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Melting enhancement of PCM 
in a finned tube latent heat thermal 
energy storage
Sameh Ahmed1,2,9, Aissa Abderrahmane3, Abdulkafi Mohammed Saeed4, Kamel Guedri5, 
Abed Mourad3, Obai Younis6, Thongchai Botmart7* & Nehad Ali Shah8,9

The current paper discusses the numerical simulation results of the NePCM melting process inside an 
annulus thermal storage system. The TES system consists of a wavy shell wall and a cylindrical tube 
equipped with three fins. The enthalpy-porosity method was utilized to address the transient behavior 
of the melting process, while the Galerkin FE technique was used to solve the system governing 
equations. The results were displayed for different inner tube positions (right-left–up and down), inner 
cylinder rotation angle (0 ≤ α ≤ 3π/2), and the nano-additives concentration (0 ≤ ϕ ≤ 0.04). The findings 
indicated that high values of nano-additives concentration (0.4), bigger values of tube rotation angle 
(3π/2), and location of the tube at the lower position accelerated the NePCM melting process.

Abbreviations
g	� Gravity
Tm	� Fusion temperature
C	� Mushy zone constant
NEPCM	� Nanoenhanced PCM
Lf	� Latent heat coefficient
k	� Thermal conductivity
Ts	� Solidus temperature
FEM	� Finite element method
TI	� Liquidus temperature

Greek symbols
a	� Thermal diffusivity (m2/s)
ρ	� Fluid density
ϕ	� Nanoparticle volume fraction

Subscripts
nf	� NEPCM
f	� Pure fluid

Energy storage is critical in thermal systems that use intermittent energy sources such as solar energy. Although 
less difficult, sensible heat storage needs large volumes to store the storage material and also exhibits temperature 
change throughout the charge/discharge cycles1,2. On the other hand, latent heat thermal energy storage (LHTES) 
systems have a large thermal heat capacity, high energy storage density, negligible temperature change throughout 
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the charge /discharge cycles, wide phase transition temperature range, and low cost3,4. These advantages enable 
them to have a wide range of applications in solar energy utilization5,6, energy-efficient buildings7 and domestic 
hot water8, load management9, refrigeration and air conditioning10, and industrial waste heat recovery11,12. As 
a result, incorporating PCM-based TES in a variety of thermal applications is a hot topic of research. Nar-
asimhan et al.13 conducted a thermal examination of a storage unit with several PCM with high conductivity 
particles dispersed. The findings indicate that the performance of the 3-PCM unit is improved when the second 
and third PCMs are positioned with latent heats greater than the first PCM. Abdelgaied et al.14 investigated a 
combination of various successful modifications to the design of a pyramid solar distiller (PSD) to maximize 
its cumulative output. One of these changes is the addition of PCM with pin fins. The findings indicate that this 
new combination of modifications uses this new combination of modifications Khdair et al.15 investigated ways 
to reduce energy consumption in buildings by using PCM-23 and taking into consideration Riyadh’s yearly aver-
age temperature. They discovered that although the use of PCM-23 was ineffective during the warm months, it 
reduced heat exchange during the cooler months, resulting in a 3984-kWh reduction in energy usage over the 
course of a year. Kurnia et al.16 carried out an experimental study to determine the energy storage effectiveness 
of a Hybrid TES with a PCM layer serving as both an insulation and an energy storage layer. The experimental 
results indicate that Hybrid TES with PCM wall layer provides better heat insulation than traditional sensible 
TES, as demonstrated by a higher withheld temperature within the storage medium. Shamsi et al.17 mathematical 
modeling to evaluate and optimize the encapsulated cascade PCM latent TES performance. Their investigation 
examined the effects of various parameters such as the location, type, and amount of PCM. They determined 
that the cascade PCM thermal storage system outperforms the single PCM thermal storage system. Sharaf et al.18 
evaluated a passive cooling technology that combines an aluminum metal foam (AMF) and PCM to regulate the 
temperature of a photovoltaic (PV) system (PV-PCM/AFM). The results indicated that the power produced by 
the PV-PCM/AFM system was 1.85 percent, 3.38 percent, and 4.14 percent higher than that of conventional PV 
during December, January, and February respectively.

Heat energy storage systems offer the benefits of high energy storage efficiency and consistent temperature 
due to the use of phase change material (PCM); however, its disadvantage is that thermal energy storage takes 
longer to complete due to the material poor thermal conductivity. New technologies are being developed to 
address this inadequacy, including ones that increase heat transfer19,20. Several researchers develop highly con-
ductive PCMs composite by dispersing nanoparticles in conventional PCM to promote the heat transfer rate of 
PCMs21–23. He et al.24 studied the synthesis and thermal characterization of several composite NEPCMs based 
on graphene nanosheets (GNPs), multi-walled carbon nanotubes (MWCNTs), and nano graphite (NG). Their 
findings indicated a considerable increase in thermal conductivity as a consequence of the addition of nanopar-
ticles (particularly GNPs) to myristic acid PCM. Chu et al.25 sought to enhance the ventilating unit efficiency by 
utilizing an RT28 PCM. CuO nanoparticles were distributed in RT28 to improve their heat absorption. Soliman 
et al.26 developed an effective waste heat recovery solution for diesel engines utilizing NEPCM. Theoretically, 
Ghalambaz et al.27 explored the non-Newtonian phase-transition of NEPCM with mesoporous silica particles in 
an inclined container using a deformed mesh method. Al-Waeli et al.28 enhanced the efficacy of the PCM/ PVT 
system by including SiC nanoparticles in PCM. Electrical and thermal efficiency levels of roughly 14 percent and 
72 percent, respectively, were achieved in the experiments. Kazemian et al.29 enhanced the thermal efficiency 
of PCM by using Al2O3 nanoparticles. They introduced NEPCM to a PVT-water collection unit and examined 
the resulting system experimentally. Fan et al.30 studied the impact of different carbon nanofillers on the ther-
mal conductivities of PCMs in an experimental setting. The findings indicate that with a 5.0 wt percent load, 
the maximum thermal conductivity of nano-PCMs was increased nearly 1.7 times, which aided in enhancing 
PCMs’ heat transfer efficiency. Nada et al.31 Experimental testing investigated the efficacy of employing Al2O3 
nanoparticles dispersed in PCM as a heat dissipation system for cooling photovoltaic modules. The electrical 
performance of the suggested system was increased by 6.8 percent and 12.1 percent, respectively, when Al2O3 
nanoparticles were dispersed within the PCM. Singh et al.32 studied the thermal enhancement properties of a 
binary eutectic PCM containing varying amounts of graphene nanoplatelets. The total melting time was reduced 
by 17.3 percent when graphene nanoplatelets were used at a concentration of 5% in comparison to the pristine 
PCM heat exchanger.

Recently, numerous external approaches for improving heat transmission in PCM have been investigated, 
including the use of wavy surfaces to increase the contact surface toward greater heat exchange rates and the 
use of inner spinning cylinders to promote convective flow inside the melted PCM. Kashani et al.33 investigated 
the solidification of a copper–water nanofluid in a two-dimensional hollow with vertically wavy walls. They 
demonstrated that the solidification period could be regulated by varying the surface waviness, which improves 
the domain heat transmission performance. Abdollahzadeh et al.34 investigated the solidification of Cu-water 
nanofluid in a vertical enclosure with various wavy surfaces, including divergent-convergent and convergent-
divergent walls. They demonstrated the increased heat transmission rate by employing sinusoidal wavy walls. 
shahsavar et al.35 examined the performance of a vertical double-pipe LHTES system with sinusoidal wavy chan-
nels. The results indicated that the average heat transmission rate for the wavy channel composite PCM case is 
10.4 and 18.9 times that for the smooth channel pure PCM case during the melting and solidification processes, 
respectively. Alizadeh et al.36 established a numerical approach for modeling and optimizing the solidification 
process in a Latent Heat TES System composed of a wavy shell and a fin-assisted tube. Rotating cylinders may be 
utilized to control convection inside a cavity in a variety of heat transfer applications. Numerous research on the 
influence of revolving cylinders on the phase transition of PCMs have been reported recently37–40. Selimefendigil 
et al.41 explored mixed convection in a square cavity filled with PCM under the influence of a spinning cylinder. 
It was discovered that the parameters of the revolving cylinder may be utilized to regulate the heat transport 
and melting processes inside the cavity. Al-Kouz et al.42 conducted a comprehensive numerical investigation 
of entropy generation and mixed convection in a three-dimensional cavity filled with a phase change material 
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(PCM) and including a revolving cylinder. The findings suggested that impeding the cylinder with an angular 
velocity increased the heat transfer rate by 21.2% compared to a static cylinder. Sadr et al.43 investigated mixed 
convection of water-NEPCM inside a square enclosure with cold boundaries and a revolving hot cylinder at the 
core. According to their findings, increasing the Re and Gr values increased heat transmission rate. However, 
when the Gr number is large, increasing the rotational velocity of the inner cylinder and hence the Re number 
reduces Nusselt. Additionally, the data indicate that supplementing with NEPCM may enhance the Nusselt 
number by more than 13%.

Based on the aforementioned literary survey, there are few studies concerning with the melting enhancement 
of PCM in wavy finned tubes latent heat thermal energy storage are presented. One of these studies is that of 
Elmaazouzi et al.44 where the enhancement of the thermal performance of finned latent heat thermal energy 
storage system was examining. Therefore, the main objective of this investigation is to examine the impacts of 
the non-regular outer boundaries together with heated fins attached with a rotating cylinder on the heat transfer 
rate, melting rate and temperature distributions. Also, the 2nd law of the thermodynamic is applied to analyse the 
system entropy and values of the Bejan number. Furthermore, the thermal energy storage systems are considered 
a direct practical application of this purpose.

Problem description
Optimizing the charging and discharging of a PCM inside a shell-and-tube heat exchanger operating as a TES 
device requires investigating complicated thermofluid processes, which are addressed in this work using com-
putational fluid dynamics (CFD) methods. The three-dimensional configuration investigated in this article is 
depicted in Fig. 1A. It is a horizontally oriented eccentric annulus contained inside a phase-change material-
filled outer cylinder. To save CPU time, the length of the TES is set to be long enough to simplify the issue to the 
two-dimensional configuration presented in Fig. 1 with boundary constraints (B). The suggested enclosure is a 
two-dimensional concentric annulus with a wavy tube on the outside and a finned circular tube on the inside. The 
outer shell is adiabatic, while the inner finned tube maintains a constant temperature Th. Inner and outer tubes 
(for circular cylinders) have 2 cm and 8 cm diameters, respectively. Three tiny fins with a thickness of 0.1 cm are 
affixed to the inner tube (two small ones are 2 mm in length and one large one is 3 mm in length). This research 
investigates several fin orientations (α = 0, π/2, π and 3π/2) and inner tube locations (see Fig. 2). The enclosure 
net area (PCM zone) is identical in all cases.

Paraffin wax is used as the phase change medium, while copper nanoparticles are used to increase the PCM’s 
thermal conductivity. The thermophysical properties of paraffin wax and copper nanoparticles are summarised 
in Table 1.

Mathematical model.  The enthalpy-porosity methodology is the most frequently used technique for ana-
lyzing unstable heat transport problems, such as PCM phase transitions. The enthalpy-porosity technique is uti-
lized to simulate the melting and heat transmission characteristics of embedded fins in NePCM. The advantage 
of the enthalpy-porosity technique is that it does not require direct monitoring of the phase interface; rather, it 
generates the energy equation throughout the whole calculation domain using enthalpy and temperature. Due to 
the substantial nonlinearity of the phase change process, its issues become more intricate. The following param-
eters are considered to streamline the computation:

(1)	 The flow of liquid NePCM is regarded to be incompressible and laminar.
(2)	 Natural convection is disregarded for the minuscule density shift in PCM caused by gravity and density 

difference during phase transition.

Figure 1.   (A) 3D model of the shell and tube TES with embedded fins (B) A two-dimensional illustration of 
the studied model with boundary conditions. (C) A mesh sample.
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(3)	 Since the physical properties of PCM remain relatively consistent during the phase transformation, they 
may be deemed constant.

(4)	 Overlooking the volumetric impact of viscous dissipation and heat source.
(5)	 The container wall is assumed to maintain a constant temperature, ignoring the heat transfer resistance of 

the container wall and the convective heat transfer process inside the tube.
(6)	 There is no heat transfer Between the shell and its surroundings

Based on the above assumptions, it is possible to develop the governing equation for the melting process of 
NePCM in the wavy finned enclosure. The equations may be expressed as follows:

Continuity equation:

Momentum equation:

where the subscriptions np refers to the nano-enhanced PCM and  Sa a is the source term for the porosity 
function proposed by Bernt et al.45

(1)∇ · (
−→
V ) = 0

(2)∂(ρnp
−→
V )

∂t
+∇ · (ρnp

−→
V ) = −∇P + µnp∇

2−→V − Sb + Sa

(3)Sa define as Sa = −A �V with A =
(1− η)2

(

π3 + 10−3
)C

Figure 2.   Different cases considered for orientation and positioning of the finned tube in this study.

Table 1.   Lists the characteristics of both nanoparticles and the PCM.

Property PCM (liquid) PCM (solid) Nanoparticles

Density, ρ (kg/m3) 775 833.6 8954

Specific heat Cp (kJ/kg K) 2.44 2.384 0.383

Thermal conductivity, K (W/m K) 0.15 0.15 400

Melting temperature, Tm (K) 54.32 –

Kinematic viscosity, μ (m2/s) 8.31 × 10–5 –

Latent heat of fusion, H (kJ/kg) 184.48 –

Thermal expansion coefficient (K−1) 7.14 × 10–3 1.67 × 10−5
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Sb is the Boussinesq approximation to the buoyancy force; the value is as follows:

The vector of fluid velocity is denoted by −→V  . The two-dimensional model specifies the axial and radial velocity 
vector components as follows:

where H signifies a certain enthalpy and is stated in the following manner:

where h is a sensible enthalpy denoted by the formula:

ΔH: latent heat changing step during the phase of the PCM changed between solid to liquid, the value of C 
is taken as C = 106.

Additionally, η is the equation for the liquid portion of the liquid/solid zone, which assists in defining the 
zone of calculated cells, where the liquid zone equals η = 1 and the solid zone equals η = 0 , while the mushy 
zone equals 0 < η < 1 , and can be expressed as follows :

with Tl and Ts denoting the NePCM’s liquid and solid temperatures, respectively.
It is possible to represent the liquid fraction expression as flows:

The thermophysical characteristics of paraffin wax are employed in the situations of pure PCM, and in the 
cases of NePCM, the parameters are estimated using a mix of paraffin wax and copper nanoparticle properties, 
as shown in Table 1. The preceding equations use general notations for the thermophysical characteristics and 
are applicable to both pure PCM and NePCM. The density and specific heat capacity of the nano-PCM material 
are estimated as follows:

where the subscriptions n and p refer to the nanoparticles and PCM, respectively.
Here, ϕ represents the volume fraction of nanoparticles added in the PCM.
Similarly, the latent heat of fusion, the effective thermal conductivity, and the thermal expansion coefficient 

of NEPCM can be found using the following set of equations46.

The entropy created as a result of thermal irreversibility (heat transfer) equals

The entropy created as a result of the flow’s irreversibility (presence of a friction factor) is equal to

(4)And ∇(P) = −
(1− η)2

η3
C · �V

(5)Sb = (ρβ)np(T − Th)
−→g

(6)Vaxial = vandVradial = u

(7)Energy equation
∂(H)

∂t
+∇ ·

(

�VH
)

= ∇ ·
(

knp∇T
)

(8)H = h+�H

(9)h = href +

∫ T
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(

ρcp
)
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dT
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}
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(12)ρnp = (1− ϕ)ρp + ϕρn

(13)
(

ρcp
)

np
= (1− ϕ)

(

ρcp
)

p
+ ϕ

(

ρcp
)

n

(14)(ρL)np = (1− ϕ)(ρL)p

(15)knp =
kn + 2kp − 2ϕ

(

kp − kn
)

kn + 2kp + ϕ
(

kp − kn
) kp

(16)(ρβ)np = (1− ϕ)(ρβ)p + ϕ(ρβ)n

(17)Sht =
knf

T
2

[

(

∂T

∂x

)2

+

(

∂T

∂y

)2
]



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11521  | https://doi.org/10.1038/s41598-022-15797-0

www.nature.com/scientificreports/

The total entropy, which comprises the entropy increase caused by heat transfer and fluid friction, and the 
Bejan number, which is the ratio of irreversible heat transfer to total entropy, are computed using the following 
formulae.

Validation and mesh independence study.  To verify the implementation of mathematical modeling 
of melting and the solution methodology outlined above, the result obtained for melting interface propagation 
in a square enclosure was compared to the simulation solution provided in Arasu et al.47 in Fig. 3A. The present 
findings are highly consistent with those previously published, implying that the numerical model’s fundamental 
validity has been established.

The mesh independence study is established by examining the average liquid fraction over time for the various 
grid sizes shown in Table 2. Figure 1C shows an example of the computing grid, where the mesh must be finely 
tuned throughout the domain to adjust to the moving of the melting interface at each time step. The influence 
of multiple mesh sizes on the liquid fraction during the melting process is shown in Fig. 3B. The mesh G2 is 
selected to conduct all numerical simulations in this research based on the outcomes of the mesh independence 
study (illustrated in Fig. 3B).

Results and discussion
The major outcomes are represented in terms of the features of velocities, temperature fluid fraction irreversibil-
ity, Bejan number and local liquid fraction. The average values of the temperature Tavg, Nusselt number Nuavg, 
melting rate β and Bejan number are shown in 2D illustrations. It is interesting, here, in the examination of the 
rotation impacts (0 ≤ α ≤ 3π/2), the position of the rotating shape (right -up-down) and concentration of the NP 
(nanoparticles) (0 ≤ ϕ ≤ 0.04). Furthermore, the transient case of PCM flow is focused with a wide range of time: 
0 < Time ≤ 1600 s.

Figure 4 depicts the floods of velocities, isotherms, viscous dissipation entropy, local Be number and melting 
process for various values of the rotation angle α. Here, it should be mentioned that the inner rotating shapes are 
three heated fins attached to a circular cylinder. The flow is concentrated in the upper half of the wavy domain in 
the cases of α = 0, π/2 and π, while in the case of α = 3π/2, the flow is seen in the whole domain. The benchmark 
values of the velocities are higher in cases of α = 0, π than those of α = π/2, 3π/2. The temperature floods show 

(18)Sf =
µnf

T

{

2

[

(

∂u

∂x

)2

+

(

∂v

∂y

)2
]

+

(

∂u

∂x
+

∂v

∂y

)2
}

(19)Stot = Sht + Sf
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Figure 3.   (A) Comparison of numerical results with46. (B) Grid independent study.

Table 2.   Numerical test results for grid independency study.

Mesh G1 G2 G3

Number of elements 25,096 66,982 100,384
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heated zones around the inner rotating shapes and near the upper wavy boundaries, while the cold features 
occur on the lower edge. The rotation of the inner shape causes a redistribution of the heated/cold areas within 
the wavy domain. Also, the thickness of the thermal edge layers is noted to be higher in case α = 3π/2 compared 
to the other cases. In the same context, due to the higher velocity gradients around the rotating shape, the fluid 
friction entropy occurs in these regions for all values of π/2.

Additionally, features of the local Bejan number illustrate that the heat transfer irreversibility in the lower 
area is more dominant than the irreversibility owing to the fluid fraction. Also, the case of α = 3π/2 decreases the 
HT irreversible process. The variations of inner-shape rotation also influence the melted process. It is gathered 
in the upper area, and a redistribution of the melting area is obtained as α is altered.

In Fig. 5, the floods for velocities, temperature, fluid friction irreversibility, local Be number and melting pro-
cess for various locations of the inner rotating shapes are illustrated. Here, four locations of the rotating cylinder-
fins are considered, namely, Up, Down, Left and Right. Different configurations for the flow and thermal fields 
are taken as the location changes. The results revealed that when the rotating fins are placed in the upper part 
(Up-case) of the wavy domain, this causes the smallest flow rate, and the HT rate, as well as the heated zone, is 
decreased. On the contrary, the flow is accelerated, and the thickness of the thermal boundary layer is enhanced 
when the rotating heated fins are placed in the bottom of the wavy domain (down case). Additionally, features 

Figure 4.   The impact of the finned tube orientation on the Velocity, Temperature, Frictional entropy, Bejan 
number, and Liquid fraction contour after 30 min.
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of the Be number show that the HT irreversibility is overriding on most of the wavy area than the viscous dis-
sipation irreversibility in the Up-case while the melting process is reduced in this case. The fluid friction entropy 
has higher values in the down-case, and a strong melting process is obtained.

The flow features, thermal fields, viscous dissipation irreversibility, local Bejan coefficient and rate of the melt-
ing within the wavy domain with variations of the NP concentration 0% ≤ ϕ ≤ 4% are displayed in floods mode 
as depicted in Fig. 6. Remarkably, stretching of the inner eddies, the strength of the mixture flow and isotherms 
distributions are diminishing as ϕ is rising. Physically, these behaviors are due to the dynamic suspension viscos-
ity enhanced as ϕ is growing, and the flow rate is reduced. Also, the velocity gradients are weak as ϕ is growing, 
resulting in a clear reduction in the fluid friction entropy. Thus, features of Be number show a clear dominance of 
the HT irreversibility as ϕ is increased. Further, the expected behavior is noted in this Figure. That is the increase 
in the melting situation as NP concentration is enhanced. 

The influences of the rotation angle α , location of the inner rotating shape, concentration of the NP and the 
considered range of the time on the average temperature Tavg , average Nu Nuavg , melting rate β and average Beavg 
are examined using Figs. 7, 8 and 9.  Tavg and melting rate β obtained higher values in the case of the non-rotating 
shape while α = 0 gives low values of Beavg and Nuavg . The figures also disclosed that when the rotating shape 
is placed in the upper part (Up-case) of the wavy domain, this causes a diminishing in Tavg , melting rate β and 
temperature gradients, while the values of the average Be are reduced when the inner rotating shape is located 

Figure 5.   The impact of the finned tube position on the velocity, temperature, frictional entropy, Bejan number, 
and Liquid fraction contour after 30 min.
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in the lower part (down-case). Furthermore, the growth in φ leads to the enhancement of both of Tavg , melting 
rate β and rate of HT due to the increase in the thermal edge layer near the boundaries.

Conclusion
The melting process within a wavy circular cylinder, including rotating shapes, has been examined. The inner 
shape is a circular cylinder with three attached heated fins. The 2nd law of thermodynamics was applied to 
examine the irreversibility while the melting phenomena were simulated using the enthalpy-porosity approaches. 
The simulations started with mathematical formulations while the Galerkin FE technique was used to solve the 

Figure 6.   The impact of the NP concentration on the velocity, temperature, frictional entropy, Bejan number, 
and Liquid fraction contour after 30 min.
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governing system. Parametric studies were performed for the rotation angle, location of the inner rotating shape, 
concentration of NP and the considered range of the time. The following key findings are noted:

•	 Values of α = 0 and α = π accelerate the mixture movements while α = 3π/2 decrease the HT entropy at 
the lower wavy edge.

•	 Located the complex rotating shape in the down area of the flow domain gives the largest rate of the flow.
•	 Located, the rotating shape in the up regions causes a dominance of the HT entropy on most of the wavy 

domain.
•	 The melting process is augmented as the concentration of the NP is altered.
•	 As time progresses, the temperature gradients diminish while the opposite features are noted for the average 

temperature.
•	 Tavg and melting rate β obtaine higher values in case of the non-rotating shape while α = 0 gives a low values 

of Beavg and Nuavg.
•	 The rate of HT, average temperature and melting rate are augmented as the NP concentration is growing.

Figure 7.   The influence of the rotation angle (α) on the Average temperature, Average Nusselt number, Average 
liquid fraction (β) and Bejan number over time.
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Figure 8.   The finned tube position on the Average temperature, Average Nusselt number, Average liquid 
fraction (β) and Bejan number over time.
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