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Abstract: Horchata is a natural drink obtained from tiger nut tubers (Cyperus esculentus L.). It has
a pleasant milky aspect and nutty flavor; some health benefits have been traditionally attributed
to it. This study evaluated the effects of an unprocessed horchata drink on the gut microbiota of
healthy adult volunteers (n = 31) who consumed 300 mL of natural, unprocessed horchata with no
added sugar daily for 3 days. Although there were no apparent microbial profile changes induced by
horchata consumption in the studied population, differences could be determined when volunteers
were segmented by microbial clusters. Three distinctive enterogroups were identified previous to
consuming horchata, respectively characterized by the relative abundances of Blautia and Lachnospira
(B1), Bacteroides (B2) and Ruminococcus and Bifidobacterium (B3). After consuming horchata, samples
of all volunteers were grouped into two clusters, one enriched in Akkermansia, Christenellaceae and
Clostridiales (A1) and the other with a remarkable presence of Faecalibacterium, Bifidobacterium and
Lachnospira (A2). Interestingly, the impact of horchata was dependent on the previous microbiome of
each individual, and its effect yielded microbial profiles associated with butyrate production, which
are typical of a Mediterranean or vegetable/fiber-rich diet and could be related to the presence of
high amylose starch and polyphenols.

Keywords: microbiota; tiger nut; resistant starch; polyphenols; Mediterranean diet

1. Introduction

The consumption of vegetable products has notably grown in recent years, and the
commercial offering of soy, vegetable drinks and smoothies has grown accordingly. Tubers
of Cyperus esculentus, also known as earth almond or tiger nuts, are used to make horchata,
a pleasant milky drink obtained from ground, rehydrated tubers, that is very popular in
Spain and other Mediterranean countries; seasonal visitors have internationally spread its
appeal in the last decade. It is a traditional product in the land of Valencia (Spain), with a
protected designation of origin (PDO), where it was introduced by the Arabs, likely before
the 8th century [1]. In some countries, it is considered a very invasive weed [2], a fact that
may explain the English name of “tiger nut”. This product has a specific volatile composition
that explains its characteristic almond-like sensorial properties [3], and it is naturally sweet as
it contains 9.2–13.0 g sucrose/100 mL of small, variable amounts of glucose and fructose, in
addition to 2–3 g/100 mL of starch granules in suspension. Horchata also contains an emul-
sion of oil (2.4–3.1% v/v) with abundant phospholipids (0.5–0.6 g/100 mL) and a fatty acid
composition similar to olive oil (11.6–22.3% saturated, 65.6–76.1% monosaturated, 9.2–13.6%
polyunsaturated fatty acids) [4–7]. This tiger nut product also has a low amount of proteins
and amino acids (0.6–1.4 g/100 mL protein), where L-arginine can reach 25% and 55% of
total and free amino acids, respectively [6–8]. Furthermore, it contains vitamin C, biotin and
vitamin E [7,9] as well as a range of polyphenols, such as gallic acid, 3,4-dihydroxybenzoic
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acid, catechin, rutin or coumaric acid, which have been detected in relatively high concen-
trations (1–40 mg/L), as well as a variety of conjugated polyphenols and other unidentified
compounds [10–12]. However, as expected, the composition of horchata changes with the
geographical origin of the tiger nut tubers [7,9] and also depends on the processing conditions
as some components of horchata are sensitive to thermic treatment, demonstrated by high
resolution mass spectrometry [9].

Gut microbiota and its functionality are recognized as crucial elements for maintaining
human health [13]. Alterations in gut microbiota are commonly associated with several
noncommunicable diseases, such as obesity [14], diabetes mellitus type 2 [15], atopy [16]
and even neurological disorders [17]. Due to the great impact of the diet in shaping the gut
microbiota composition [18], nutritional interventions have been proposed as one of the
strategies that could contribute to the improvement of the treatment/prevention of these
diseases through the microbiota modulation.

Horchata has traditionally shown diuretic, digestive and antidiarrheic properties [19];
however, there is no scientific evidence that relates its intake to disease prevention, any
reported health marker or any potential activity as a microbiota modulator. The objective
of this work was to determine changes in the microbiota after a 3-day intervention with
a freshly prepared, natural (no enzymatic or thermic treatments, nor added sugars) hor-
chata drink in order to pinpoint possible relationships between the benefits traditionally
attributed to this drink.

2. Materials and Methods
2.1. Tiger Nut Drink Preparation

Commercial, natural horchata (nonpasteurized) was supplied by Món Orxata, S.L.,
and it was prepared according to the traditional method, without the addition of sugar.
Briefly, curated tiger nut tubers (dried and stored for at least 4 months) were hydrated for
at least 24 h, and then they were thoroughly washed with chlorinated water and rinsed.
Immediately after, the tubers were milled with at least 3 volumes of water and stirred. The
fiber residues were separated by filtration from the milky water extract. Additional water
was added to adjust the fat content to about 4% (Table S2).

2.2. Study Design and Participants

A total of 35 healthy adults (Valencia, Spain) participated in the study. The inclusion
criteria was >18 years old, nondeclared gastrointestinal or immune-related pathology and
zero consumption of antibiotics, medication or pre/probiotics during the previous 2 months
before the study.

The intervention consisted of a daily intake of 300 mL of a natural, unprocessed drink
of tiger nuts (Cyperus esculentus L.) for 3 days, consumed in the morning. At the beginning
(B, before) and the end (A, after) of these time points, volunteers offered clinical, nutri-
tional and anthropometric information as well as self-collected fecal samples following
an informed protocol. Additionally, the intake of probiotics and prebiotics was restricted
throughout the intervention study. The BMI was calculated, and volunteers were clas-
sified as lean or normal weight (≤25.0 kg/m2), overweight (25.0–30.0 kg/m2) or obese
(≥30.0 kg/m2) [18]. Experiments were carried out following approved guidelines and
regulations. All subjects gave their informed consent for inclusion before they participated
in the study. The study was approved by the ethics committees from the Servicio Valenciano
de Salud (Reference no.52327) (Spain), a substudy approved on 31 March 2016.

2.3. Nutritional Assessment

The dietary intake of the participants was determined through a validated, com-
prehensive 140-item food frequency questionnaire (FFQ) [19]. In all cases, we validated
the FFQ information registered by participants with a 3-day food record questionnaire
for the intake of dietary nutrients. The FFQ records were transformed to daily energy,
macro- and micronutrients intakes using the nutrient food composition tables devel-
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oped by the Centro de Enseñanza Superior de Nutrición Humana y Dietética (CESNID)
(http://www.cesnid.ub.edu/es/index.htm, accessed on 18 October 2018) and analyzed by
EASY DIET software (https://www.easydiet.es/, accessed on 1 September 2020).

Additionally, a 14-item, PREDIMED (PREvención con DIeta MEDiterránea, http:
//www.predimed.es/investigators-tools.html, accessed on 30 March 2016)-validated test
was used to appraise the adherence of participants to the Mediterranean diet (MD) [20].
The MD score ranged from 0 (minimal adherence) to 14 (maximal adherence). A score of 9
or more points meant good adherence to the Mediterranean diet.

2.4. Biological Samples and Gut Microbiota Analysis

A fecal sample was collected by each volunteer at home using plastic containers and
was frozen at −20 ◦C before sending to the laboratory, where the samples were stored at
−80 ◦C until analysis.

The fecal sample (100 mg) was used for the total DNA extraction following a commer-
cial kit, the Master-Pure DNA Extraction Kit (Epicentre, Madison, WI, USA), as described
elsewhere [21]. The total DNA was purified using the DNA Purification Kit (Macherey-
Nagel, Duren, Germany), and the total concentration was measured using a Qubit® 2.0
Fluorometer (Life Technology, Carlsbad, CA, USA). The targeted 16S rRNA amplicon
(V3–V4 region) was sequenced following Illumina protocols [21]. Briefly, a multiplexing
step was conducted using the Nextera XT Index Kit (Illumina, San Diego, CA, USA), and
the correct amplicon was checked with a Bioanalyzer DNA 1000 chip (Agilent Technologies,
Santa Clara, CA, USA). Libraries were obtained (2 × 300 bp paired-end run, MiSeq Reagent
kit v3) on a MiSeq-Illumina platform (FISABIO sequencing service, Valencia, Spain). The
QIIME1 pipeline was used to process the raw sequences to operational taxonomic units [22].
Chimeric sequences and those not aligned were removed from the data set as were the
sequences classified as cyanobacteria and chloroplasts. The raw sequences obtained are
available in the NCBI BioProject database under accession number PRJNA816156.

2.5. Statistical Analysis

Clinical, nutritional and anthropometric data differences were tested with the T-test
and the Mann−Whitney analysis according to data normality assessed by the Shapiro−Wilk
test in Graphpad software v.5.04 (GraphPad Software, La Jolla, CA, USA). The chi-squared
test (2 × 2) was performed to assess the differences in the categorical variables.

Microbiota clustering was generated at the genus level, as described elsewhere [23], using
the phyloseq [24], cluster [25], MASS [26], clusterSim [27] and ade4 R packages [28]. Briefly,
the Jensen−Shannon distance and partitioning around medoid (PAM) clustering were used.
The optimal number of clusters was calculated with the Calinski−Harabasz (CH) index.

Alpha diversity indexes (Chao1 and Shannon indexes) were determined, and differ-
ences between the groups were assessed with the Kruskall−Wallis ANOVA test through
the MicrobiomeAnalyst platform [20,29]. The beta diversity was based on the Bray−Curtis
distance (nonphylogenetic), and permutational multivariate analysis of variance (PER-
MANOVA) was used to test the significance between the groups; the multivariate redun-
dancy discriminant analysis (RDA) was also carried out. Data were considered statistically
significant at p-value < 0.05, and comparisons were adjusted by the false discovery rate
(FDR). The linear discriminant analysis effect size (LEfSe) was used to detect bacterial
features that differed between clusters and intervention times [30].

3. Results
3.1. Association of Microbiota Composition with Diet and Anthropometric Data

From a total number of 35 healthy adults, 4 individuals abandoned the study due
to intestinal discomfort and short intestinal transit (diarrhea). The remaining 31 healthy
individuals were included in the study and reported no problems or changes in the in-
testinal habits. A total of 62 fecal samples were analyzed, which corresponded to fecal
samples before and after 3 days of intervention. When all samples were analyzed, no

http://www.cesnid.ub.edu/es/index.htm
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significant impact was found in the gut microbial communities due to horchata intake, per
the redundancy analysis (RDA), F = 0.41 and p-value > 0.05, and Bray−Curtis distances
PCoA (Figure S1A). Interestingly, before the intervention samples were grouped into three
different clusters according to their microbial composition (Figure 1A) but after horchata
intake, a cluster analysis of the microbiota yielded two groups (Figure 1B). This reduction
of microbial clusters indicated a clear effect on the gut microbial composition, at least in a
fraction of the volunteers.
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Figure 1. Microbial clusters and representative microbial taxa at the genus level. The partitioning
around medoid method showed that volunteers were clustered at baseline into 3 groups (A) and into
2 groups after intervention (B) as reported in the Principal Coordinate Analysis (PCoA). (C) Multi-
variate redundancy discriminant analysis (RDA) showed distinct microbial communities for each
group with the alpha diversity indexes: (D) richness (Chao1 index) and (E) diversity (Shannon index)
depending on each cluster. Schemes follow the same formatting.

No significant differences in clinical and anthropometric data were found between
volunteers belonging to different microbial clusters (Table 1). Furthermore, the microbial
clusters at baseline were not influenced by dietary intake, as assessed by FFQ data shown
in Table 1. The FFQ was validated by a 3 d recall food record questionnaire for the intake
of dietary nutrients (Table S1). Drinking 300 mL of horchata during the morning coffee
break represented an intake of 206.7 kcal (Table S2), which was not considered an important
change in the daily calorie intake.
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Table 1. Characteristics and specific dietary intake of the healthy volunteers involved in the 3-day
intervention study.

All
(n = 31)

Cluster B1
(n = 16)

Cluster B2
(n = 8)

Cluster B3
(n = 7) p-Value

Clinical Characteristics

Age (years) 37.9 ± 11.2 35.6 ± 12.7 39.0 ± 8.9 42.0 ± 10.0 0.451

Gender (Female %) 15 (48.39) 8 (50.02) 8 (37.50) 4 (57.14) 0.737

BMI (kg/m2) 23.2 ± 3.3 23.2 ± 3.7 24.4 ± 2.8 21.7 ± 2.3 0.294

MD score 8.6 ± 1.8 8.6 ± 2.0 8.5 ± 2.1 8.8 ± 1.2 0.925

Dietary intakes

Energy (kcal) 2959.5 ± 623.1 2907.2 ± 473.3 2801.1 ± 599.8 3260.1 ± 902.8 0.334

Total protein (g/day) 116.9 ± 27.6 112.1 ± 20.1 111.3 ± 24.7 134.4 ± 40.2 0.164

Animal protein (g/day) 74.4 ± 21.7 72.6 ± 17.8 69.4 ± 19.4 84.3 ± 31.3 0.386

Vegetal protein (g/day) 42.5 ± 14.9 39.5 ± 10.5 41.8 ± 14.2 50.1 ± 22.7 0.300

Lipids (g/day) 133.1 ± 27.8 134.8 ± 24.9 126.1 ± 21.9 137.4 ± 40.8 0.706

Cholesterol (g/day) 389.0 ± 109.5 386.8 ± 78.1 366.3 ± 112.7 420.0 ± 167.7 0.649

SFA 36.3 ± 10.2 37.2 ± 9.9 33.2 ± 8.7 37.6 ± 13.1 0.633

MUFA 64.4 ± 12.9 64.9 ± 13.2 62.5 ± 11.4 65.7 ± 15.7 0.879

PUFA 22.2 ± 9.0 22.5 ± 9.0 20.9 ± 7.7 23.1 ± 11.4 0.889

Carbohydrates (g/day) 308.5 ± 95.5 298.6 ± 82.1 288.6 ± 93.8 353.9 ± 123.9 0.362

Polysaccharides (g/day) 172.4 ± 75.7 166.2 ± 65.8 166.8 ± 78.2 193.1 ± 100.5 0.728

Total dietary fiber (g/day) 33.1 ± 12.1 31.6 ± 7.9 31.5 ± 10.9 38.6 ± 19.7 0.414

Vitamin A (mcg/day) 1243.3 ± 520.8 1312.5 ± 507.9 1024.6 ± 518.9 1335.2 ± 557.7 0.398

Retinoids (mcg/day) 325.5 ± 132.7 341.4 ± 128.6 286.4 ± 117.9 333.1 ± 166.4 0.635

Carotenoids (mcg/day) 5499.37 ± 3018.4 5818.7 ± 3220.7 4422.0 ± 3135.2 6000.77 ± 2458.3 0.514

Vitamin D (mcg/day) 3.3 ± 1.5 3.6 ± 1.9 3.2 ± 1.1 2.7 ± 1.0 0.406

Vitamin E (mg/day) 18.7 ± 6.1 19.0 ± 6.5 17.6 ± 4.5 19.3 ± 7.3 0.845

Thiamine (mg/day) 2.0 ± 0.8 1.9 ± 0.5 2.0 ± 0.7 2.4 ± 1.3 0.408

Riboflavin (mg/day) 2.1 ± 0.4 2.1 ± 0.5 1.9 ± 0.3 2.3 ± 0.5 0.224

Niacin (mg/day) 27.8 ± 7.2 27.4 ± 5.5 26.2 ± 6.8 30.98 ± 10.8 0.430

Vitamin B6 (mg/day) 2.8 ± 0.8 2.8 ± 0.7 2.8 ± 0.9 3.11 ± 1.2 0.766

Folic acid (mcg/day) 539.3 ± 197.1 532.2 ± 174.6 505.1 ± 185.8 594.9 ± 269.0 0.679

Vitamin B12 (mcg/day) 8.6 ± 3.3 8.3 ± 3.0 7.7 ± 2.0 10.5 ± 4.7 0.228

Vitamin C (mg/day) 270.3 ± 146.0 240.1 ± 104.1 256.0 ± 127.1 355.6 ± 222.4 0.212

Numerical data expressed as mean ± SD. The Student’s t-test was performed to assess the significance of the
differences in the dietary intakes between the cluster sections in numerical variables and categorical variables,
respectively. p < 0.05 was considered statistically significant. MD: Mediterranean diet adherences value.

3.2. Further Cluster Analysis of Microbiota before and after Horchata Intake

A redundancy discriminant analysis (RDA) on the genus level showed significant
differences between the microbial populations of all different clusters (B1, B2, B3, A1,
A2) (variance = 46.65, F = 1.52 and p-value = 0.001) (Figure 1C). This difference was con-
firmed by use of PERMANOVA based on the Bray–Curtis distance (model R2 = 0.136 and
p-value = 0.0003). No differences in alpha diversity indexes were observed at baseline
(Figure 1D,E). Three clusters of participants were identified at baseline according to micro-
biota composition (B1, n = 9; B2, n = 16; and B3, n = 6).
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Interestingly, relative abundance heatmaps showed that cluster B1 was characterized by
a significant abundance of two Lachnospiraceae genera, Blautia (13.85%) and an unclassified
Lachnospiraceae (9.3%); cluster B2 had a higher presence of Bacteroides (9.31%), and cluster B3
had a higher presence of Ruminococcus (7.82%) and Bifidobacterium (11.32%) (Figure 2).
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A similar analysis tracked the microbiome of samples after the intake of horchata for 3
days. As mentioned above, the gut microbial composition of volunteers changed after inter-
vention, giving rise to two distinct groups (A1, n = 14 and A2, n = 17) (Figure 1B). The RDA
showed that bacterial communities were significantly affected, with B3 as the most distinct
cluster (F = 1.43 and p-value = 0.009) (Figure 1C). This difference was confirmed by use of
PERMANOVA based on the Bray–Curtis distance (model R2 = 0.107 and p-value = 0.001).
Cluster A1 had a higher microbial richness (Chao1 index, p-value = 0.011) and diversity
(Shannon index, p-value = 0.092) than A2 (Figure 1D,E).

At the genus level, cluster A1 was characterized by a significantly higher presence of
Akkermansia, Oscillospira and the unclassified genus of Christensenellaceae (Clostridiales)
while these genera were reduced in cluster A2, which was characterized by the presence of
Faecalibacterium, Bifidobacterium, Collinsella, Lachnospira and an unclassified Peptostreptococ-
caceae genus (Figure 2 and Figure S1B,C; Table S3).

When all clusters before and after intervention were compared, significant differences
in microbial communities could be found (RDA F = 1.74 and p-value = 0.009, Figure 1C),
and clusters were grouped according to the microbial composition, independent of the
individual. That is, cluster B2 was grouped with cluster A2, and clusters B1 and B3
were grouped with cluster A1 (Figure 1E). In fact, there was a significant conversion of
enterotype B3 (90% of individuals) to A2 and B1 (73% of individuals) to enterotype A1 while
enterotype B2 (Bacteroides) migrated almost equally to A1 and A2 (Figure 3). Differences in
the microbiota composition at the genus level were observed within the migration pairs
(Figure 4A), but there were little differences in alpha diversity (Figure 4B,C).
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4. Discussion

The consumption of Cyperus esculentus L. tubers (tiger nut) is widespread in the
Mediterranean basin, Middle East and some African countries as a sweet snack, side dish
or horchata, the drink obtained from ground, hydrated tubers. C. esculentus contains a great
variety of antioxidants and polyunsaturated fatty acids; hence, some health properties have
been attributed to this plant [7]. In fact, different countries use various species of the genus
Cyperus, such as Cyperus articulatus [21,22,31] and Cyperus rotundus [31,32], in traditional
medicine. Nevertheless, there is no evidence supporting such benefits for C. esculentus, and
at present, it is consumed for its excellent nutritional and sensory qualities.

In the present work, specific microbial population changes have been found in healthy
adults after a short intervention of 3 days, as reported in other short intervention studies of
2 or 3 days with a diet change from a meat-based to a vegetable-based diet [18] or with wal-
nut intake [33]. Furthermore, relevant changes at the genus level can be observed in periods
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as short as 24–48 h in a dietary intervention [34]. In our study, despite no apparent overall
changes in microbiota profiles associated with horchata intake in this study, three character-
istic microbial clusters were found at baseline: B1 was enriched in the genera Blautia and
Lachnospira (Lachnospiraceae), B2 in Bacteroides and B3 in Ruminococcus and Bifidobacterium
(Figure 2). Those three patterns were distinctly modified by the intervention and migrated
to two bacterial distinct profiles (A1, A2), dominated by the bacterial genera associated
with a vegetable-rich diet or adhesion to a typical Mediterranean diet. A1 showed an
increased presence of the bacterial genera Akkermansia, Oscillospira and Christensenellaceae,
and, coincidently, an increase of Akkermansia and Christensenellaceae was associated with
the adhesion to a Mediterranean diet [35]. Group A2 was enriched in Faecalibacterium,
Bifidobacterium, Collinsella, Lachnospira and, with the exception of Collinsella, all other genera
were associated with a healthy microbiome profile and butyrate production, typical of
vegetable- and fiber-rich diets. In fact, research evidence associated vegetarian diets to
the abundance of the genera Roseburia, Lachnospira and Prevotella as well as some species
such as Eubacterium rectale and Ruminococcus bromii. High adherence to a Mediterranean
diet also led to a remarkable presence of Lachnospira and Prevotella. In both diets, there
was a significantly higher content of gut butyrate, propionate and acetate, compared to the
content in individuals who followed omnivorous diets, where Ruminococcus (also of the
Lachnospiraceae family) dominates [18,36,37].

The potential explanation for the observed changes could be bound to the high content
of insoluble starch granules in horchata of relatively small size (6–11 µm) with a moderate to
high proportion of amylose (up to 19–21%) as well as their compact structure [38,39]. Those
are the characteristics of resistant starch (RS), possibly class RS2 [23], but the functional
properties of amylose-rich starch may be due to other factors, such as the ability to form
complexes with lipids or proteins [24,38]. RS is considered a prebiotic with consolidated
evidence on the beneficial effects on health [25,26], and its ability to modify the composition
of gut microbiota has been known for a long time [23], with an impact on microbiota that
is different to other complex polysaccharides [27]. RS promoted the gut colonization of
Akkermansia, Lactobacillus, Bifidobacterium, Clostridial clusters IVg and XIVa+b, in rats [28],
Bacteroidetes, Bifidobacterium, Akkermansia and Allobaculum, in mice [40] or Prevotellaceae and
Faecalibacterium, in vitro fermentations [41]. The role of primary degraders of RS has been
attributed to Ruminococcus bromii and Bifidobacterium adolescentis [42]. Nevertheless, when
tested in humans, those two species increased in fecal samples under a RS2 diet but only if
they were previously present at baseline, which occurred with butyrate-producing bacte-
ria [43]. This stressed that RS2-rich diets can change the community structure within the
subjects, which conditions the effects of RS2 to the previous microbiota composition. Finally,
polyphenols in horchata may also impact gut microbiota composition. Gut microbiota ser-
vice living organisms at the nutritional level by the synthesis of essential compounds, and
its implication in the modification of compounds has consequent physiological effects, as
in the case of the activation of polyphenols and plant-derived isoflavones [44]. Soy-derived
foods and drinks have a longstanding tradition in oriental countries, and they have become
a reference of health-promoting products, globally generating a drag effect on the consump-
tion of other vegetable products [45,46]. Diets containing soy products increased the levels
of beneficial bacteria, such as Bifidobacterium, Lactobacillus and Faecalibacterium prausnitzii,
and reduced the overall ratio of Firmicutes/Bacteroidetes, indicators of a healthy micro-
biome [47]. Polyphenol-rich vegetable products may induce changes in the microbiome
due to their antimicrobial activity. Vegetable polyphenols can be found as homo- or het-
eropolymers or glycosylated, and they can interact with gut microbiota and be modified by
a number of microbial enzymes, such as different hydrolases, isomerases, dehydroxylases,
decarboxylases, demethylases, etc. [48–51]. A polyphenol analysis of C. esculentus extracts
indicated a high content of gallic acid, 3,4-dihydroxybenzoic acid, catechin and, to a lesser
extent, rutin and coumaric acid [11,12]. These polyphenol concentrations may contribute
to the alterations in the gut microbiota described in our microbiota analysis as green tea
catechin, epigallo-catechin-3-gallate (EGCG) impedes the growth of both Gram-positive
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and Gram-negative bacteria by interfering with the membrane structure and by inhibiting
oxidoreductases in the respiratory chain that are required for DNA synthesis [52–57].

Our results highlight that intraindividual variability of the gut microbiota composition
could be a determinant for the outcome of a dietary intervention. Thus, the description of
the basal microbiota composition is essential in any intervention study aiming to assess
the impact of diet or other factors in the modulation of gut microbiota. This reinforces the
evidence of interventions (dietary, clinical, etc.) on responders and nonresponders depend-
ing on the microbiota, opening new possibilities to advance personalized nutrition and
medicine in future studies. On these grounds, it can be stressed that the intake of traditional
and locally produced foods, such as horchata, significantly contributes to microbial profiles
associated with geographical communities, specifically to the Mediterranean-diet-bound
microbiota. The evidence described above underlines important aspects that should be
afforded in future research. It would be very interesting to determine the role of specific
taxa in the consistency and resilience of the microbiota during interventions, to dissect
the role of resistant starch and polyphenols from dietary components and to focus on
the long-term effect of this and other highly consumed local products on the microbiome
constitution and correlated health effects.

5. Conclusions

This study describes a fast change (3 days) in the gut microbiota composition just by the
intake of one dose per day of a tiger nut vegetable drink. Changes observed in the bacterial
populations indicate a migration of all microbiome clusters towards microbial patterns
similar to Mediterranean/vegetarian groups, and following the profile described after
RS2 interventions, they very much depended upon the resident microbiota composition at
baseline. Hence, these changes could be induced by the rich composition of starch powder
in horchata with a likely contribution of native tiger nut polyphenols. Our results open
the door to new interventional studies with added value to traditional products, such as
“natural horchata”, with the potential to modulate the gut microbiota. Furthermore, the
study highlights the basal microbiota composition as a determinant factor of the impact of
a nutritional intervention in the gut microbiota.
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