
diagnostics

Review

Radiolabeling Strategies of Nanobodies for
Imaging Applications

Jim Küppers *, Stefan Kürpig, Ralph A. Bundschuh , Markus Essler and Susanne Lütje

����������
�������

Citation: Küppers, J.; Kürpig, S.;

Bundschuh, R.A.; Essler, M.; Lütje, S.

Radiolabeling Strategies of

Nanobodies for Imaging Applications.

Diagnostics 2021, 11, 1530. https://

doi.org/10.3390/diagnostics11091530

Academic Editor: Alexander Haug

Received: 1 July 2021

Accepted: 20 August 2021

Published: 25 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany;
stefan.kuerpig@ukbonn.de (S.K.); ralph.bundschuh@ukbonn.de (R.A.B.); markus.essler@ukbonn.de (M.E.);
susanne.luetje@ukbonn.de (S.L.)
* Correspondence: patrick_jim.kueppers@ukbonn.de; Tel.: +49-228-28710338

Abstract: Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-
chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable
compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous
administration, while unbound molecules are quickly cleared from the circulation. In consequence,
high signal-to-background ratios can be achieved, rendering radiolabeled nanobodies high-potential
candidates for imaging applications in oncology, immunology and specific diseases, for instance in
the cardiovascular system. In this review, a comprehensive overview of central aspects of nanobody
functionalization and radiolabeling strategies is provided.

Keywords: nanobodies; labeling strategies; positron emission tomography; single photon emission
computed tomography; radiometals; radiohalogens; molecular imaging

1. Introduction

Nanobodies (VHHs) represent recombinant single-domain variable fragments of
heavy-chain-only antibodies (HCAbs), which themselves are obtained from species of
the Camelidae family (Figure 1) [1]. With a molecular weight of 12–15 kDa, nanobodies are
considered the smallest naturally occurring antigen-binding fragments [2]. They exhibit
many beneficial features such as good water-solubility and (thermo)stability, high affinity
and specificity as well as low immunogenicity, predestining them as excellent probes for
molecular imaging applications [1,3,4]. A major advantage compared to conventional
immunoglobulin G (IgG) antibodies is their rapid pharmacokinetics [5]. Due to their small
size, nanobodies can reach their binding sites on the target tissues efficiently and quickly
after injection, while the unbound fraction is rapidly cleared from the blood stream through
renal elimination, potentially leading to high target-to-background ratios [6,7].
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and specificity as well as low immunogenicity, predestining them as excellent probes for 
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Figure 1. Schematic representation of conventional immunoglobulin G’s (IgGs), heavy chain-only 
antibodies (HCAbs) and nanobodies. VH, variable heavy; VL, variable light; VHH, VH of HCAbs. 
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Figure 1. Schematic representation of conventional immunoglobulin G’s (IgGs), heavy chain-only
antibodies (HCAbs) and nanobodies. VH, variable heavy; VL, variable light; VHH, VH of HCAbs.
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Clinically, molecular imaging allows for noninvasive diagnosis of various ailments,
disease-monitoring and therapy follow-up, as well as for patient selection and stratifica-
tion at an early stage [7,8]. In order to depict (patho)physiological processes in vivo, a
molecular tracer consisting of a targeting moiety and a detection label is appropriately
administered into the patient’s body [6]. While the former accomplishes the direction
and specific accumulation of the probe, the latter enables the visualization of the tissue of
interest [7]. For nuclear imaging purposes, a gamma-emitting isotope is used for single pho-
ton emission computed tomography (SPECT), while positron-emitting isotopes are used for
positron emission tomography (PET). Typical SPECT isotopes comprise technetium-99 m
and indium-111, while common PET isotopes include zirconium-89, copper-64, gallium-68
and fluorine-18. Since both techniques have their advantages in imaging, it is important
to evaluate labeling for gamma emitters as well as positron emitters. Quantification in
PET is easier than in SPECT imaging, where more individual calibration techniques are
necessary [9]. SPECT, however, allows multi tracer imaging, as different energy windows
can be scanned at the same time [10]. Clinical PET scanners also show a higher spatial
resolution compared to clinical SPECT in most cases [11]; this is different in small animal
imaging as spatial resolution of SPECT is not limited by the positron range, which is an
intrinsic physical limit for the spatial resolution of PET.

It is important that the pharmacokinetic properties of the targeting vehicle are per-
fectly coordinated with the half-life of the radioisotope. Thus, due to their relatively slow
pharmacokinetics, full-size IgG antibodies need to be combined with longer-lived radionu-
clides, such as zirconium-89 or indium-111 [12]. Upon administration, these radiolabeled
antibodies require longer waiting periods for imaging, along with extended exposure
to ionizing radiation for the patients. Such a longer accumulation time might affect the
stability of the radiotracer and result in disintegration, leading to changes in the biodistri-
bution profile and, via a misinterpretation of the scan, to a false diagnosis. Accordingly,
they are less favorable for clinical applications. Conversely, nanobodies with more rapid
pharmacokinetics attached to short-lived radionuclides, such as gallium-68 or fluorine-18,
represent ideal imaging radiotracers [3].

In order to attain such tracers, the radiolabel may either be introduced into the single
peptide chain of the nanobody as part of a prosthetic group, relating to radiohalogens
(e.g., fluorine-18), or by means of complexation, concerning primarily radiometals (e.g.,
gallium-68) [12]. Direct radiohalogenation can require harsh reaction conditions, such as
high temperatures and non-aqueous conditions, which are incompatible with nanobodies.
Therefore, indirect labeling by using radiohalogen-containing prosthetic groups is most
commonly performed for such antigen-binding proteins, although the procedure for syn-
thesizing and purifying these radiolabeled groups requires extra time [3,12]. Contrary to
this, radiometal labeling via chelation is usually conducted at the very end, immediately
prior to application. Accordingly, the nanobody needs to be pre-modified with a chelating
moiety in order to coordinate the radio-cation. Such a chelator can either be a synthesized
organic molecule or of proteinogenic nature. Another way to introduce radiometals to
nanobodies is via a heteroleptic complex, which is usually formed prior to attachment.

After intravenous administration, these nanobody-based radiotracers are rapidly
cleared from the blood circulation through glomerular filtration due to their small size,
followed by reabsorption in the proximal tubule, leading to a longer retention time in
the renal cortex, which presents diagnostic as well as health concerns [7]. On the one
hand, the associated intense renal signals impede imaging of molecular targets in close
proximity to the kidneys. On the other hand, a long-term exposure with these tracers and
their radio-catabolites implies a certain undesired nephrotoxicity. This refers especially to
radio-catabolites derived from radiometal-labeled nanobodies, since radiohalogenated (flu-
orinated or iodinated) catabolites are usually hydrophobic and therefore rapidly excreted
via the urine. In order to diminish the renal reabsorption of the tracers, a few techniques
have been implemented. Since megalin/cubilin receptors in the proximal tubule play a
decisive role for the reuptake, co-administration of the plasma expander gelofusin or posi-
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tively charged amino acids, such as arginine or lysine, can prevent the recovery through
competition [7,13]. Apart from this, the tracer can be chemically modified, either by a
cleavable linker (e.g., a renal brush border enzyme (BBE)-cleavable linker) inserted between
the targeting moiety and the label so that an easier excretion of the radioactive metabolites
into the urine is accomplished [14], or by an increase in the negative charge of the labeled
entity, evoking a stronger electrostatic repulsion with the negatively charged proximal
tubular cell surface [15].

Among the canonical amino acids within the nanobody, cysteine and lysine are
most commonly addressed for radiolabeling [12]. While the thiol function of the former
rapidly forms a thioether with a maleimide moiety, the primary ε-amino residue of the
latter is easily acylated via activated esters or converted into stable thioureas through
isothiocyanates, all of which enable the attachment of chelators or prosthetic groups to
the nanobody (Figure 2). Whether their installation to its amino acid sequence is carried
out randomly or site-specifically determines whether the radiotracer is obtained as a
heterogenous or a homogenous product [7]. Unselective (random) conjugation as a classical
strategy is convenient and has proven to be valuable; however, it can easily lead to hindered
target recognition when the label is inserted within or in close proximity to the antigen
binding site [16–18]. In order to better control the tracer conception, selective labeling at
a specific attachment site is the favored approach. This review is aimed at providing an
overview of the different synthetic strategies for radiolabeling nanobodies, which have
been employed during the past decade and up to today.
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2. Radiolabeling Strategies of Nanobodies
2.1. Radiohalogens

Radioiodines are well established in nuclear medicine [19], and among the clinically
used isotopes, iodine-125 and iodine-131 can be applied for both diagnostic and therapeutic
purposes [20]. Their gamma emission enables SPECT imaging, while additional radiation
allows for disease treatment [19]. However, they both possess a relatively long half-life
(59.6 days for iodine-125 [21]; 8.02 days for iodine-131 [22]), which is less desirable for
imaging applications of nanobody-based radiotracers. A much better radiohalogen in this
regard is the widely used PET imager fluorine-18 (t1/2 = 110 min) [23], which is highly
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valued for its high positron yield on the one hand, leading to higher sensitivity, and its low
positron energy on the other hand, optimizing resolution in imaging [12,24].

2.1.1. Direct Radiohalogenation

While direct radiofluorination of nanobodies implies incompatible harsh reaction
conditions, direct radioiodination using a well-established method with Iodogen (1,3,4,6-
tetrachloro-3α,6α-diphenyl-glycoluril), a water-insoluble oxidant that is applied in or-
der to minimize any protein damage through oxidation [25], has been performed by
Pruszynski et al. [26,27]. Therein, the 5F7 nanobody, which specifically binds to the same
epitope on the human epidermal growth factor receptor type 2 (HER2) as the known
antibodies trastuzumab and pertuzumab, has been labeled with either iodine-125 or iodine-
131, on constituent tyrosine residues of the nanobody’s peptide chain, by electrophilic
substitution. The phenolic hydroxyl group of tyrosine with its electron donating ability
directs the positively charged iodine species obtained by iodide oxidation with Iodogen in
the ortho position of the aromatic ring [28,29], yielding a heterogenous mixture, wherein
several tyrosines of the nanobody are either mono- or disubstituted (Figure 3). For internal-
izing targets, such as HER2, direct radioiodination methods are less appropriate, due to
compromised cumulative radioactivity within the cell as a result of rapid excretion of the
primary radiolabeled catabolites, e.g., iodotyrosines and free iodide, obtained by lysosomal
degradation [26,30].
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2.1.2. Indirect Radiohalogenation
Prosthetic Groups

The same anti-HER2 nanobody (5F7) has been labeled with iodine-125 or iodine-131
by introducing Nε−(3-[125/131I]iodobenzoyl)-Lys5-Nα-maleimido-Gly1-GEEEK ([125/131I]-
IB-Mal-D-GEEEK) (Figure 4) to sulfhydryl groups, which have been priorly installed on
primary amines of the nanobody’s amino acid sequence [26,27]. These include the ε-amino
functionality of several lysines, but also the N-terminal α-amino residue of the nanobody’s
peptide chain. Upon addition of the cyclic electrophile 2-iminothiolane, the nucleophilic
amino groups are converted into amidines with a free thiol moiety as a result of ring
opening [32]. In a Michael-type addition reaction, the thiol-derivatized nanobody can
be further conjugated with the maleimide function of [125/131I]-IB-Mal-D-GEEEK. The
structure of this prosthetic group is based on the peptide sequence Gly-D-Glu-D-Glu-D-
Glu-D-Lys-OH, in which the N-terminal amino group of glycine is part of the maleimide
and the ε-amino group of lysine is acylated by 3-[125/131I]iodobenzoic acid. The three
glutamic acids as well as the C-terminal lysine, all of which bear free carboxylic acid
moieties, provide high polarity to the molecule. Apart from achiral glycine, all the amino
acids within the pentapeptide are D-configured, rendering the sequence unsusceptible for
proteolysis. Accordingly, such a prosthetic group is especially suited for radiolabeling
structures that undergo intracellular processing, since it resists lysosomal digestion leading
to a reduced efflux and thus to an increased retention inside the cell. Another way to
trap radioactivity intracellularly is to apply radiohalogenated aromatic acylation agents
comprising substituents, which remain charged at lysosomal pH. These also include N-
succinimidyl 4-guanidinomethyl-3-[125/131I]iodobenzoate ([125/131I]SGMIB) as well as its
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isomer N-succinimidyl 3-guanidinomethyl-5-[125/131I]iodobenzoate (iso-[125/131I]SGMIB),
differing from each other only in the substitution position of the highly basic guanidi-
nomethyl moiety (Figure 4) [27,33]. Both prosthetic groups with their succinimide ester
functionalities have been conjugated randomly to primary amines within 5F7. The con-
jugation reaction is usually performed in the range of pH 8–9, at which the N-terminal
α-ammonium (pKa~8) is largely deprotonated, while the ε-ammonium (pKa~10) is mostly
protonated, rendering it less reactive towards the carbonyl carbon of the activated ester. For
this reason, it is likely to obtain a mixture of radiotracers, in which only one or a few among
all the existing amino groups within the nanobody are radiolabeled. Indirect radioiodi-
nation with [125I]SGMIB has been further conducted in order to label another anti-HER2
nanobody, 2Rs15d, binding to a target site distinct from that of 5F7 and thus allowing for
imaging patients that are subjected to trastuzumab or pertuzumab therapy [34].
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Furthermore, both nanobodies were also envisaged for indirect radiofluorination. In
order to obtain 18F-containing prosthetic groups closely related to the guanidinomethyl-
incorporating SGMIB, N-succinimidyl 3-((4-(4-[18F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-
5-(guanidinomethyl)benzoate ([18F]SFBTMGMB) and its analog N-succinimidyl 3-(1-(2-(2-(2-
(2-[18F]fluoroethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-5-(guanidinomethyl)benzoate
([18F]SFETGMB) (Figure 4) were synthesized through a multiple-step procedure involving
copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) for the 18F-introduction almost at
the very end, shortly prior to conjugation to primary amines of the nanobodies’ peptide
chain [30,34,35]. Nevertheless, the radiofluorinated nanobodies were achieved in very low
overall decay-corrected radiochemical yields. Besides, Zhou et al. applied a different synthetic
protocol, in which the click reaction was used for the attachment of the radiolabel to the
nanobody [36]. In the first step, primary amines within 2Rs15d were pre-modified through
an acylation reaction using N-succinimidyl 3-(azidomethyl)-5-(guanidinomethyl)benzoate (1)
(Figure 5). Subsequently, the 18F-labeled aza-dibenzocyclooctyne derivative (2) was employed
in order to conduct a strain-promoted azide-alkyne cycloaddition (SPAAC), yielding the
desired radiotracer. Such copper-free click chemistry is especially suited for proteins, due to
the avoidance of potential complex formation. Despite reducing the total radiosynthesis time
by this approach, the overall radiochemical yield was still not satisfactory, tracing back to the
lower reaction yield of SPAAC compared to CuAAC. Accordingly, improvements for both
strategies need to be developed before application on a routine basis.
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A certain limitation of these indirect methods for radiofluorinating the anti-HER2
nanobodies was the high kidney uptake of the radiotracers. Therefore, another 18F-labeled
prosthetic agent, namely 2,3,5,6-tetrafluorophenyl 6-[18F]-fluoronicotinate ([18F]TFPFN)
(Figure 4), has been applied in order to radiolabel 2Rs15d and 5F7, respectively [37].
Its structure is based on a pyridine ring bearing the radiofluorine in position 6 and
the carboxylic acid functionality in position 3, which in turn is activated as a 2,3,5,6-
tetrafluorophenyl ester, enabling the random conjugation to primary amines within the
nanobodies’ amino acid sequence. This molecule is closely related to the most commonly
used prosthetic group for 18F-labeling, N-succinimidyl-4-[18F]-fluorobenzoate ([18F]SFB)
(Figure 4), differing from it only by the aromatic system, which herein is a benzene ring,
and by the activated ester, i.e., a succinimide ester. Consequently, the attachment to both
anti-HER2 nanobodies was conducted analogously [3,30]. Indeed, the introduction of these
two very similar prosthetic groups to 5F7 and 2Rs15d has proven valuable in terms of
a lower renal uptake of the resulting radiotracers. Apart from HER2, [18F]SFB has been
additionally used to radiofluorinate the two mouse-human cross-reactive nanobodies MMR
3.49 and cAbVCAM-1−5, specifically targeting the macrophage mannose receptor (MMR)
and the vascular cell adhesion molecule (VCAM)-1, respectively [38,39]. Rashidian et al.
described a very elegant method for radiofluorinating nanobodies (VHHDC13, VHH7,
VHHDC8), which were specifically directed against the mouse cell surface marker CD11b
or the mouse class II major histocompatibility complex (MHC) [40–42]. The two anti-class II
nanobodies, VHH7 and VHHDC8, recognize a closely related epitope, but differ from each
other in their affinity towards the target, which is 3–4 fold higher for VHHDC8 than for
VHH7 [40]. These two as well as the anti-CD11b nanobody VHHDC13 were engineered in
a way that they bore a sortase A-recognition motif (sortag), enabling C-terminal site-specific
conjugation. The sortag itself embodies the oligopeptide Leu-Pro-Xxx-Thr-Gly (LPXTG), in
which Xxx is any amino acid besides cysteine, and glycine is not the final C-terminal amino
acid of the whole protein chain [43–45]. Sortase A is an enzyme found in Staphylococcus
aureus that catalyzes transpeptidation reactions. Upon recognition, the thiol (-SH) of the
transpeptidase’s active-site cysteine nucleophilically attacks the carbonyl carbon (C=O)
of the sortag’s threonine, forming an acyl-enzyme intermediate (Figure 6). Subsequently,
the carbonyl carbon of the thioester is nucleophilically attacked by the amino group of a
different oligoglycine which is present in molar excess, preventing the reverse reaction.
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site-specifically at the C-terminus [44]. LPXTG, sortase A-recognition motif; X, any amino acid except
cysteine; G, glycine; SH, thiol function of the active site cysteine; C=O, carbonyl carbon of threonine.

Such N-terminal oligoglycines decorated with specific functionalities have been used
by Rashidian et al. in order to site-specifically modify the three nanobodies so that an
inverse-electron demand Diels-Alder (IEDDA) cycloaddition between a tetrazine and a
trans-cyclooctene moiety could be employed for the installation of 18F-containing pros-
thetic groups [40–42]. Firstly, the linker-connected triglycine-methyltetrazine compound
3 has been applied to introduce the tetrazine substructure at the C-termini of VHH7
and VHHDC13 via sortase reaction, followed by the addition of the radiofluorinated
trans-cyclooctene derivative 4 to obtain the desired radiotracers through IEDDA reac-
tion (Figure 7) [41]. In a similar procedure, the trans-cyclooctene function has been site-
specifically inserted into VHH7 and VHHDC8 through their sortags by using the re-
spective triglycine 5, while the tetrazine moiety for the click reaction was part of the
18F-incorporating prosthetic agent 6 (Figure 8), which itself was obtained via an oxime liga-
tion reaction with commercially and widely available 2-deoxy-2-[18F]fluoro-D-glucose [40].
This approach has undergone further development to enable the indirect radiofluorination
of homodimeric and pegylated forms of VHHDC13 and VHHDC8 with the radiolabeled
tetrazine 7 (Figure 9) [42]. Apart from the adjustment, the initial synthesis strategy using
compounds 3 and 4 has been employed to three further recombinant nanobodies (A12, B3
and H11), from which A12 and B3 target the mouse programmed death ligand 1 (PD-L1)
and H11 addresses the mouse cytotoxic T lymphocyte antigen (CTLA)-4 [46,47].
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Chelation

Bifunctional chelating agents are very common for radiometal labeling, but their
application can also be extended to radiofluorines. For this purpose, the radiofluoride is
attached to a suitable metal, in particular aluminum, which itself is bound to an appropriate
chelator conjugated to a targeting vehicle, altogether resulting in a stable complex [48].
Such an Al18F-labeling strategy has also been applied to the three nanobodies 2Rs15d,
cAbVCAM-1−5 and NbV4m119, with the latter addressing the complement receptor of the
immunoglobulin superfamily (CRIg) expressed on Kupffer cells [15,49–51]. Cleeren et al.
established a new restrained complexing agent (RESCA) in order to facilitate the chelation
reaction with aluminum mono[18F]fluoride ([18F]{AlF}2+) at room temperature, which is
particularly suited for heat-sensitive biomolecules, e.g., nanobodies (Figure 10) [49,50].
Prior to complexation, the acyclic pentadentate chelator (±)-H3RESCA was randomly
introduced to primary amines of the two nanobodies via the activated form, bearing a
2,3,5,6-tetrafluorophenyl ester ((±)-H3RESCA-TFP). Zhou et al. followed a more lengthy
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but elegant approach to radiolabel the 2Rs15d nanobody with aluminum mono[18F]fluoride
via the macrocycle 1,4,7-triazacyclononane-N,N′,N”-triacetic acid (NOTA) [15]. By using
the IEDDA reaction in tandem with a renal BBE-cleavable glycine-lysine (GK) linker in
the prosthetic moiety, a good labeling yield as well as a low uptake of 18F-activity in the
kidneys was achieved. For this purpose, the trans-cyclooctene moiety was introduced to
2Rs15d by randomly reacting the nanobody’s primary amines with the succinimide ester of
TCO-GK-PEG4-NHS (8), which was then clicked to [18F]AlF-NOTA-PEG3-methyltetrazine
(9) to yield the final tracer (Figure 11). Short polyethylene glycol (PEG) chains consisting
of three and four units, respectively, have been implemented not only to further reduce
the kidney uptake, but also to provide structural flexibility to the molecule in order to
enable an enhanced enzyme accessibility to the cleavable GK linker. Although low kidney
activity levels were accomplished, tumor uptake was impaired, which was not related
to the tracer’s [18F]AlF-NOTA moiety, since its replacement by a prosthetic group did
not remedy the problem [52]. All in all, compared to the other indirect radiofluorination
strategies, the Al18F-chelation technique allows for higher radiochemical yields in a sub-
stantial shorter synthesis time, which is a key advantage of chelator-based radiolabeling
methods [15,49,50].
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2.2. Radiometals

Radiometal labeling is also based on chelation and represents an attractive alternative
to radiohalogenation [53]. Owing to its simplicity, reproducibility and high efficiency,
this method can be easily implemented in clinical routine. Among the common PET
radiometals, gallium-68 is very convenient because of its simple, cyclotron-independent
production via germanium-68/gallium-68 generators [12,54]. It also exhibits a short half-
life of 67.7 min, along with a low positron energy as well as a high positron yield; the latter
reflects a major decay through positron emission. In contrast, copper-64 and zirconium-89
constitute radiometals with supplemental alternative decay pathways, requiring higher
administration doses because of lower sensitivity. Additionally, both radionuclides have
much longer half-lives (12.7 h for copper-64 [55]; 78.4 h for zirconium-89 [56]), rendering
them less appropriate for nanobody radio imaging. This also applies to the gamma-emitting
radiometals indium-111 and lutetium-177, which possess a half-life of 67.2 h [57] and
6.65 days [58], respectively. Furthermore, lutetium-177 is mainly applied for therapeutic
purposes due to the emission of low-energy β-minus particles [59]. Hence, much more
suitable for SPECT in this context is the shorter lived technetium-99m (t1/2 = 6.02 h [60]),
which can also be easily obtained from widespread molybdenum-99/technetium-99 m
generators [61].

2.2.1. Synthetic Chelators

The majority of chelating agents are produced by means of organic chemistry. The
applied bifunctional chelators (BFCs) bear a chemically reactive functional group for
attachment to the targeting vehicle on the one hand, and a metal binding moiety for
sequestration of the metallic radionuclide on the other hand [13].

Macrocyclic

Among the different available macrocyclic chelators, almost exclusively NOTA has
been used for radiolabeling nanobodies. This hexadentate ligand is especially suited for
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such heat-labile proteins, due to the rapid and highly efficient complexation of copper-64
and gallium-68 at room temperature [54]. Site-specific labeling with copper-64 has been
conducted by introducing GGGC-NOTA (Figure 12) to the C-termini of several nanobod-
ies (B3, VHH7, VHHDC13, VHH4, NJB2) via sortase A-mediated reaction, followed by
radiometal chelation, as common in post-labeling strategies [41,46,62,63]. Its molecular
structure is based on the tetrapeptide sequence H-Gly-Gly-Gly-Cys-NH2, in which the
cysteine’s thiol function is covalently linked to maleimide-NOTA. Unlike the anti-mouse
class II MHC nanobody VHH7, VHH4 targets human class II MHC products [62]. NJB2
is a mouse-human cross-reactive nanobody specific to an alternatively spliced domain of
fibronectin expressed in disease extracellular matrix and neo-vasculature [63]. For random
64Cu-labeling, different nanobodies (Lox1.14, MMR 3.49, cAbVCAM-1−5) have been deco-
rated with 2-S-(4-isothiocyanatobenzyl)-NOTA (p-SCN-Bn-NOTA) (Figure 12) [64], a BFC
that bears an isothiocyanate functionality, enabling the reaction with primary amines of
the amino acid sequence. Apart from Lox1.14 targeting the lectin-like oxidized low-density
lipoprotein receptor (LOX)-1, the same BFC has been utilized for unselective 68Ga-labeling
of the other two nanobodies (MMR 3.49, cAbVCAM-1−5) [64–66], plus eight further
nanobodies (2Rs15d, 4hD29, 9077, 9079, Nb109, K2, Nb1053, SNA006a) [54,67–72], with
9077 and 9079 both addressing the cell surface marker CD20 [71], Nb109 and K2 both being
directed against human PD-L1 [69,70], as well as Nb1053 and SNA006a targeting CD38
and CD8, respectively [67,68]. Moreover, in GGGYK-NOTA (Figure 12), p-SCN-Bn-NOTA
has been attached to the ε-amino group of the C-terminal lysine as part of the pentapep-
tide H-Gly-Gly-Gly-Tyr-Lys-NH2 in order to allow also for site-specific 68Ga-labeling of
2Rs15d, cAbVCAM-1−5 and K2 [18,66,69]. However, the direct comparison with their
randomly-labeled counterparts revealed no significant differences with regard to targeting
efficacy determined for 2Rs15d in in vitro cell binding assays, biodistribution ascertained
for cAbVCAM-1−5 in ex vivo experiments, and tumor uptake investigated for K2 in in vivo
studies. Besides the sortase A enzyme approach, site-specific 68Ga-labeling of K2 was also
realized through maleimide-NOTA (Figure 12) conjugated to a cysteine engineered to
the nanobody’s C-terminus [73]. Prior to the Michael addition reaction, however, mild
reducing conditions were applied in order to particularly free the C-terminal thiol group
from disulfides formed by dimerization or glutathione-capping, while leaving internal
cysteines that are essential for the nanobody’s tertiary structure intact.
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Acyclic

The acyclic chelator desferrioxamine B (DFO) is a naturally occurring siderophore that
bears hydroxamate functions for complexing radiometals [12,74]. In the form of the BFC 10
bearing a reactive isothiocyanate group (Figure 13), DFO has been randomly conjugated
to primary amines of the anti-HER1 nanobody 7D12 to facilitate its radiolabeling with
gallium-68 or zirconium-89 [74,75]. The same BFC has also been used for unselective 89Zr-
labeling of the anti-gelsolin nanobody NB11 on the one hand, and of the two nanobody
heterodimers 1E2-Alb8 and 6E10-Alb8 on the other hand [76,77]. In the latter two cases,
nanobodies (1E2, 6E10) targeting the hepatocyte growth factor have been linked to an
albumin-binding nanobody unit (Alb8) in order to extend the circulation time [76]. A
similar concept has been realized in nanobody construct MSB0010853 consisting of three
interconnected, mouse-human cross-reactive nanobodies, out of which one is specifically
directed against albumin and two address the target HER3 at distinct epitopes [78]. While
usually in post-labeling methods the chelating unit is empty when the BFC is attached to
the nanobody, for pre-modification of MSB0010853, TFP-N-suc-DFO-Fe (Figure 13) has
been applied, in which the hydroxamate groups have been temporarily blocked with
the trivalent iron cation [78]. After randomly reacting its 2,3,5,6-tetrafluorophenyl ester
with the construct’s primary amines, the iron was efficiently detached from DFO and
subsequently labeled with zirconium-89 leading to the desired radio-probe.
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Moreover, site-specific 89Zr-labeling has been conducted on nanobody VHH-X118
targeting the mouse cell surface marker CD8 [79,80]. Initially, the tetrapeptide-based
sortase A substrate GGGC-DFO (Figure 13) was ligated to the C-terminus, which itself
was obtained from the addition reaction between the cysteine’s thiol and the maleimide
of functionalized DFO. Furthermore, with compound 11 (Figure 13), a pegylated version
of the substrate was established. Therein, a carboxyl-to-amine linker containing three
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PEG units was introduced between the triglycine and the cysteine on the one hand, and
at the cysteine’s terminal carboxamide group on the other hand, where it was further
extended by a modified lysine bearing a C-terminal carboxamide and an ε-azide group.
After selective conjugation of 11 to VHH-X118, the azide click handle allowed for the
additional introduction of PEG units via SPAAC, followed by 89Zr-complexation. The
resulting radiotracers exhibited an improved image quality compared to the non-pegylated
counterpart, due to the prolonged plasma half-life along with the reduced accumulation in
elimination organs. Hence, another nanobody, i.e., H11, was also site-specifically labeled
with zirconium-89 by following this pegylation strategy [47].

Diethylenetriaminepentaacetic acid (DTPA) is one of the oldest acyclic chelators,
which is clinically widely established and valued for its well defined labeling techniques
enabling facile and stable incorporation of indium-111 and lutetium-177 even at room
temperature [81–83]. As part of maleimide-DTPA (Figure 14), it has been utilized for
site-specific 111In-labeling of three nanobodies, i.e., 2Rs15d, JVZ-007 and 4hD29, with the
latter two being specific to the prostate-specific membrane antigen (PSMA) and the enzyme
dipeptidyl-peptidase 6, respectively [16,82,84]. For this purpose, the C-termini of these
three nanobodies were engineered to bear a cysteine, which due to spontaneous oxidative
homodimerization required mild reducing conditions to specifically free this thiol for the
Michael addition reaction with the maleimide moiety on the one hand, but maintaining the
intradomain disulfide bridges on the other hand. Furthermore, the BFC p-SCN-Bn-DTPA
(Figure 14) has been randomly introduced to primary amines of JVZ-007 as well as of
the amyloid-targeting nanobody VHH-pa2H, in order to allow for 111In-chelation [82,83].
CHX-A”-DTPA (Figure 14) represents a structural analog of p-SCN-Bn-DTPA, in which the
non-benzyl substituted flexible ethylene backbone is fixated by a butane chain forming
a six-membered ring [81]. Such cyclohexyl moiety imparts a higher degree of rigidity to
the chelating unit and with that an imposed preorganization on the metal ion binding
site leading to an enhanced kinetic inertness of the radiometal complex. By fusing CHX-
A”-DTPA with its isothiocyanate group to the lysine’s ε-amino group of the pentapeptide
H-Gly-Gly-Gly-Tyr-Lys-NH2 as in GGGYK-CHX-A”-DTPA (Figure 14), site-specific 111In-
labeling of the two nanobodies 2Rs15d and cAbVCAM-1−5 has been realized [18,66]. CHX-
A”-DTPA has also been directly applied to primary amines of these nanobodies for random
incorporation of indium-111 [18,66,85]. However, head-to-head comparison with the
selective 111In-tracers did not reveal a significant difference with respect to targeting efficacy
of 2Rs15d and biodistribution of cAbVCAM-1−5. Based on nanobody 9077, different
constructs have been developed including monomeric, homodimeric and heterodimeric
structures, which were randomly decorated with CHX-A”-DTPA through their primary
amines in order to allow for 111In- and 177Lu-labeling, respectively [86]. In the same
way, nanobody 9079 in its monomeric form has been radiolabeled with lutetium-177 [71].
1B4M-DTPA (Figure 14), also known as tiuxetan, is structurally even closer to p-SCN-
Bn-DTPA than CHX-A”-DTPA, differing from it only by a single methyl group situated
on the outer carbon of the non-benzyl substituted ethylene backbone [81]. This BFC has
been randomly employed to primary amines of the two nanobodies 2Rs15d and R3B23 to
enable 177Lu-chelation [59,85,87]. The latter displays a very specific nanobody, targeting
the monoclonal idiotype present in the murine 5T2MM model (5T2MMid), which itself is a
syngeneic immunocompetent model resembling human multiple myeloma clinically and
biologically [59].
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2.2.2. Proteinogenic Chelator

Besides the attachment of synthetic chelators and thereby chemical modification of
the nanobodies’ molecular structure, a certain part of their amino acid sequence offers a
very convenient and site-specific labeling technique [18]. In fact, a C-terminal hexahisti-
dine (His6) tail is usually genetically engineered in order to facilitate the purification of
the protein on a nickel affinity column [54,61], which also enables the incorporation of
technetium-99m in the form of 99mTc-tricarbonyl ([[99mTc]Tc(H2O)3(CO)3]+) [16,88]. The
tricarbonyl core is efficiently coordinated by three of the total of six histidine-derived
imidazole residues, forming the basis for this elegant method (Figure 15) [61]. Since
the His6-tag is located on the opposite side of the paratope, the antigen-binding activ-
ity remains usually unaffected [13,61]. This labeling strategy has been applied not only
to a huge panel of nanobodies addressing the so far discussed targets, e.g., HER-1 [89],
MMR [53,90,91], VCAM-1 [92,93], PD-L1 [94,95], CRIg [96], LOX-1 [97], gelsolin [98,99],
PSMA [100], amyloid [101], but also to several nanobodies that are directed against other
structures, such as carcinoembryonic antigen (CEA) [102], mesothelin [103], CD33 [88],
murine bone marrow-derived dendritic cells [104], mouse C-type lectin domain family
4 member F (Clec4F) [105], and mouse lymphocyte-activation gene 3 (LAG-3) [106,107].
However, such an additional His6-tag implies disadvantages with respect to clinical appli-
cation, comprising induction of immune responses on the one hand [108,109], and high
kidney retention on the other hand [54]. Accordingly, in the context of multiple imaging
modalities, 99mTc-tricarbonyl-labeled nanobodies display a rather limited scope [18].
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2.2.3. Heteroleptic Complex

Another way to radiolabel nanobodies with technetium-99m has been described
by Gao et al. [111]. Therein, prior to attachment to the murine (MY1523) and the hu-
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man (NB17) PD-L1-targeted nanobody, respectively, the heteroleptic complex consisting
of technetium-99m coordinated by the three ligands GGGGK(HYNIC), triphenylphosphine-
3,3′,3”-trisulfonic acid trisodium salt (TPPTS) and tricine was formed (Figure 16).
GGGGK(HYNIC) is based on the pentapeptide H-Gly-Gly-Gly-Gly-Lys-OH, in which
the ε-amino group of the C-terminal lysine is acylated by 6-hydrazinonicotinic acid. While
the hydrazine moiety takes part in the complex formation, the tetraglycine identifies the
molecule as a substrate for sortase A, thereby enabling the label installation.
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3. Conclusions

With the introduction of new tracers, molecular nuclear imaging has become increasingly
important in recent years [113]. While success was often achieved with small molecules as
radiolabeled ligands for PSMA [114], nanobody-based radio-probes are coming more and
more to the fore in current research [69,115]. During the past twelve years, many different
strategies for radiolabeling nanobodies have been implemented (Table 1), including both
radiohalogens and radiometals, which have been introduced randomly or site-specifically to
the nanobodies’ peptide chain. Among these, the most convenient method is certainly the
site-specific 99mTc-labeling through an engineered His6-tag. However, with respect to clinical
diagnostics, the other techniques are much more favorable. Even though chelator-based
radiolabeling of nanobodies appears to dominate currently, it still remains to be seen which of
all of the approaches described herein will prevail henceforth.

Future applications of radiolabeled nanobodies may range from oncological ques-
tions, such as tumor specific receptor statuses, to the visualization of cardiovascular or
neurological diseases. One of the first targets investigated was the HER2 receptor status
in breast cancer patients, which is a crucial point for the treatment of these patients when
suffering from advanced disease [27]. In the context of receptor status in oncology, het-
erogeneity is also an important topic and an essential question for molecular imaging,
as this cannot be assessed by biopsy of single lesions, which is nowadays often used for
treatment planning [116]. In addition, in many other tumor entities, heterogeneity seems
to be a key factor in connection with treatment planning, as e.g., in melanoma [117], or
as a potential surrogate marker in liver tumors or liver metastases [118]. Accordingly, it
is also a major point to examine tumor heterogeneity in other pathological markers such
as PD-L1, which also represents a pivotal target for nanobody-based imaging [95]. This,
of course, needs to be discussed in association with quantitative molecular imaging and
its limitations such as spatial resolution and the need for standardization of scanners and
imaging protocols [119]. Moreover, immunological processes can be investigated in much
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more detail with radiolabeled nanobodies than with conventional radiotracers, which are
certainly able to provide some basic information [120], but are limited in specificity. This is
also of great interest in terms of cardiovascular diseases [121].

Table 1. Pros and Cons of the herein discussed radiolabeling techniques applied to nanobodies.

Radiolabeling Strategies Positive Aspects Negative Aspects

Radiohalogens

Iodogen
sufficiently mild method to directly

radioiodinate sensitive proteins at low
temperatures

solely unspecific labeling possible

limited to radioiodines

Prosthetic groups

labeling with different radiohalogens
feasible

huge variety in their design realizable

their preparation and purification are
usually sophisticated resulting in a long
labeling procedure and low chemical

yields

Chelation
simplified labeling process leading to
good radiochemical yields as well as

high molar activities

only applicable to fluorine-18

radioactivity is not introduced in the
final step

Radiometals

Synthetic chelators

radiolabel is inserted at the very end

different radiometals are introducible
to the same chelator

consistently metal-free conditions
essential

can affect the physicochemical
properties of the nanobody

Proteinogenic
chelator

chelator is often engineered for
purification reasons

enables site-specific labeling with
technetium-99m

induction of immune responses

99mTc-tricarbonyl # required, which has
to be prepared

Heteroleptic
complex

no conversion of technetium-99m
necessary

radiocomplex needs to be formed prior
to attachment

# [[99mTc]Tc(H2O)3(CO)3]+.

All in all, nanobodies seem to constitute a powerful and safe tool for the development
of new radiopharmaceuticals for various applications. For imaging purposes, there is a
high variety of intriguing labeling strategies, as outlined in this review.
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