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Background: Normal sleep is associated with typical physiological changes in both the central 

and autonomic nervous systems. In particular, nocturnal blood pressure dipping has emerged as 

a strong marker of normal sleep physiology, whereas the absence of dipping or reverse dipping 

has been associated with cardiovascular risk. However, nocturnal blood pressure is not measured 

commonly in clinical practice. Heart rate (HR) dipping in sleep may be a similar important 

marker and is measured routinely in at-home and in-laboratory sleep testing. 

Methods: We performed a retrospective cross-sectional analysis of diagnostic polysomnography 

in a clinically heterogeneous cohort of n=1047 adults without sleep apnea.

Results: We found that almost half of the cohort showed an increased HR in stable nonrapid 

eye movement sleep (NREM) compared to wake, while only 13.5% showed a reduced NREM 

HR of at least 10% relative to wake. The strongest correlates of HR dipping were younger age 

and male sex, whereas the periodic limb movement index (PLMI), sleep quality, and Epworth 

Sleepiness Scale (ESS) scores were not correlated with HR dipping. PLMI was however sig-

nificantly correlated with metrics of impaired HR variability (HRV): increased low-frequency 

power and reduced high-frequency power. HRV metrics were unrelated to sleep quality or the 

ESS value. Following the work of Vgontzas et al, we also analyzed the sub-cohort with insomnia 

symptoms and short objective sleep duration. Interestingly, the sleep–wake stage-specific HR 

values depended upon insomnia symptoms more than sleep duration.

Conclusion: While our work demonstrates heterogeneity in cardiac metrics (HR and HRV), the 

population analysis suggests that pathological signatures of HR (nondipping and elevation) are 

common even in this cohort selected for the absence of sleep apnea. Future prospective work in 

clinical populations will further inform risk stratification and set the stage for testing interventions.
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Introduction
Normal sleep is associated with typical physiological changes of the central nervous 

system, the standard description of which is sleep staging as defined largely via elec-

troencephalography (EEG) sensors. The autonomic nervous system, typically inter-

rogated via the electrocardiography (ECG) signals, also undergoes marked changes 

in normal sleep vs wake, in rapid eye movement (REM) sleep vs nonrapid eye move-

ment sleep (NREM) sleep, and in disease states.1–3 However, in clinical practice, the 

sleep phenotype is described mainly according to the staging, obstructive sleep apnea 

(OSA) metrics, and periodic limb movements in sleep (PLMS), while the ECG and 

basic heart rate (HR) data are mainly evaluated manually for evidence of arrhythmia.
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Extensive evidence suggests that cardiovascular metrics 

carry potentially important information about sleep physiol-

ogy and pathophysiology, as well as systemic cardiovascular 

risk. For example, the autonomic stability of slow wave 

NREM sleep has been linked to blood pressure dipping.4,5 

The absence of normal nocturnal blood pressure dipping has 

been implicated in the cardiovascular risk of patients with 

hypertension (HTN),6 sleep apnea,7,8 normotensive chronic 

insomnia,9 and sleep fragmentation.10,11 Furthermore, blood 

pressure nondipping has been associated with increased mor-

tality.12–14 Although routine clinical sleep monitoring does not 

currently include blood pressure measurement, analysis of 

cardiac physiology has been extensively performed in hopes 

of characterizing sleep quality, including HR variability 

(HRV) and cardiopulmonary coupling.1,2,15

While nocturnal blood pressure monitoring is not stan-

dard in polysomnography (PSG) recordings or sleep disorder 

evaluations, HR and ECG are routinely measured. Certain 

cardiac metrics may have vascular prognostic value, as 

well as phenotyping of insomnia,16,17 sleep apnea,18–20 and 

PLMS.21–23 Drawing a parallel with nocturnal blood pressure 

dipping, several reports of HR dipping during sleep suggest 

that lack of dipping is associated with adverse cardiovascular 

outcomes, including elevated mortality risk over a long-term 

horizon24–26 and after acute myocardial infarction27 (although 

some cohorts only showed increased noncardiovascular 

 mortality28,29). HRV, likewise, has been associated with 

adverse cardiovascular outcomes and mortality.30,31 The 

relationship of HRV metrics with underlying autonomic 

physiology is often summarized as the high-frequency 

(HF) component reflecting the respiratory-driven time scale 

and predominantly parasympathetic influences, while the 

low-frequency (LF) component reflects a combination of 

sympathetic and parasympathetic factors.2 However, it has 

been argued that this is an oversimplified view32 and also that 

HRV itself depends strongly on HR.33

We performed a retrospective exploratory study to 

investigate the relationship of HR and HRV metrics with a 

variety of clinical features in a large cohort (n=1047 adults 

without sleep apnea) of clinical PSG data from our center. 

We specifically excluded OSA because it is well known 

to cause a multitude of physiological changes, including 

blunted or reverse blood pressure dipping.8,34 We specifically 

sought to investigate correlates of PLMS, sleepiness, sleep 

quality, and misperception. These variables are available 

in cross-sectional analysis; lacking outcome measures of a 

longitudinal study, we cannot use the cardiac metrics to test 

hypotheses related to clinically relevant outcomes currently.

Methods
The Institutional Review Board of the Partners Human 

Research Committee approved the retrospective analysis 

of our clinical sleep laboratory database without requiring 

additional consent (criteria including minimal-risk of the 

analysis, waiving consent would not compromise the welfare 

of patients, and the impracticality of the research without 

waiving consent). Only de-identified data contributed to the 

analysis. This study involved diagnostic PSGs performed 

on adults in our clinical sleep laboratory, for any indication; 

patients undergoing positive airway pressure treatment were 

not included. Although most referrals to our center are for 

the evaluation of OSA, this cohort was selected based on the 

absence of OSA, defined as follows: the apnea–hypopnea 

index was <5 (using a 4% threshold definition of desatura-

tion of SpO
2
 for scoring hypopneas) and the respiratory 

disturbance index (RDI) was <10, where the RDI includes 

nonhypoxic events that were associated with EEG arousal. 

Of n=1089 initial PSG extractions, we excluded n=16 for 

a prespecified minimum total sleep time (TST) of 2 hours 

and we also excluded a small number with either technical 

problems with the scoring file (n=20) or because of the pres-

ence of a pacemaker (n=6). None of the subjects had atrial 

fibrillation on manual review. There were no other exclusions 

applied. The total cohort for analysis is thus n=1047. PSG 

was performed according to American Academy of Sleep 

Medicine standards (2007 rules) and scored by experienced 

registered technologists. PSGs were recorded with the same 

system (Grass/Twin; Natus Medical Incorporated, Pleasan-

ton, CA, USA), in the time frame of 2009–2015. Single-lead 

ECG was obtained from location V2 and sampled at 200 Hz.

HR analysis was performed on the signal output of 

the pulse oximeter, which is a moving average window of 

detected beats, such that instantaneous changes are smoothed, 

but overall trends are preserved. The mean HR values using 

ECG or HR methods were not statistically different in any 

sleep–wake stage. We used this signal to calculate the slope 

values for stable blocks of each stage (defined as at least 

5 minutes of continuity within any given sleep–wake stage), 

using custom MATLAB code (The MathWorks Inc, Natick, 

MA, USA). We excluded unstable bouts (<5 minutes of 

continuity for any stage) because we reasoned that transi-

tions and the accompanying arousals would be more likely 

to confound the HR measures with noise related to arousals 

and movement. The mean HR values for unstable bouts 

were within ~1 beat per minute (bpm) of the equivalent 

stable bout means (data not shown). Clock time was not 

considered (in other words, we combined analysis across all 
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available recordings, typically between 10 pm and 6 am) or 

were REM–NREM cycles considered separately. Wake bouts 

were not limited to the sleep onset period; any stable block 

of wake was accepted for analysis.

The HRV analysis was performed on the single-lead ECG 

channel from each PSG. The algorithm was implemented in 

MATLAB. The RR interval from autoidentified QRS com-

plexes yields the beat-to-beat (instantaneous) HR intervals. 

Missing, ectopic beats, and artifact segments were corrected 

using a spline cubic interpolation as suggested in the HRV 

guidelines.35 The resulting R-R intervals were resampled 

and cubic spline interpolated (signal processing Toolbox for 

MATLAB). From the single-lead ECG, we analyzed low-

frequency power (LF: 0.04–0.15 Hz), high-frequency power 

(HF: 0.15–0.40 Hz), LF/HF ratio, LF% (the ratio between 

LF and the sum of LF and HF, expressed as a percentage), 

and HF% (the ratio between HF and the sum of LF and HF, 

expressed as a percentage).

Subjective symptoms were collected as a part of routine 

clinical intake forms (the Epworth Sleepiness Scale [ESS]) 

and postsleep exit forms administered to all patients undergo-

ing testing (sleep quality score, with values 1–5, correspond-

ing to the terms: poor, fair, average, good, and excellent), and 

perception of sleep latency (SL) duration and TST duration. 

For insomnia symptoms, the intake asks about the reason 

for testing (insomnia is an option), about quantifying sleep 

onset (we used >30 minutes), and number of awakenings 

(we used >3), subjective difficulty falling or staying asleep 

(we used binary “yes” answers). As we have done prior,36–38 

since we do not have more detailed clinical phenotyping 

of the insomnia diagnosis subtypes or severity, we used, as 

a correlate, the number of positive answers expressed by 

each individual. This intake form also allowed reporting of 

medications and comorbidities as check-boxes and free text, 

respectively. For medications, we performed a spelling cor-

rection script (modified in Python from http://norvig.com/

spell-correct.html) and manual assignment to categories 

such as benzodiazepines, antihypertensives, new generation 

benzodiazepine receptor ligands (z-drugs), and hypnotics 

(which spanned other categories, such as benzodiazepines 

and z-drugs, but also included sedating antidepressants such 

as trazodone and mirtazepine). For each subject, the number 

of medications present in each category was given, allowing 

correlation approximations.

For measures of sleep perception, we used our recently 

described method of separating the latency and TST misper-

ception.39 In this way, misperception of TST is adjusted for 

sleep occurring during subjective SL to avoid double-counting 

among those with both onset and total sleep misperception.

The distribution of variables was mainly nonnormal, 

with only the amount of time in stage N2 (minutes) and the 

proportion of REM (%) meeting D’Agostino Pearson criteria 

for normality; for simplicity, we used therefore nonparametric 

(Mann–Whitney) methods for group-wise statistical testing 

and we used nonparametric Spearman correlation analysis 

to explore pair-wise relationships between variables. For 

comparing proportions, we used the Fisher exact test. Sig-

nificance was defined by the P-value of <0.05, and due to 

the exploratory nature of our study, we did not correct for 

multiple comparisons.

Results
Clinical and PSG correlates of HR
HR changes during clinical PSG are heterogeneous. Figure 1 

illustrates the following three clinical PSG examples: 1) a 

young adult male without OSA or PLMS that shows periods 

of relatively flat HR and periods of subtle increases in HR 

during sleep, 2) a middle aged female with PLMS and mark-

edly elevated HR during sleep, and 3) an older female with 

severe OSA and prominent episodic HR elevations mirroring 

severe REM-related desaturations. A qualitative review of 

HR tracings in routine practice suggests that elevations can 

occur with or without concurrent pathology of movement or 

respiration and may occur in some portions of the night and 

not others. This prompted us to examine cardiac patterns in 

a large cohort from our sleep center database, consisting of 

n=1047 adults who underwent PSG for any indication; we 

excluded those with sleep apnea to remove this well-known 

cause of cardiac fluctuations. Table 1 reports the clinical 

features of the cohort, as well as some pertinent subsets.

We first sought to evaluate the distribution of HR dipping 

in the cohort. Figure 2A shows the mean HR values observed 

across stable bouts of sleep–wake stages, which were within 

~2 bpm of each other. Small but statistically significant dif-

ferences are noted for median HR in wake (62.3) vs REM 

(64.6), vs N1 (63.7), and vs N3 (64.2) but not vs N2 (62.9). To 

evaluate further these stage-wise comparisons, we next exam-

ined the distribution of HR dipping by comparing the mean 

HR during stable (>5 minutes long) wake bouts and the mean 

HR during stable NREM stages N2 and N3. Approximately 

10% of subjects lacked a stable wake period, and thus the 

HR dipping analysis was performed on the remaining n=948 

subjects. We found that only 13.5% exhibited at least 10% 

reduction of HR relative to wake; 31.2% show a reduction 
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of at least 5%, and 51.6% show any reduction (Figure 2B). 

Thus, nearly half of this cohort showed increased HR in stable 

N2 and N3 compared to wake.

We also analyzed HR reductions at the level of individual 

bouts, through an approximation based on the slope of the 

best fit line through the HR time series during stable bouts 

lasting at least 5 minutes (Figure S1). In other words, each 

stable bout of any stage was fitted this way and the resulting 

slopes (combined across all PSGs) were analyzed for their 

distribution. Figure 2C illustrates the cumulative distribution 

of slopes, according to sleep–wake stages. Wake contained 

the most variability, with relatively large proportions of 

both increasing and decreasing slope values represented. N3 

showed the highest proportion of bouts showing a positive 

HR slope, of ~70%.

We next performed exploratory analysis to compare those 

with at least 10% HR dipping to the remainder of the cohort 

in terms of demographics, PSG metrics, and comorbidities. 

Using this cutoff, the group with at least 10% HR dipping 

was associated with younger age (33 vs 45; P<0.001), male 

sex (55% vs 37%; P<0.001), and lower body mass index 

(BMI) (25.7 vs 27.3 kg/m2; P<0.05). To further explore sex 

differences, we analyzed a subset with no medications and 

no comorbidities (n=146; of whom n=81 males). Waking HR 

was lower in females than in males (55.8 vs 58.3; P<0.0001), 

while higher HR was observed in females for all sleep stages 

(N1: 64.9 vs 60.3, P<0.05; N2: 63.8 vs 58.1, P<0.0001; 

N3: 65.9 vs 58.5, P<0.0001; REM: 66.2 vs 60.9, P<0.001). 

Despite these higher HR values, the LH/HF ratio was lower 

in females (by 10%–20%) in all sleep stages (P<0.05). No sex 

differences were observed for age, BMI, ESS, TST, periodic 

limb movement index (PLMI), percent of any sleep–wake 

stage, or percent change in HR between wake and stable 

NREM. Of this group, n=124 could be assessed for HR 

dipping (some did not have stable wake bouts) and n=24 

(20.2%) of these showed at least 10% HR dipping in stable 

NREM sleep, somewhat higher than seen in the full cohort. 

According to sex, n=9 of the 58 females (15.5%) and n=15 

of the 66 males (22.7%) showed at least 10% HR dipping 

in stable NREM sleep. Any reduction in HR during stable 

NREM compared to stable was observed in 67.7% (n=84 of 

124), again somewhat higher than observed in the full cohort, 

suggesting that medications, or comorbidities, or both, was 

contributing to some extent to the HR dipping physiology.

Small but statistically significant differences were noted 

in sleep architecture, with HR dipping being associated with 

lower N1% (5.9 vs 7.4; P<0.05), lower N2% (52.3 vs 53.4; 

P<0.05), higher N3% (19.5 vs 16.9; P<0.05), higher REM% 

(17.4 vs 15.7; P<0.05), and higher efficiency (86% vs 83%; 

P<0.05). TST and PLMI were not different according to dip-

ping category. Misperception of TST was more prominent 

in those with HR dipping (32 minutes underestimation vs 

14 minutes; P<0.05). HR dipping had significantly lower 

proportion of diabetes mellitus (1.6% vs 6.5%; P<0.05) and 

HTN (12.4% vs 21.0%; P<0.05) but did not differ in the 

proportion of anxiety, depression, heart failure, coronary 

disease, chronic obstructive pulmonary disease (COPD, 

stroke, insomnia symptoms, restless legs syndrome (RLS) 

Figure 1 Examples of HR patterns from clinical PSGs.
Notes: (A) A 29-year-old male with fatigue, BMI 26 kg/m2, with mildly increased HR 
trend in NREM sleep (all supine, absence of OSA, or PLMS). The top row shows HR 
values (bpm). The next row indicates scattered PLM events (limb movement). The 
third row indicates scattered AHI events. The bottom row shows the sleep–wake 
stages. In this and subsequent panels, the time scale is given as vertical dotted lines 
showing 1 hour intervals. In all panels, the recording time began between 10 and 
10.30 pm. (B) A 51-year-old female with RLS and PLMS showing marked increase 
in NREM HR (all lateral position, BMI 25 kg/m2, and absence of OSA). The top row 
shows HR values (bpm), the next row indicates PLMS events (limb movement), and 
the bottom row is sleep–wake stages. (C) An 80-year-old female with severe OSA 
(AHI 32), sleeping supine (BMI 30 kg/m2), with reactive HR increases associated with 
REM desaturating events. The top row is the pulse oximetry data (SpO2), the next 
row is the HR, the third row is the SDB events contributing to the AHI, and the 
bottom row shows the sleep–wake stages.
Abbreviations: AHI, apnea–hypopnea index; BMI, body mass index; HR, heart rate; 
NREM, nonrapid eye movement; OSA, obstructive sleep apnea; PLM, periodic limb 
movements; PLMS, periodic limb movements in sleep; PSG, polysomnography; REM, 
rapid eye movement; RLS, restless legs syndrome; SDB, sleep-disordered breathing.
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symptoms, ESS, or sleep quality. Certain medications were 

less frequently reported in those with HR dipping, such as 

opiates, antidepressants, benzodiazepines, anti-HTN, and 

hypnotics (but not z-drugs in particular), while there were 

no differences in antihistamine, antidiabetic, or stimulant 

medications.

Clinical and PSG correlates of spectral 
cardiac metrics
We next explored frequency measures of HRV, derived from 

stable bouts (>5 minutes) of each sleep–wake stage, for poten-

tial relationships to subjective sleep measures: sleepiness via 

the ESS; a 5-point sleep quality scale referring to the specific 

night of the PSG; and the degree of misperception of TST 

referring to the specific night of the PSG (“Methods” sec-

tion). Table 2 shows all correlation values >0.10 (or <−0.1) 

between HF, LF, or their ratio for either the ESS or the sleep 

quality metric. Misperception was positively correlated 

with the LF value in N1, and LF/HF ratio in N1, and nega-

tively correlated with the HF% in stage N1. In addition, we 

examined potential relationship of HRV frequency metrics 

with an objective form of sleep disturbance, the PLMI. The 

PLMI was positively correlated with the N1 and N2 LF/HF 

ratio and negatively correlated with the percentage of HF in 

stable N1 and N2.

Figure 3A and B shows the distribution of two strongly 

associated clinical factors, age, and N1%, across categories 

of PLMI values. Figure 3C shows the significant correlates 

for PLMI, spanning clinical, sleep staging, and cardiac met-

rics. Of the 18 significant factors, 10 factors were related to 

cardiac function and suggested that PLMI correlated with 

altered autonomic balance: increased LF power and LF/

HF ratio and decreased HF power. There was no relation to 

antidepressant medication use, or insomnia symptoms, or was 

there any relation to the ESS value or the sleep quality value.

Figure 4 summarizes correlates of sleep quality and 

sleep misperception. Sleep quality showed fewer correlates 

than PLMI values, most notably a positive correlation with 

sleep efficiency (Figure 4A) and with TST misperception 

(Figure 4B). Correlations reaching the prespecified level 

of at least |0.1| are given in Figure 4C for sleep quality, and 

 Figure 4D for TST misperception values. No HRV values 

Table 1 Characteristics of the full cohort and clinically defined subsets

Metric All PLMI ≥15 ESS ≥11 MP ≥60 minutes

n 1047 339 285 283
Age (years) 43 (32–54) 49 (35–61) 41 (28–51) 40 (30–53)
Sex (% male) 39.5 45.4 33.3 32.5
BMI (kg/m2) 27.3 (24.1–32.2) 27.2 (24.0–32.2) 26.8 (23.7–31.7) 27.2 (24.0–32.3)
ESS 7 (4–12) 7 (3–11) 13 (12–16) 6 (3–11)
TST (minutes) 384 (339–423) 368 (311–409) 400 (366–429) 395 (352–430)
N1% 10.6 (6.6–16.3) 14.6 (9.2–21.2) 9.7 (5.5–15.0) 10.9 (6.7–16.3)
N2% 53.6 (46.6–60.8) 53.6 (46.0–61.4) 53.7 (46.8–60.7) 52.9 (45.2–60.3)
N3% 17.4 (10.7–23.3) 14.4 (7.6–21.7) 17.7 (10.9–22.7) 18.8 (11.0–24.0)
REM% 16.0 (11.0–21.3) 14.7 (8.4–19.5) 16.7 (12.2–21.7) 16.0 (11.1–21.3)
Efficiency (%) 85 (76–91) 80 (69–88) 88 (81–93) 86 (78–91)
SL (minutes) 6.0 (2.0–14.0) 6.5 (2.5–16.5) 5.5 (2.0–12.8) 6.5 (2.5–13.0)
PLMI (1/hour) 7.4 (2.4–20.8) 31.6 (21.3–56.4) 6.8 (2.0–15.4) 6.7 (2.4–17.4)
HR–wake 62.3 (54.5–70.6) 61.5 (54.9–70.5) 62.6 (54.8–72.1) 63.9 (55.6–71.2)
HR–N1 63.7 (57.2–71.4) 63.4 (56.8–71.1) 65.5 (59.1–72.5) 64.8 (58.8–72.2)
HR–N2 62.9 (56.0–69.3) 62.5 (55.6–68.7) 63.5 (56.6–70.6) 63.5 (56.4–69.2)
HR–N3 64.2 (57.2–71.4) 63.5 (55.8–70.6) 64.8 (58.3–72.3) 64.8 (58.4–71.5)
HR–REM 64.6 (57.8–71.4) 63.2 (56.5–70.2) 65.5 (59.1–71.7) 65.6 (58.4–71.8)
Depression (%) 36.0 37.5 42.5 37.1
Anxiety (%) 41.5 41.3 44.2 43.8
Hypertension (%) 19.5 22.7 19.0 17.1
COPD (%) 1.5 1.8 1.8 1.4
CAD (%) 1.8 3.0 1.8 1.1
CHF (%) 1.5 1.5 1.8 1.1
DM (%) 6.1 6.8 6.0 6.7
Stroke (%) 2.1 4.4 2.5 1.4

Note: Data are either median (IQR) or percentage as noted.
Abbreviations: BMI, body mass index; CAD, coronary artery disease; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; DM, diabetes mellitus; 
ESS, Epworth Sleepiness Scale; HR, heart rate; HRV, HR variability; IQR, interquartile range; MP, misperception; PLMI, periodic limb movement index; REM, rapid eye 
movement; SL, sleep latency; TST, total sleep time.
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were related to sleep quality, but HR dipping was associated 

with higher quality, as was lower HR in wake. Mispercep-

tion of TST was only related to HRV metrics from stage N1, 

which is the lowest prevalence stage in most of the PSGs. 

Moreover, the relationship would appear the opposite as 

expected: increased LF power and LF/HF ratio were cor-

related with less misperception. However, we previously 

reported a similarly unexpected finding that misperception 

was associated with more stable sleep (fewer transitions) 

based on standard stage scoring.39

The ESS score was inversely correlated with age 

(R=−0.12) insomnia (R=−0.15), and positively correlated 

with TST (R=0.22) and sleep efficiency (R=0.21; itself cor-

related with TST) (data not shown).

Finally, we explored the combination of objective TST 

and insomnia symptoms to parallel the work of Vgontzas 

et al,40 who suggested that insomnia with objective short 

TST on PSG testing is the most severe sub-phenotype from 

a medical and psychiatric risk standpoint. We prespecified 

categories as follows: objective TST cutoff 5.5 hours, taking 

a mid-pint between the cutoff values of either 5 or 6 hours 

used by Vgontzas et al, and the degree of insomnia symptoms 

as either high or low (“Methods” section). Table 3 shows 

different clinical and PSG-derived features that differed 

significantly between those with >5.5 hours of TST and low 

insomnia symptoms vs those with <5.5 hours of TST and 

high insomnia symptoms. Figure 5 focuses on key metrics 

and includes the two other possible combinations (>5.5 hours 

TST and high insomnia symptoms and <5.5 hours TST and 

low insomnia symptoms). Short TST was associated with 

younger age, regardless of insomnia symptom category. 

Similarly, short TST was associated with higher N1%, lower 

REM%, lower sleep efficiency, and higher PLMI, in each 

case independent of insomnia symptom category. HR values 

across the five sleep–wake stages showed more subtle and 

variable differences. For example, wake HR was significantly 

higher in the short TST with high insomnia group, compared 

to the long TST with low insomnia group. HR was higher 

in the high insomnia group for N2 and N3 and REM stage, 

Figure 2 HR analysis across sleep–wake stages.
Notes: (A) HR values calculated from stable bouts (>5 minutes) of each sleep–wake 
stage. There were no differences between any of the stages. The waking HR values 
refer to any time spent awake while in bed for the PSG recording. (B) Histogram 
showing the proportion (%) of the cohort with lower HR value during N2 and N3, 
compared to wake of at least 0, 5, or 10% dipping. (C) Distribution of HR slope 
calculated for stable bouts of each sleep–wake stage across the cohort. The X-axis 
is the slope of a linear fit to each stable bout (in units of bpm). The zero-crossing 
value is the proportion of stable bouts that had a positive slope, and the inset is a 
zoom to show that the highest value was for wake and N1; by contrast, N3 had the 
greatest proportion of bouts showing a positive slope (lowest zero-crossing value 
on the Y-axis).
Abbreviations: HR, heart rate; PSG, polysomnography; REM, rapid eye movement.
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Table 2 HRV correlations with selected clinical features

Metric ESS Quality TST MP PLMI

N1 LF 0.07 –0.03 0.14** 0.07
N1 HF 0.06 –0.05 –0.01 –0.04
N1 HF% 0.01 –0.03 –0.13** –0.13**
N1 ratio –0.01 0.06 0.14** 0.16**
N2 LF –0.02 –0.04 0.01 0.06
N2 HF –0.01 0.02 –0.02 –0.03
N2 HF% 0.00 0.07 –0.03 –0.10*
N2 ratio –0.01 –0.05 0.03 0.11**
N3 LF 0.01 –0.04 0.02 –0.03
N3 HF 0.05 0.00 0.04 –0.13**
N3 HF% 0.04 0.04 0.02 –0.12**
N3 ratio –0.03 –0.03 –0.02 0.14***
REM LF 0.02 0.02 0.00 –0.05
REM HF 0.04 0.07 –0.01 –0.01
REM HF% 0.05 0.08 -0.03 0.00
REM ratio –0.06 –0.05 0.03 0.02
W LF 0.05 –0.03 0.06 0.06
W HF 0.06 0.02 0.04 0.01
W HF% 0.05 0.02 –0.01 –0.05
W ratio –0.05 0.01 0.01 0.06

Notes: R-values are bold if >0.10 (Spearman correlation coefficient). *P<0.05, 
**P<0.005, and ***P<0.0005.
Abbreviations: ESS, Epworth Sleepiness Scale; HF, high frequency; HRV, heart rate 
variability; LF, low frequency; MP, misperception; PLMI, periodic limb movement 
index; REM, rapid eye movement; TST, total sleep time; W, wake.
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compared to the low insomnia group, largely independent 

of TST grouping. In summary, age and PSG metrics were 

more strongly associated with short TST, while HR changes 

across stages seemed to track insomnia symptom category 

more strongly than the TST category. Additional exploratory 

correlations are given in Figure S2 separately for objective 

TST and for insomnia symptoms.

Discussion
Clinical sleep medicine faces competing pressures when 

pursuing objective evaluations of sleep physiology. On one 

hand, the allure of personalized medicine based on care-

ful phenotyping is making rapid gains in terms of sleep 

apnea,41–44 insomnia,40,45 PLMS,22 autonomic dysfunction,46 

cardiovascular physiology,1 and sleep fragmentation.47,48 On 

the other hand, resource shifts toward at-home diagnostics, 

with limited-channel devices designed for uncomplicated 

OSA detection,49 are unlikely to directly support improved 

phenotyping efforts. Efforts to improve in-laboratory PSG-

based phenotyping43,50,51 could improve risk stratification 

and guide care decisions. The information contained in 

cardiac channels is well suited for implementation via 

both in-laboratory and at-home diagnostics, as cardiac 

physiology (either HR or ECG) is present in both clinical 

recording contexts. The current work describes a large 

and heterogeneous cohort without sleep apnea, in which 

the wide range of cardiac physiology illustrates both the 

challenges and the potential for clinically relevant pheno-

typing in a practice setting. For example, important patterns 

such as HR nondipping, and frequency metrics of HRV 

for autonomic balance, were only weakly correlated at the 

population level with clinical predictors. This implies that 

without objective testing, these physiological phenotypes 

may go largely unrecognized. Given that pathological 

signatures in the cardiac signals, both routine (HR) and 

advanced (HRV), are common even in those without OSA, 

Figure 3 Clinical, PSG, and cardiac correlates of PLMS.
Notes: (A) Box and whiskers plot showing the distribution of age (years) for three 
prespecified categories of PLMI values. Brackets indicate significant differences 
between groups (Kruskal–Wallis with Dunn’s correction, P<0.0001). (B) Box and 
whiskers plot showing the distribution of N1 (%) for three prespecified categories 
of PLMI values. Brackets indicate significant differences between groups (Kruskal–
Wallis with Dunn’s correction, P<0.0001). (C) Correlation coefficients reaching 
the predefined minimum value of |>0.1|, with the PLMI value across the cohort. 
P-values were <1×10-8 for N1%, age, N3%, REM%, TST, and efficiency. The remaining 
significant p-values were between 0.01 and 0.0001. 
Abbreviations: HF, high frequency; HR, heart rate; HTN, hypertension; LF, low 
frequency; MP, misperception; PLM, periodic limb movements; PLMS, periodic limb 
movements in sleep; PLMI, periodic limb movement index; PSG, polysomnography; 
REM, rapid eye movement; TST, total sleep time; WHR, wake heart rate.
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Table 3 Objective short TST with insomnia symptoms

Metric >5.5 hours TST <5.5 hours TST

Age (years) 41 (29–52)*** 49 (41–61)
Male (%) 41.7 44.0
BMI (kg/m2) 27.3 (24.0–31.8) 27.0 (23.8–31.9)
ESS 9 (5–13)*** 5 (3–8)
TST (minutes) 403 (374–429)*** 292 (257–313)
N1% 9.7 (5.8–14.6)*** 15.7 (9.0–25.0)
N2% 53.0 (46.2–60.1) 53.3 (44.0–62.3)
N3% 18.0 (12.0–23.0) 16.4 (6.1–25.4)
REM% 17.6 (12.8–21.9)*** 9.8 (4.6–16.8)
Efficiency (%) 89 (82–93)*** 65 (56–73)
SL (minutes) 4.5 (1.5–11.5)*** 10.5 (4.5–32.3)
PLMI (1/hour) 6.5 (2.0–17.0)*** 13.9 (4.5–34.1)
HR–wake 61.0** 64.9
HR–N1 62.3** 64.6
HR–N2 61.7** 64.9
HR–N3 64.0* 67.4
HR–REM 63.3* 67.8
Depression (%) 32.6 39.5
Anxiety (%) 35.8 45.0
HTN (%) 16.6* 27.5
COPD (%) 1.4 0.9
CAD (%) 1.0** 6.4
CHF (%) 0.6* 3.7
DM (%) 4.9 9.2
Stroke (%) 1.4 3.7
N1 LF 6.3 (5.1–7.4) 6.3 (5.0–7.7)
N1 HF 5.7 (4.4–7.0) 5.5 (3.9–7.1)
N1 HF% 47.6 (41.7–55.1) 45.8 (40.3–52.2)
N1 ratio 1.1 (0.8–1.4) 1.2 (0.9–1.5)
N2 LF 8.5 (7.4–9.9) 8.7 (7.2–10.0)
N2 HF 7.6 (6.2–9.1) 7.5 (6.3–9.2)
N2 HF% 46.7 (41.0–52.2) 45.3 (40.1–51.6)
N2 ratio 1.2 (0.9–1.5) 1.3 (1.0–1.6)
N3 LF 8.7 (7.2–10.6) 8.7 (6.8–10.9)
N3 HF 9.1 (7.0–11.6) 9.6 (6.6–12.4)
N3 HF% 51.0 (45.4–56.2) 48.4 (44.7–58.3)
N3 ratio 1.0 (0.8–1.3) 1.1 (0.7–1.3)
REM LF 8.0 (6.5–9.6) 7.2 (5.8–9.0)
REM HF 6.3 (4.7–8.0) 5.4 (3.8–7.0)
REM HF% 43.4 (38.3–48.4) 42.6 (35.7–49.5)
REM ratio 1.3 (1.1–1.7) 1.4 (1.0–1.8)
W LF 5.9 (4.6–7.8) 6.8 (5.2–8.3)
W HF 5.5 (3.8–8.2) 6.5 (4.4–9.1)
W HF% 47.5 (41.3–52.6) 46.0 (42.9–51.7)
W ratio 1.2 (0.9–1.5) 1.3 (1.0–1.5)

Notes: Data are median (IQR) or percentage. Bold indicates significance: *P<0.05, 
**P<0.001, and ***P<0.0001.
Abbreviations: BMI, body mass index; CAD, coronary artery disease; CHF, 
congestive heart failure; COPD, chronic obstructive pulmonary disease; DM, 
diabetes mellitus; ESS, Epworth Sleepiness Scale; HF, high frequency; HR, heart rate; 
HTN, hypertension; LF, low frequency; PLMI, periodic limb movement index; REM, 
rapid eye movement; SL, sleep latency; TST, total sleep time; W, wake.

further work is needed to explore mechanistic hypotheses 

and to bring cardiac phenotyping into a clinical practice 

that largely overlooks this information in sleep diagnostics. 

Exploring large datasets, either from clinical sources as 

we performed or from research registries (such as www.

sleepdata.org), can support phenotyping hypothesis testing 

in sub-groups by age, sex, medications, comorbidities, and 

if longitudinal follow-up is captured, in clinical outcomes.

HR dipping and HRV correlates in the 
current study
In this cohort, nearly half of the subjects showed an increase 

in HR during stable N2 and N3 compared to wake. Younger 

age and male sex were most strongly correlated with HR 

dipping. Diabetes and HTN were the comorbidities linked 

to nondipping HR. Interestingly, the PLMS values were not 

related to HR dipping, which ran counter to our predic-

tion that elevated PLMS would cause more consistent HR 

elevations.22,23,52,53 Further analysis of event-linked HR tran-

sients may shed light on whether individual heterogeneity 

blurred correlations at the group level. Medications and/

or comorbidities may explain some of the HR nondipping 

patterns, as a subset with no medications or comorbidities 

showed more common HR dipping.

We found no relationship between the ESS value and 

HR or HRV measurements; previous studies in other 

populations also found little relation.54,55 Sleep quality 

scores, referring to the night of PSG specifically, showed 

only very small correlations, being inversely related to the 

mean HR in wake (R=−0.13) and the percentage HR dip-

ping (R=−0.12). The former relation is plausible, if perhaps 

higher HR during wake reflects a form of hyperarousal that 

influences the perception of sleep quality. Interestingly, 

although these correlations were small, they were of a 

similar magnitude of quality correlations with other met-

rics such as TST (0.14), sleep efficiency (0.19), and N1% 

(−0.15). Whether pharmacological or behavioral measures 

designed to reduce nocturnal HR can improve sleep quality 

remains an interesting possibility.56,57

Physiological correlates of insomnia and 
misperception
Although the clinical diagnosis and management of insom-

nia do not routinely involve objective sleep  measurements, 

 extensive work describes the physiology-based sub- 

phenotypes of insomnia17,58,59 beyond the typical diagnos-

tic heuristics. HRV analysis has shown increased LF and 

reduced HF power during sleep,60,61,16 consistent with an 

autonomic facet of the increased arousal model.17 There 
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is some suggestion that the HRV frequency abnormalities 

are mainly present in those insomnia patients with short 

objective sleep duration.62 Importantly, work by Vgont-

zas et al demonstrated the importance of objective sleep 

duration (defined during PSG), over that of subjective 

reporting of insomnia, for incident medical and psychiatric 

morbidities.40,45

Despite extensive work investigating the basis of 

misperception, the causes remain the subject of discus-

sion.36,39,63 We found that misperception of TST was 

associated with HR dipping, which runs counter to the 

prediction that dipping should reflect better sleep quality. 

TST misperception was only related to HRV frequency 

metrics derived from stage N1 and, in a manner that sug-

gests more stable cardiac function, was related to greater 

misperception, which does not support the hypothesis 

that sympathetic tone contributes to the under-estimation 

of sleep. These somewhat unexpected relationships could 

be epi-phenomena: if more stable sleep is associated 

with longer TST, this would allow more opportunity to 

underestimate.39

Clinical and physiological correlates of 
PLMS
PLMS is most commonly associated with clinical RLS, but 

this relationship is asymmetric: most individuals with elevated 

PLMI values do not have RLS.64 PLMS has been associated 

with a variety of neuropsychiatric65–76 and systemic disorders, in 

addition to reports among sleep disorders such as insomnia,77,78 

sleep apnea,71,79 and narcolepsy.74 Although much exciting work 

continues to evolve in regard to the physiology and clinical cor-

relates of PLMS,80,81 perhaps the most important consideration 

is the association between PLMS and cardiovascular and cere-

brovascular outcomes.82–84 This association may be mechanisti-

cally related to sympathetic arousal85 and with both nocturnal 

and daytime HTN.86,87 HRV analysis of adults with PLMS 

suggests increased LF values and the LF/HF ratio associated 

with events,53,88 and similar findings were reported in children.89
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Figure 5 Insomnia symptoms and objective TST.
Notes: The four possible combinations of binary total sleep time (TST; long [L] or short [S]) and insomnia symptom status (+ or −) are shown for age (A), N1 % (B), REM 
% (C), efficiency (D), PLMI (E), wake HR (F), N1 HR (G), N2 HR (H), N3 HR (I), and REM HR (J). In each panel, the box and whisker plots (5%–95%, with outliers shown as 
dots to illustrate variability) are given for four sub-cohorts based on objective TST value from the PSG (5.5 hours cutoff, for L or S values, and insomnia symptom level (high 
as + sign, low as - sign). These categories are given via X-axis labels, as well as the fill of the box plots: gray indicates insomnia symptom +, and speckled indicates <5.5 hours 
TST. Kruskal–Wallis testing results are shown with Dunn’s post hoc comparison of all possible group-wise pairs in each panel, where brackets indicate significant differences. 
The P-values were <0.0001 for all panels except wake and N1% (P<0.005).
Abbreviations: HR, heart rate; Ins, insomnia; L, long; PLMI, periodic limb movements index; PSG, polysomnography; REM, rapid eye movement; S, short; TST, total sleep 
time
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As we reported previously in a smaller cohort, the clinical 

prediction of elevated PLMS is challenging, with only modest 

correlations arising from demographic and clinical history 

information.79 In the current cohort, PLMI was most strongly 

predicted by advancing age and use of antihypertensives. 

Sixteen of the other 18 correlated factors were PSG-derived 

metrics, most of which were cardiac physiology. No rela-

tion was found with antidepressant medications.90 A recent 

systematic review suggested that the increased PLMS values 

with certain antidepressants were unlikely to be of clinical 

importance given the lack of disruption of sleep;91 however, 

as noted earlier, autonomic “disturbance” is possible even 

when EEG changes are minimal.

Cardiovascular measures in sleep 
disorders and cardiovascular risk
Frequency measures of HRV reveal that normal NREM sleep, 

especially slow wave (N3), is associated with increased HF 

power and reduced LF power (and lower LF/HF ratio), while 

the opposite pattern is observed in REM sleep.92–97 Blood 

pressure and HR reduction are also evident in stable NREM 

sleep.98 Alterations in these normal patterns, especially 

blunting of the NREM stability pattern, may occur with a 

variety of sleep disorders and have been associated with 

cardiovascular morbidity and mortality.2 OSA is associated 

with well-described alterations in HRV, with increased LF, 

reduced HF, and increased LF/HF ratio consistent with the 

sympathetic overdrive mechanisms of this disorder.99–103

Ben-Dov et al24 reported increased all-cause mortality 

with HR nondipping in sleep in a large cohort who under-

went ambulatory blood pressure monitoring, a somewhat 

larger effect than for nondipping of blood pressure. In that 

cohort, HR nondipping was associated with increased age 

and BMI, female sex, and comorbidities of HTN and diabetes 

(treated). In another ambulatory blood pressure monitoring 

cohort, Eguchi et al104 reported nocturnal HR nondipping to 

be associated with cardiovascular events, but not all-cause 

mortality. In that cohort, HR nondipping was unrelated to 

age, sex, BMI, diabetes, or antihypertensive medications. In 

yet another cohort, cardiovascular risk was increased in those 

with nocturnal nondipping of both blood pressure and HR.105

These prior studies used daytime measures to define the 

awake HR, which may result in higher HR values than those 

obtained during wake from our current study; the awake time 

was in a recumbent position throughout nocturnal PSG test-

ing. Only about half of the subjects in our cohort showed HR 

dipping of any degree in sleep compared to wake. Further 

studies using 24-hour cardiac monitoring, including PSG 

to identify sleep stages, would better characterize the phe-

notype of HR dipping relative to daytime-wake physiology. 

Sleep staging is critical for intermittent cuff studies, as REM 

sleep and transitional sleep are associated with HR fluctua-

tions, which could add noise to intermittent cuff inflation 

approaches (every 30 or 60 minutes measurement).

Limitations
This study has several limitations, some of which are address-

able in future analysis or prospective study designs. This was 

a cross-sectional cohort, with only one night of PSG. While 

this is reflective of current practice standards, night-to-night 

variability may play in important role in sleep phenotyping. 

We do not have information regarding circadian rhythm or 

light exposure of patients coming into the sleep laboratory, 

each of which could impact cardiac physiology. The medi-

cations and comorbidities were self-reported and we do not 

have corroborating data from the electronic medical record 

about compliance or dosing, or the duration or severity of 

comorbidities. Together, these uncertainties contribute noise 

to our measurements and blur potential associations, which 

suggest that the strength of the relationships we did identify 

might be underestimated. In the future, with even larger 

cohorts, sub-categorizing the data by age, sex, comorbidi-

ties, and medications may still allow sufficient sample sizes 

remaining in each group to support physiological analysis. 

Most importantly, we do not have outcome information for 

clinical course, adverse events, or treatment response for 

these subjects. Future studies of outcomes could be under-

taken by matching records of such retrospective cohorts with 

increasingly available electronic medical information in large 

hospital systems such as ours.
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Supplementary materials

Figure S1 Examples of HR slope assessments from clinical PSGs.
Notes: In (A) and (B), the scored hypnogram is shown above the HR tracing derived from the pulse oximetry signal as visualized through the Grass software. The HR units 
(Y-axis) are in beats per minute. The color scheme of the stages is the same as in Figure 1 of the main text. Stages are indicated on the Y-axis. Time base is given for an 1 hour 
increment (and hash marks on the X-axis are 30 minutes apart). For each sleep–wake stage bout of 35 minutes (“stable” bouts), the calculated best fit line is super-imposed 
on the HR trace (black lines).
Abbreviations: HR, heart rate; PSGs, polysomnography; REM, rapid eye movement; W, wake.
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Figure S2 Correlations with TST and with insomnia symptoms.
Notes: (A) Significant correlations above the prespecified minimum of >|0.1| for the PSG-derived TST value. (B) Significant correlations above the prespecified minimum of 
>|0.1| for insomnia symptoms (“Methods” section).
Abbreviations: CHF, congestive heart failure; ESS, Epworth Sleepiness Scale; HF, high frequency; HR, heart rate; HRV, HR variability; HTN, hypertension; hyp, hypnotic; 
LF, low frequency; MP, misperception; PLMI, periodic limb movement index; PLMS, periodic limb movements in sleep; PSG, polysomnography; Qual, quality; REM, rapid eye 
movement; RLS, restless legs syndrome; TST, total sleep time; z-drug, zolpidem, zaleplon, eszopiclone.
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