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Abstract

It is essential to identify the neuronal mechanisms of Alzheimer’s Disease (AD)-associated 

neuropsychiatric symptoms, e.g., apathy, before improving the life quality of AD patients. Here, 

we focused on the nucleus accumbens (NAc), a critical brain region processing motivation, also 

known to display AD-associated pathological changes in human cases. We found that the synaptic 

calcium permeable (CP)-AMPA receptors (AMPARs), which are normally absent in the NAc, can 

be revealed by acute exposure to Aβ oligomers (AβOs), and play a critical role in the emergence 

of synaptic loss and motivation deficits. Blockade of NAc CP-AMPARs can effectively prevent 

AβO-induced downsizing and pruning of spines and silencing of excitatory synaptic transmission. 

We conclude that AβO-triggered synaptic insertion of CP-AMPARs is a key mechanism mediating 

synaptic degeneration in AD, and preserving synaptic integrity may prevent or delay the onset of 

AD-associated psychiatric symptoms.

Brief

Amyloid-β oligomers in the nucleus accumbens lead to excitatory synapse loss and reduced 

motivation due to activation of calcium-permeable AMPA receptors.
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Introduction

Among a broad spectrum of Alzheimer’s Disease (AD)-associated symptoms, progressive 

decline of cognition has been extensively investigated1. However, limited symptomatic 

relief in AD patients by available medications demonstrates lack of understanding of 

the neuronal and circuit substrates of AD, especially the AD-associated neuropsychiatric 

symptoms (NPSs)2. A meta-analysis of 12 NPSs reported in the NeuroPsychiatric Inventory 
identified apathy as the most common NPS in AD patients and the primary cause of 

caregiver distress3. Specifically, apathy, characterized by lack of motivation, is commonly 

diagnosed in pre-dementia stages, deteriorates as the disease progresses, and predicts 

phenoconversion from normal cognition to mild cognitive impairment (MCI), and from 

MCI to dementia4–7. Thus, apathy has been widely accepted as a predictor of human 

AD progression8. Unfortunately, little is known about the neuronal mechanisms of AD-

associated apathy.

A substantial body of evidence, from both clinical and laboratory studies, demonstrates 

that the cortical and hippocampal regions are primarily affected in AD9, 10. Subcortical 

structures, including striatum, have been gradually uncovered with significant atrophy 

in AD by human imaging studies11. Among multiple sub-regions of striatum, the 

nucleus accumbens (NAc), as the major component of the ventral striatum and enriched 

with excitatory innervation from, among others, the cortex and hippocampus, displayed 

significantly higher densities of neurofibrillary degeneration12, 13. In fact, atrophy of the 

NAc was found in both MCI and AD human cases11. Smaller volume of the NAc, 

considered as a predictor of AD onset within 2 years, was proportionally associated 

with increased risk of transition from MCI to AD14. Extracellular amyloid Beta (Aβ) 

plaques, well-investigated molecular events in AD subjects15, 16, have been detected in the 

NAc but absent from age-matched non-AD controls17, 18. Furthermore, cortical activation, 

specifically the glutamatergic input from the medial prefrontal cortex (mPFC), is required 

for the functional activation of corticostriatal synapses onto medium-sized spiny neurons 

(MSNs), the major neuronal population of the NAc. This cortical excitatory innervation, 

although essential for normal MSN function, also confers vulnerability of MSNs in the NAc 

of AD subjects due to AD-associated cortical damage19–21.

Aβ peptides, particularly the non-aggregated, soluble assemblies of Aβ oligomers (AβOs), 

are known to be the main source of toxicity22, 23. Although extensive investigations 

have been made on Aβ peptides in relation to cognition impairments in corresponding 

brain regions such as hippocampus and cerebral cortex24–26, little is known about the 

involvement of Aβ peptides in AD-associated NPSs. Synaptic loss in AD, hypothesized to 

be a consequence of the amyloid cascade27, could be caused by glutamate excitotoxicity, 

which happens much earlier than complete neuronal loss28–31. While there is a consensus 
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in the AD field that deranged Ca2+ homeostasis is the main cause of synapse and cell 

loss32–34, the exact source of excessive intracellular Ca2+ flux remains obscure. As one of 

the major types of ionotropic glutamate receptors, AMPA receptors (AMPARs) are typically 

GluA2 subunit-containing and Ca2+ impermeable (CI). In addition, an atypical form of the 

AMPA receptor, the GluA2-lacking Ca2+ permeable (CP) AMPAR, is widely recognized as 

an indicator of brain dysfunction when present in adult brains29. Here we focused on the 

role of CP-AMPA receptors, particularly in the mPFC projection to D2-receptor expressing 

MSNs, in AβO-induced low motivation and excitatory synapse loss in the NAc.

Methods

(more details are available in Supplementary Information)

Animals

All procedures were performed in accordance with the United States Public Health Service 

Guide for Care and Use of Laboratory Animals and were approved by the Institutional 

Animal Care and Use committee at Indiana University School of Medicine.

In vivo procedures

Surgical procedures, including guide cannula and catheter implantation, and non-surgical in 
vivo procedures, including self-administration, were done as described in publications from 

our group35–37 and others38–40.

In vitro procedures

Brain slices for whole-cell patch clamp recordings were prepared by standard procedures 

as detailed in our previous publications35–37, 41, 42. These slices were also used for Western 

blot analysis, immunofluorescent staining, and DiI spine staining.

Data Analysis

Detailed statistics information for Figs.1–5 is available in Tables.S1–S5.

Results

Intra-NAc delivery of AβOs decreases motivation

The first question we addressed was about the behavioral effects of acute delivery of 

AβOs into the NAc. 3-month-old C57BL/6J (C57) mice were bilaterally injected with PBS 

vehicle (Veh), Aβ scrambled (AβSs), Aβ monomers (AβMs) or AβOs (including trimer, 

tetramer and larger soluble oligomers as shown in Fig. S1A) in the NAc, followed by 

behavioral training and testing within 3 weeks (Fig.1A,D). Similar acquisition of sucrose 

oral self-administration (SA) under fixed ratio (FR) 1 and FR5 was observed in Veh, AβSs, 

AβMs, and AβO mice, indicating the intra-NAc injection of AβSs, AβMs and AβOs has no 

apparent effect on the operant learning and memory-associated behaviors (Fig.1E). However, 

we saw significant decreases of the break point (BP) value in AβO mice, relative to Veh, 

AβS or AβM mice, to take sucrose pellets under PR schedule with no pre-feeding sessions 

(Fig.1F–H). In the Veh mice, the 1h pre-feeding by sucrose pellet right before the PR test 
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led to a significant decrease of the BP value compared to that without pre-feeding session, 

indicating that sucrose taking behaviors include a significant motivational component, which 

can be devaluated by 1h pre-feeding. This pre-feeding-devaluatable component of BP value 

was absent in AβO, but not AβS or AβM, mice. Thus, a decreased motivation index was 

detected in these AβO mice (Fig.1I).

Further evaluation of positive reinforcer-driven behaviors in AβO mice used cocaine 

intravenous SA (IVSA) (Fig.1A,J). The dose-response curve of IV cocaine at doses between 

0.1–3.0 mg/kg per infusion under FR1 in AβO mice, compared to Veh mice, was shifted 

downwards and flattened (Fig.1M). The decreased number of active lever presses (ALP), but 

not inactive lever presses (ILP), was demonstrated in AβO mice at the representative cocaine 

dose of 0.3 mg/kg per IV infusion (Fig.1K,L). Furthermore, the PR test showed a decreased 

BP value in AβO vs. Veh mice (Fig.1O,P). With regard to the effects of intra-NAc AβO 

delivery on the despair-like behavioral output driven by an aversive condition, such as in 

the forced swimming test (FST), we found that AβO mice displayed increased immobility 

% time (Fig.1B,C). Additional behavioral tests showed that, relative to Veh, AβS or AβM 

mice, AβO mice showed no differences in the total distance traveled (Fig.S1B,C) and time 

distribution between central vs. peripheral areas (Fig.S1D) in the 5-min open field (OF) 

test, or the crossover latency in the light-dark transition (LDT) test (Fig.S1E,F). These data 

reaffirmed our conclusion of significant decreases of motivation to counter negative stimuli 

and to earn positive rewards in intra-NAc AβO mice. Notably, these mice showed no deficits 

in operant learning and memory, general locomotion, or anxiety levels, thus other alternative 

explanations of low motivation could be excluded. Finally, the sucrose SA behavior was 

also evaluated in mice with intra-DLS delivery of AβOs. We found no difference of sucrose 

SA acquisition by FR1 and FR5 training, or motivation to take sucrose pellets in the PR 

test between intra-DLS Veh vs. AβO mice (Fig.S2). Thus, low motivation occurred as a 

NAc-specific consequence of AβOs.

Intra-NAc delivery of AβOs increased synaptic CP-AMPARs, blocking of which restored 
motivation to take sucrose pellets.

Next, we wondered about the potential synaptic and molecular substrates of AβO effects 

in the NAc that might be targeted to prevent behavioral deficits, i.e., low motivation. 

Glutamatergic inputs, particularly those mediated by AMPARs in the NAc, have been 

identified as the critical substrates of motivational behaviors39, 43–46. Thus, the GluA1 

and GluA2 AMPAR subunits were quantified in synaptosome extracts from the NAc 

in mice with intra-NAc delivery of Veh or AβOs (Fig.2A,B). AβO mice showed a 

significant decrease of AMPAR GluA2 but not GluA1 subunits in the NAc (Fig.2C), 

indicating a potential synaptic increase of GluA2-lacking CP-AMPARs. This was verified 

by whole-cell patch clamp recordings from MSNs in the NAc (Fig.2D). The amplitude 

of electrically evoked AMPAR-mediated EPSCs in AβO, but not Veh, mice displayed 

significant rectification (i.e., lower rectification index, RI) at positive membrane potentials 

(Fig.2E) due to intracellular polyamine blockade of CP-AMPARs47. Also, the CP-AMPAR 

antagonist, Naspm, decreased the amplitude of AMPAR-mediated EPSCs in AβO mice 

(Fig.2F,G). A decreased RI and Naspm-induced decrease of EPSC amplitude could either 

be explained by increased CP-AMPARs, decreased CI-AMPARs, or combined effects from 
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both43, 48. The RI=1 and no response to Naspm in Veh mice indicated there are no detectable 

CP-AMPARs in the NAc. Thus, the AβO mice certainly had newly inserted CP-AMPARs 

in the NAc, while CI-AMPARs could be decreased or unchanged. Further explorations 

of AMPAR changes were made in our slice AβO studies below. After confirming the 

increase of CP-AMPARs in AβO mice, we wondered whether the motivation deficits in 

these AβO mice could be prevented by blocking the CP-AMPARs in the NAc. Considering 

that cocaine-taking behaviors could involve more than the motivational component49, 50, 

and due to the significant stress and relatively high variability of the forced swimming 

test51, sucrose SA was selected as the behavioral readout to address this question. Daily 

intra-NAc injections of Naspm through the pre-implanted guide cannula, at least 1h after 

the post-training food-pellet feeding session, if there was any, were done during the 1st, 2nd, 

and the 3rd week, respectively in three batches of C57 mice, after intra-NAc delivery of 

the AβOs (Fig.2A). We found that daily injections of Naspm in Week 1 (before acquiring 

sucrose SA, Fig.2H–M), but not Week 2 (during acquisition of sucrose SA, Fig.S3A–D) or 

Week 3 (when sucrose-taking motivation was tested, Fig.S3E–G), effectively rescued the 

motivation of AβO mice to orally take the sucrose pellets as indicated by the BP values in 

the PR test of sucrose SA. The week 1 Naspm-treated AβO mice showed no deficits in their 

operant learning under FR1 and FR5 schedules and their expression of the sucrose-taking 

motivation (Fig.2I). Our data indicate that CP-AMPARs in the NAc, specifically right after 

intra-NAc delivery of AβOs, are necessary for the instigation of motivation deficits.

AβOs affect the pre- and post-synaptic compartments in striatal MSNs

What is the potential origin of excitatory inputs involved in the synaptic effects of AβOs 

in the NAc? MSNs in the NAc are innervated by multiple sources of excitatory terminals, 

including those containing vesicular glutamate transporters (VGluT) 1+ (primarily from 

mPFC, hippocampus, basolateral amygdala and cerebellar cortex) and those containing 

VGluT2+ (primarily from thalamus, brainstem and deep cerebellar nuclei)52–54. Thus, 

the VGluT1/VGluT2 expression in excitatory terminals was used to identify the potential 

source of inputs involved in AβO-induced synaptic alterations. PSD95, as a post-synaptic 

membrane-associated scaffolding protein located at the head of MSN dendritic spines55, 56, 

was co-stained with VGluT1 or VGluT2. Both 0.5h and 3h AβO pre-incubation (denoted 

pre-AβO 0.5h and pre-AβO 3h) of acutely cultured-brain slices from naïve 3-month-old C57 

mice decreased the volume of PSD95 puncta in the NAc. However, pre-AβO 3h, but not 

pre-AβO 0.5h, decreased the density of PSD95, reduced both the volume and density of 

VGluT1 puncta, and decreased the VGluT1+ excitatory synapses in the NAc (Fig.3 A–G). 

Similar changes in PSD95+ puncta were observed after co-staining of VGluT2 and PSD95 

in the NAc, i.e., pre-AβO 0.5h decreased their volume but not the density, and pre-AβO 

3h decreased both the volume and the density (Fig.S4). However, no changes in both 

volume and density of VGluT2+ puncta or the density of VGluT2+ excitatory synapses were 

detected in the NAc (Fig.S4). Similar analyses were done in the DLS. We found no change 

of VGluT1 and VGluT2 signals, although the volume, but not the density, of PSD95+ puncta 

in the DLS decreased after pre-AβO 3h (Figs.S5,S6). Thus, although AβOs cause synaptic 

degeneration in both the NAc and the DLS, synaptic contacts in the NAc, particularly the 

post-synaptic compartment, are more vulnerable to AβOs; compared to reduced density, 

the decreased volume of dendritic spines could be an early neurodegenerative event; and 
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VGluT1+ (e.g., the mPFC-NAc projection), relative to VGluT2+, terminals are also more 

sensitive to AβOs. Our following studies focused on the excitatory synapses in the NAc, 

particularly the postsynaptic compartment at the mPFC-NAc projection.

AβOs affect synaptic glutamate receptor subunits in the NAc

Was there an upregulation of synaptic CP-AMPARs in the NAc when the acutely cultured 

brain slices were pre-incubated with AβOs? To answer this question, synaptosomes from the 

NAc were extracted after AβO pre-incubation of brain slices prepared from naïve 3-month-

old C57 mice (Fig.3H). Western blot analyses showed that pre-AβO 3h, but not pre-AβO 

0.5h, decreased protein levels of GluN1 (Fig.S7A,B), indicating a potential decrease of 

synaptic NMDARs. The GluA1 subunit of AMPARs in NAc synaptosome extracts was also 

down-regulated by pre-AβO 3h, but not pre-AβO 0.5h (Fig.3I,J).The GluA2 subunit was 

significantly decreased after pre-AβO 0.5h, and was further decreased after another 2.5h 

(i.e., 3h in total) AβO pre-incubation (Fig.3L,M). Decreased protein levels of both GluA1 

and GluA2 subunits indicated down-regulation of total AMPARs. Specific decrease of the 

protein levels of GluA2 but no changes in GluA1 by pre-AβO 0.5h indicates the possibility 

of increases in GluA2 lacking CP-AMPARs in the NAc, which could be accompanied by a 

decrease in synaptic GluA2-containing, calcium impermeable (CI)-AMPARs to explain the 

lack of changes in GluA1 subunit protein levels. Interestingly, our data showed a significant 

increase in the ratio of GluA1/A2 protein levels in the NAc synaptosome fraction after pre-

AβO 0.5h, and was further increased after another 2.5h (i.e., 3h in total) AβO pre-incubation 

(Fig.3O). Thus, it is likely that the synaptic CP-AMPARs in the NAc progressively increased 

with the passage of AβO pre-incubation.

Further Western blot analyses were performed to identify the temporal course of AβO 

effects. Compared to pre-AβO 0.5h, significant decreases of the glutamate receptor subunit 

GluN1 (Fig.S7C) and GluA2 (Fig.3N), but not GluA1 (Fig.3K), occurred in the slices 

treated with pre-AβO 3h, and the slices treated with pre-AβO 0.5h, immediately followed 

by 2.5h artificial cerebrospinal fluid (ACSF) pre-incubation (denoted pre-AβO 0.5h+). 

Interestingly, there were no differences between pre-AβO 0.5h+ vs. pre-AβO 3h in any 

of the 3 types of glutamate receptor subunits. Thus, we assumed that the further increase of 

CP-AMPARs after pre-AβO 0.5h was independent from AβO exposure.

AβOs decrease the density of dendritic spines in NAc MSNs, which can be prevented by 
blocking CP-AMPARs

In order to identify structural changes in the post-synaptic compartment in the NAc after 

AβO exposure, morphological analyses of the dendritic spines in MSNs of the NAc were 

performed on acutely cultured-brain slices from naïve 3-month-old C57 mice via DiI 

staining (Fig.4A). Pre-AβO 3h, but not pre-AβO 0.5h, decreased the total spine density 

(Fig.4B). Interestingly, both pre-AβO 0.5h and pre-AβO 3h decreased the non-thin spine 

density (Fig.4D) and increased the ratio of thin vs. non-thin spines (Fig.4F), which were 

accompanied by different changes of thin spines (Fig.4E). The increased thin-spine density 

observed after pre-AβO 0.5h, but not pre-AβO 3h, were assumed to represent an early 

synaptic event before spine pruning. The increased thin-spine ratio, which was observed 

after both pre-AβO 0.5h and pre-AβO 3h, was considered as an index of the subsequent 
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spine pruning. The continuous spine pruning after pre-AβO 3h was confirmed by further 

spine decreases in slices treated by pre-AβO 3h followed by 3h of ACSF (Fig.4G). These 

data indicate that the AβO-induced dendritic spine loss might be initiated during a stage 

when the pre-existing non-thin spines are degraded or replaced by thin spines.

In order to support the involvement of CP-AMPARs in AβO-triggered progressive 

degeneration of dendritic spines in the NAc, DiI staining-based morphological 

measurements of dendritic spines were compared between the slices pre-incubated with 

Veh/AβOs only vs. Veh/AβOs and Naspm (Fig.4H). We found no effects of Naspm on the 

density of total spines, thin spines, and non-thin spines, or the ratio of thin vs. non-thin 

spines in the Veh-pre-incubated slices (denoted pre-Veh; no difference between pre-Veh 0.5h 

vs. 3h, thus data were pooled together in the first pair of columns in Fig.4I–L), indicating 

that no detectable or functional CP-AMPARs in nonAβO-treated NAc slices, which is 

consistent with previous data collected from rat NAc39, 40, 57, 58. The increased ratio of 

thin vs. non-thin spines by pre-AβO 0.5h was significantly prevented by 0.5h Naspm co-pre-

incubation (denoted co-pre-Naspm 0.5h) to the level of Veh groups with no accompanying 

effects on the density of total spines (the 2nd pair of columns in Fig.4 I–L). Furthermore, 

3h Naspm co-pre-incubation (denoted co-pre-Naspm 3h) brought the density of non-thin and 

total spines, and the ratio of thin vs. non-thin spines back to the pre-Veh control level (the 

4th pair of columns in Fig.4 I–L). 3h Naspm co-pre-incubation of the slices treated with 

pre-AβO 0.5h+ can significantly rescue the density of total/thin/non-thin spines and the ratio 

of thin vs. non-thin spines (the 3rd pair of columns in Fig.4H–K). The loss of total spines 

and the non-thin spines under both of the 3h procedures, i.e., pre-AβO 0.5h+ and pre-AβO 

3h, was a synaptic consequence triggered by acute exposure to AβOs and dependent on 

the activation of CP-AMPARs. AβO-induced CP-AMPARs might be involved in both early 

downsizing of non-thin spines to thin spines and the prolonged spine pruning process.

Different from the co-pre-incubation of Naspm by adding Naspm during the entire process 

of pre-incubation in Fig.4H–L, sequential Naspm pre-incubation for 0.5h (denoted sq-

pre-Naspm 0.5h) was performed in slices right after pre-AβO 0.5h or 3h (Fig.4M–O). 

Remarkably, this sq-pre-Naspm reversed the effects of 0.5h, but not 3h, AβO-pre-incubation. 

Specifically, the decreased density of non-thin spines and increased ratio of thin vs. non-thin 

spines was reversible by Naspm right after pre-AβO 0.5h procedure. However, this sq-pre-

Naspm 0.5h after pre-AβO 3h procedure had no effect on spine morphology, suggesting 

that the longer the incubation in AβOs, the less likely Naspm can block their toxic effects. 

Thus, AβO-triggered early increases of synaptic CP-AMPARs in the NAc can be targeted 

to reverse the acute synaptic alterations (presumably the scaling down of non-thin spines to 

thin spines) and prevent the prolonged synaptic consequences, such as decreased density of 

total spines and non-thin spines.

AβO-enhanced synaptic CP-AMPARs and silent synapses were specific to the excitatory 
mPFC projection on D2 MSNs in the NAc

Which specific excitatory projection onto the NAc participates in the AβO-induced synaptic 

recruitment of CP-AMPARs? This question was addressed experimentally by focusing 

on specific pre-synaptic inputs (mPFC) and post-synaptic neurons (D1 vs. D2 dopamine 
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receptor-expressing MSNs, denoted D1 and D2 MSNs, respectively) in the NAc. In order 

to identify the D1 vs. D2 MSNs involved in the synaptic effects of AβOs, D1 mice and 

A2a mice (see more details about the mouse lines and identification of D1 and D2 MSNs in 

Methods and Fig.S8A,B) were used at the age of 3 months. AAV-ChR2-EYFP was injected 

into the mPFC ~3 weeks before the slice preparation (Fig.5A). Using whole-cell patch 

clamp recordings and optical stimulation-evoked EPSCs on D1 vs. D2 MSNs in the NAc, 

synaptic CP-AMPARs were evaluated by the rectification index (Fig.5B) and by comparing 

before and during bath application of Naspm (Fig.5C–G). Relative to pre-Veh 3h treatment, 

pre-AβO 3h significantly rectified these EPSCs at positive membrane potentials in D2 

MSNs. Pre-incubation of AβOs for 0.5h significantly increased the sensitivity of mPFC-

NAcD2 synapses to Naspm (i.e., decrease of EPSC amplitude). Noticeably, the extended 

pre-incubation procedures (i.e., pre- AβO 0.5h+ and pre-AβO 3h) increased the sensitivity 

of EPSCs to Naspm, indicating that (1) this further % increase of synaptic CP-AMPARs 

in the mPFC-NAcD2 synapses after pre-AβO 0.5h-triggered enhancement of synaptic CP-

AMPARs could be a consequence of potentially decreased total synaptic AMPARs, with or 

without further recruitment of synaptic CP-AMPARs, (2) this progressively increased ratio 

of CP-AMPARs among total synaptic AMPARs was independent of AβO-pre-incubation 

after 0.5 hr, although it was initiated by AβOs, and thus (3) the early recruited CP-AMPARs 

may be pivotal synaptic events in the further recruitment of CP-AMPARs.

Silent synapses are thought to be glutamatergic synapses containing stable NMDARs, while 

AMPARs are either absent or highly labile59. Because of early decreases of total AMPARs 

but not NMDARs and increases of CP-AMPARs (Figs.3H–O&S7), we hypothesized 

that acute AβO exposure-silenced excitatory synaptic transmission in the NAc could be 

prevented by blocking CP-AMPARs. We did see increased % of silent synapses in the 

mPFC-NAcD2 projection by pre-AβO 0.5h, pre-AβO 0.5h+, and pre-AβO 3h (Fig.5H–R). 

Furthermore, we found that pre-AβO 0.5h, pre-AβO 0.5h+, or pre-AβO 3h-increased silent 

synapses in the mPFC-NAcD2 projection could be prevented by Naspm co-pre-incubation 

for 0.5h, 3h and 3h, respectively (Fig.5R). However, neither pre-AβO 0.5h nor pre-AβO 3h 

affected the recruitment of synaptic CP-AMPARs or the percent of silent synapses in the 

mPFC-NAcD1 MSN projections (Fig. S8C–F). Together with the reported involvement of 

D2-MSNs in (1) both reward and aversion60, and (2) greater susceptibility to excitotoxicity 

from cortical inputs61, 62, we conclude that mPFC-NAcD2 projection is the synaptic 

substrate in AβO-induced low motivation.

DISCUSSION

The central goal of the present study was to identify the synaptic and behavioral effects of 

acute exposure of NAc to Aβ peptides. Thus, Aβ exposure was provided in a spatially and 

temporally delimited manner. Spatially limited amyloid aggregation demonstrates the effects 

specifically related to the target brain region, also avoids extraneous influences due to the 

amyloid aggregation in other brain regions. The central hypothesis was that AβO exposure 

of the NAc resulted in apathy. We discovered that synaptic CP-AMPARs, normally absent in 

the NAc, can be unmasked by acute exposure to AβOs, and contribute to the emergence of 

synaptic loss and motivation deficits. Further, we identified the excitatory mPFC projection 

onto D2 MSNs in the NAc as the critical input affected by AβO exposure.

Guo et al. Page 8

Mol Psychiatry. Author manuscript; available in PMC 2022 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Potential of CP-AMPARs as a novel target other than NMDARs:

After years of intensive investigation on NMDARs in synaptic/neuronal excitotoxicity, 

there are several strong rationales to switch our attention from NMDARs to CP-AMPARs. 

NMDAR activation is essential for normal neuronal function. Administration of NMDAR 

blockers as anti-excitotoxicity, neuroprotective agents can block virtually all NMDAR-

mediated activity, leading to unacceptable clinical side effects. Only statistically significant 

but clinically minor positive effects of memantine, a partial antagonist of NMDARs, on 

cognition have been observed in patients with moderate to severe AD, and no effect 

on mild to moderate AD63, 64. In contrast to NMDARs, which are usually inactive at 

resting membrane potential due to the channel blockade by Mg2+, CP-AMPARs allow Ca2+ 

and Zn2+ entry at any level of receptor activation, and trigger mitochondrial dysfunction 

and cell death65–68. Enhanced CP-AMPARs have been detected in neurodegenerative 

disease models69, but decreased, although in a few cases increased, NMDARs have been 

reported70–74, suggesting more persistent effects of excitotoxicity from CP-AMPARs. 

Blockade of CP-AMPARs by CP-AMPAR antagonists has been shown to be neuroprotective 

in global ischemia75. Growing evidence demonstrates that CP-AMPARs, although highly 

enriched at the early developmental stage, have a low probability of being detected in mature 

brains unless there are associated pathological events, such as epilepsy, ischemia, traumatic 

brain injury, drug abuse, etc.39, 76–78. However, there is evidence to support the role of 

CP-AMPARs in AD-related neurodegeneration69. Postsynaptic density-rich fractions from 

AD patients’ hippocampi showed a significant increase of GluA1 subunits relative to healthy 

controls, whereas no changes were observed in NMDAR subunits79. AβOs induced a rapid 

enhancement of synaptic CP-AMPAR insertion in hippocampal slices80. Thus, CP-AMPARs 

may be considered as an early marker indicating the onset of pathological progression in AD 

brains.

Reversible and non-reversible synaptic alterations:

We found that the AβO pre-incubation-induced synaptic alterations were fully prevented by 

adding Naspm during AβO pre-incubation. However, if Naspm is added right after AβO 

pre-incubation, the synaptic changes induced by 0.5 hr, but not 3 hr, can be prevented. 

Together with findings of no changes in the density of pre- and post-synaptic elements but 

potential transformation of non-thin spines into thin-spines and increased silent synapses 

by 0.5 hr AβO pre-incubation, we postulate that the CP-AMPAR enriched, rather than 

CP-AMPAR lacking, spines could indicate a reversible stage of synaptic degeneration before 

the elimination of synaptic components. Blocking CP-AMPARs from the beginning or 

early exposure to AβOs could be essential to rescue the pre-AβO 3h triggered synaptic 

degeneration. Density decreases of pre- and post-synaptic elements is the synaptic alteration 

specifically observed after 3h pre-incubation. Once this morphological degeneration of 

synaptic contacts occurred, blockade of CP-AMPARs could not fully rescue the synaptic 

morphology. This may explain our in vivo data showing that prevention of AβO-induced low 

motivation of sucrose-taking behaviors was achieved only if Naspm was delivered into the 

NAc during the first week, right after the intra-NAc delivery of AβOs, but not in the 2nd or 

3rd week. Since Aβ deposition in the brain has been reported years earlier than the onset of 

AD-associated symptoms, our results indicate that CP-AMPARs should be targeted at the 

early stage when the Aβ deposition occurs.
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No contradiction between decreased synaptic transmission/contacts vs. increased CP-
AMPARs:

Ca2+ influx via enhanced synaptic CP-AMPARs may result in excitotoxic effects, and high 

channel conductance of CP-AMPARs may compensate for the loss of synaptic function, but 

the price of this compensation is to cause more synaptic loss. These dual roles of increased 

CP-AMPARs may lead to a self-enhanced excitotoxicity, a process possibly independent 

from AβOs and facilitating the synaptic degeneration in an accelerated manner. If this 

hypothetical CP-AMPAR-mediated self-enhanced excitotoxicity (CPAMSEE) is, at least 

partially, the primary pathological event in AD, one of the ways to delay AD progression 

is to target CP-AMPARs, but not the upstream pathological events if CPAMSEE is already 

underway. AβOs, presumably the neurotoxic species in AD brains81–87, are able to trigger 

the CPAMSEE. Thus, our study provides a novel avenue (i.e., targeting CP-AMPARs) for 

AD clinical intervention, especially when failure of anti-Aβ antibodies in AD treatment 

has been reported88. It is worth emphasizing that the upregulation of CP-AMPARs does 

not always lead to excitotoxicity. For example, the elevated CP-AMPARs in NAc after a 

prolonged withdrawal period from cocaine exposure is proposed to strengthen excitatory 

synaptic transmission39, 58, 89. The synaptic consequences of CP-AMPAR insertion, 

including either weakening (i.e., excitotoxicity) or strengthening synaptic transmission, 

could involve pre- and post-synaptic mechanisms. Decreased pre-synaptic glutamate release 

could reduce the risk of excitotoxicity by preventing the over-activation of CP-AMPARs, 

which could explain the lack of synaptic degeneration after cocaine exposure. In contrast, 

continuous accumulation of CP-AMPARs, due to a positive feedback loop, may lead to 

CPAMSEE in AD brains. Further investigations need to be performed to understand the full 

complexity of synaptic effects of CP-AMPARs.

A number of limitations have to be acknowledged. First, although the temporally 

and spatially controlled Aβ exposure used in the present study made it possible to 

uncover a number of synaptic, molecular, and behavioral alterations in the NAc after 

acute administration, more studies need to be done before understanding the protracted 

pathological consequences of Aβ peptides in AD patients. Genetically engineered AD 

mice90, 91 could be used to explore the role of chronic exposure to accumulated Aβ in 

AD-associated phenotypes. Although the current studies focused on AβOs, the potential 

effects of Aβ plaques with a cumulus of soluble AβOs should not be overlooked, as 

they may directly alter synaptic transmission or mimic the effects of AβOs92. Second, 

the microtubule-associated protein Tau undergoes aberrant hyperphosphorylation in AD-

associated pathology, leading to neurodegeneration93. Thus, additional experiments need 

to be performed to tease apart the role of endogenous Tau in AβO-triggered, CP-AMPAR-

mediated synaptic maladaptation. Third, although the AD-associated apathy is rarely 

relieved by DA-targeting medication7, decreased levels of DAergic neurotransmission have 

been linked to the pathophysiology of AD94. As the NAc receives converging glutamatergic 

afferents from hippocampus, mPFC, etc., as well as DAergic afferents from the ventral 

tegmental area, the importance of DA modulation of excitatory neurotransmission through 

axoaxonic, axodendritic and axosomatic connections should not be neglected in AD-

associated synaptic alterations.
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In spite of these limitations, our study identified CP-AMPARs as a critical synaptic substrate 

underlying the initial effects of AβOs in the NAc, which may cause motivation decrease.
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Figure 1. Behavioral effects of intra-NAc delivery of AβOs
A, Experimental timeline for data collection in Figs. 1, S1, and S2.

B, C Experimental procedure (B) and summarized data (C) showing that intra-NAc delivery 

of AβOs increased the % time of immobility in the forced swimming test.

D-I Experimental procedure (D) and summarized data (E) showing similar acquisition 

of sucrose SA between NAc-Veh and NAc-AβO mice under FR1 and FR5 schedules. 

Representative time course of lever presses and delivery of sucrose pellets (G) and the heat 

map of ALP frequency (H) during the 1st hour of PR test, and summarized data showing a 

significant decrease of BP value in NAc-Veh, but not NAc-AβO mice in the PR test with 1h 

pre-feeding session, compared to that with no pre-feeding session (F), leading to decreased 

motivation indices (I).

J-P, Experimental procedure (J), representative time course of lever presses and IV delivery 

of cocaine (K), and summarized data (the number of IV cocaine infusions at multiple doses 
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in M, and lever presses when the mice were treated with 0.3 mg/kg per IV infusion in L) 

showing decreased cocaine taking behaviors in NAc-AβO, compared to those in NAc-Veh, 

mice. Representative time course of lever presses and IV delivery of cocaine (N) and the 

heat map of ALP frequency (O) during the 1st hour of PR test, and summarized data (P) 

showing significant decrease of BP value in NAc-AβO, compared to NAc-Veh, mice in the 

PR test.
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Figure 2. Involvement of NAc CP-AMPARs in sucrose self-administration in mice with intra-
NAc delivery of AβOs
A. Experimental timeline of data collection in Figs. 2 and S3.

B, C, Experimental procedure (B) and representative Western blotting bands and 

summarized results (C) showing that intra-NAc delivery of AβOs decreased the protein 

level of GluA2 but not that of GluA1 in synaptosome extracts from NAc.

D-G, Experimental procedure (D), representative AMPAR-mediated EPSCs at −70 to +70 

mV (E1), EPSC I-V relationships (E2, E3), and summarized results (E4) showing a 

decreased rectification index of MSNs in the NAc from NAc-AβO mice. Representative 

EPSCs (left), time course (middle), and summarized results (right) showing that CP-

AMPAR antagonist Naspm decreased AMPAR-mediated EPSCs in MSNs in the NAc from 

NAc-AβO (G), but not NAc-Veh mice (F).

H-M, Experimental procedure (H) and summarized data (I) showing intra-NAc injection of 

Naspm during the first week after intra-NAc delivery of AβOs did not affect the acquisition 

of sucrose SA under FR1 and FR5 schedules. Representative time course of lever presses 

and delivery of sucrose pellets (J) and the heat map of ALP frequency (K) during the 1st 

hour of PR test, and summarized data (L) showing that daily microinjection of Naspm into 

the NAc during the 1st week after intra-NAc delivery of AβOs significantly increased the 
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BP value in the PR test with no pre-feeding session, compared to that in NAc-Veh mice. 

The AβO-decreased motivation indices were restored by daily intra-NAc delivery of Naspm 

during the 1st week after intra-NAc delivery of AβOs (M).
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Figure 3. Effects of pre-incubation of striatal slices with AβOs on the morphology of VGluT1+ 

excitatory synapses (A-G) and the protein levels of AMPAR subunits (H-N) in the NAc.
A-G, morphology of VGluT1+ excitatory synapses in the NAc

A, B, Representative maximum projection confocal images of the NAc showing VGluT1, 

PSD95 and co-localization of VGluT1 and PSD95 (indicated by white arrows in the 

rightmost column) after 0.5h (A) and 3h (B) pre-incubation by Vehicle vs. AβOs.

C-G, Quantification of VGluT1+ excitatory synapses in the NAc. 3h, but not 0.5h pre-

incubation with AβOs decreased the volume (C) and the density (D) of VGluT1 puncta, the 

density of PSD95 puncta (F), and the density of VGluT1+ synapses (G). Both 0.5h and 3h 

pre-incubation with AβOs decreased the volume of PSD95 puncta (E).

H-N, protein levels of AMPAR subunits (H-N) in the NAc.

H, Experimental procedure.

O, The ratio of GluA1/GluA2 protein levels was significantly increased by 0.5h pre-AβO 

incubation, and further increased by 3h pre-AβO incubation.
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I-N, Representative Western blotting bands (I, L) and summarized data showing the effects 

of pre-AβO 0.5h, pre-AβO 0.5h+, pre-AβO 3h on GluA1 (J, K) and GluA2 (M, N) in 

synaptosome extracts of NAc from naive C57 mice. The number in each column in J & K 
and M & N corresponds to the data showing the representative band indicated by the same 

number in I and L, respectively.
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Figure 4. Effects of in vitro AβO pre-incubation of striatal slices on dendritic spine morphology 
in the NAc, which can be prevented by Naspm.
A, Experimental procedure

B-F, Representative maximum projection confocal images of the dendritic spines (B) and 

summarized data showing the effects of pre-incubation of brain slices with vehicle vs. AβOs 

for 0.5 or 3h on densities of total spines (C), non-thin spines(D) and thin spines (E), and the 

ratios of thin vs. non-thin spines (F).

G, Additional 3h-ACSF pre-incubation right after pre-AβO 3h decreased total spine density.

H-L, Representative maximum projection confocal images of the dendritic spines (H) 

and summarized data showing the effects of co-pre-incubation of Naspm with AβO pre-

incubation on densities of total spines (I), non-thin spines(J) and thin spines (K), and the 

ratios of thin vs. non-thin spines (L).

M-O, Representative maximum projection confocal images of the dendritic spines (M) and 

summarized data showing the effects of 0.5h- and 3h-AβO pre-incubation, followed by 
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0.5h Naspm sequential pre-incubation, on densities of total spines, non-thin spines and thin 

spines (N), and the ratios of thin vs. non-thin spines (O).
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Figure 5. Effects of in vitro AβO pre-incubation of NAc slices on synaptic transmission in the 
mPFC projections to D2 MSNs.
A, Experimental procedure.

B, Representative EPSCs at −70 to +70 mV (B1), EPSC I-V relationships (B2, B3), and 

summarized results (B4) showing pre-AβO-3h decreased the rectification index in mPFC-

NAcD2 projections.

C-G, Representative traces (C-F, left), time course (C-F, right), and summarized data (G) of 

optical stimulation-evoked EPSCs at −70 mV in the mPFC-NAcD2 projections showing that 

Naspm decreased the amplitude of EPSCs in the slices pre-incubated with 0.5h AβOs, 0.5h 

AβOs followed by 2.5h ACSF (i.e., 0.5h+ AβO) and 3h AβOs.

H-R, Representative traces of optical minimal stimulation-evoked EPSCs at −70 or +50 mV 

(H-O, left) over 100 trials (time course in the right panels in H-O) at the mPFC-NAcD2 

projections and summarized data showing increased % of silent synapses by pre-AβO 0.5, 
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0.5+ and 3h relative to that in pre-Veh 0.5h / 3h groups (P, Q). Co-pre-incubation of Naspm 

prevented the increase of silent synapses by pre-AβO 0.5, 0.5+ and 3h (R).
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