nondestructive assessment of engineered cartilage constructs using
near‐infrared spectroscopy. Appl Spectrosc. 2010;64(10):1160‐1166.

22. Baker MJ, Trevisan J, Bassan P, et al. Using Fourier transform IR
spectroscopy to analyze biological materials. Nat Protoc. 2014;9(8):

1771‐1791.
23. Fernandez DC, Bhargava R, Hewitt SM, Levin IW. Infrared spectro-

scopic imaging for histopathologic recognition. Nat Biotechnol. 2005;
23(4):469‐474.

24. Piek A, de Boer RA, Silljé HHW. The fibrosis‐cell death axis in heart

failure. Heart Fail Rev. 2016;21(2):199‐211.
25. Distler JHW, Györfi AH, Ramanujam M, Whitfield ML, Königshoff M,

Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat Rev

Rheumatol. 2019;15(12):705‐730.
26. Cleutjens JP, Verluyten MJ, Smiths JF, Daemen MJ. Collagen

remodeling after myocardial infarction in the rat heart. Am J Pathol.
1995;147(2):325‐338.

27. Weber KT, Brilla CG. Pathological hypertrophy and cardiac inter-
stitium. Fibrosis and renin‐angiotensin‐aldosterone system. Circulation.
1991;83(6):1849‐1865.

28. López B, Querejeta R, González A, Larman M, Díez J. Collagen cross‐
linking but not collagen amount associates with elevated filling
pressures in hypertensive patients with stage C heart failure:
potential role of lysyl oxidase. Hypertension. 2012;60(3):677‐683.

29. Woodiwiss AJ, Tsotetsi OJ, Sprott S, et al. Reduction in myocardial
collagen cross‐linking parallels left ventricular dilatation in rat

models of systolic chamber dysfunction. Circulation. 2001;103(1):
155‐160.

30. Whittaker P, Kloner RA, Boughner DR, Pickering JG. Quantitative
assessment of myocardial collagen with picrosirius red staining and
circularly polarized light. Basic Res Cardiol. 1994;89(5):397‐410.

31. Adegoke JA, Kochan K, Heraud P, Wood BR. A near‐infrared
“matchbox size” spectrometer to detect and quantify malaria
parasitemia. Anal Chem. 2021;93(13):5451‐5458.

32. Moreau J, Bouzy P, Guillard J, et al. Analysis of hepatic fibrosis
characteristics in cirrhotic patients with and without hepatocellular

carcinoma by FTIR spectral imaging. Molecules. 2020;25(18):4092.
33. Sreedhar H, Varma VK, Gambacorta FV, Guzman G, Walsh MJ.

Infrared spectroscopic imaging detects chemical modifications in
liver fibrosis due to diabetes and disease. Biomed Opt Express.

2016;7(6):2419‐2424.
34. Peng C, Kaščáková S, Chiappini F, et al. Discrimination of cirrhotic

nodules, dysplastic lesions and hepatocellular carcinoma by their
vibrational signature. J Transl Med. 2016;14:9.

35. Tolstik T, Marquardt C, Beleites C, et al. Classification and prediction

of HCC tissues by Raman imaging with identification of fatty acids as
potential lipid biomarkers. J Cancer Res Clin Oncol. 2015;141(3):
407‐418.

36. Le Naour F, Sandt C, Peng C, et al. In situ chemical composition
analysis of cirrhosis by combining synchrotron Fourier transform

infrared and synchrotron X‐ray fluorescence microspectroscopies on
the same tissue section. Anal Chem. 2012;84(23):10260‐10266.

37. Beć KB, Grabska J, Huck CW. Near‐infrared spectroscopy in bio‐
applications. Molecules. 2020;25(12):2948.

38. Sharma VJ, Starkey G, D'Costa R, et al. Australian donation and

transplantation biobank: a research biobank integrated within a
deceased organ and tissue donation program. Transpl Direct.
2023;9(1):e1422.

39. Ziol M, Handra‐Luca A, Kettaneh A, et al. Noninvasive assessment of

liver fibrosis by measurement of stiffness in patients with chronic
hepatitis C. Hepatology. 2005;41(1):48‐54.

40. Dankner M, Senecal J, Neubarth NS, et al. A survey of health care
professionals and oncology patients at the McGill University Health
Centre reveals enthusiasm for establishing a postmortem rapid

tissue donation program. Curr Oncol. 2019;26(4):558‐570.
41. Desmet VJ, Gerber M, Hoofnagle JH, Manns M, Scheuer PJ.

Classification of chronic hepatitis: diagnosis, grading and staging.
Hepatology. 1994;19(6):1513‐1520.

42. Torniainen J, Afara IO, Prakash M, Sarin JK, Stenroth L, Töyräs J.

Open‐source python module for automated preprocessing of near
infrared spectroscopic data. Anal Chim Acta. 2020;1108:1‐9.

43. Torniainen J, Afara IO, Prakash M, Sarin JK, Stenroth L, Töyräs J.
Automated preprocessing of near infrared apectroscopic data.
Biophotonics Congress: Optics in the Life Sciences Congress 2019

(BODA, BRAIN, NTM, OMA, OMP); 2019 2019/04/14. Optica
Publishing Group; 2019:DS2A.6.

44. Toplak M, Read ST, Sandt C, Borondics F. Quasar: easy machine
learning for biospectroscopy. Cells. 2021;10(9):2300.

45. Toplak M, Birarda G, Read S, et al. Infrared orange: connecting
hyperspectral data with machine learning. Synchr Radiat News.
2017;30(4):40‐45.

SHARMA ET AL. | 11 of 12

https://meridian.allenpress.com/aplm/article/145/12/1526/463083/Detection-and-Quantification-of-Myocardial
https://meridian.allenpress.com/aplm/article/145/12/1526/463083/Detection-and-Quantification-of-Myocardial
https://pubmed.ncbi.nlm.nih.gov/34365039/
https://pubmed.ncbi.nlm.nih.gov/34365039/
https://pubmed.ncbi.nlm.nih.gov/33615831/
https://pubmed.ncbi.nlm.nih.gov/33615831/


46. Adegoke JA, Gassner C, Sharma VJ, et al. Near‐infrared spectro-
scopic characterization of cardiac and renal fibrosis in fixed and
fresh rat tissue. Anal Sens. 2023;3(1):e202200030.

47. Eddowes PJ, Sasso M, Allison M, et al. Accuracy of FibroScan

controlled attenuation parameter and liver stiffness measure-
ment in assessing steatosis and fibrosis in patients with
nonalcoholic fatty liver disease. Gastroenterology. 2019;156(6):
1717‐1730.

How to cite this article: Sharma VJ, Adegoke JA, Fasulakis M,

et al. Point‐of‐care detection of fibrosis in liver transplant

surgery using near‐infrared spectroscopy and machine

learning. Health Sci Rep. 2023;6:e1652.

doi:10.1002/hsr2.1652

12 of 12 | SHARMA ET AL.

https://doi.org/10.1002/hsr2.1652

	Point-of-care detection of fibrosis in liver transplant surgery using near-infrared spectroscopy and machine learning
	1 BACKGROUND
	2 AIM
	3 EXPERIMENTAL PROCEDURES
	3.1 Sample retrieval
	3.1.1 Demographics

	3.2 Near-infrared spectroscopy (NIRS) scans
	3.2.1 Histopathology (Gold Standard)
	3.2.2 Clinical data analysis
	3.2.3 Machine learning


	4 RESULTS
	4.1 Identifying Cirrhosis
	4.2 Detecting fibrosis
	4.3 Quantifying fibrosis

	5 DISCUSSION
	6 CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	TRANSPARENCY STATEMENT
	ORCID
	REFERENCES




