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Abstract
Background: Hidden Markov models and hidden Boltzmann models are employed in
computational biology and a variety of other scientific fields for a variety of analyses of sequential
data. Whether the associated algorithms are used to compute an actual probability or, more
generally, an odds ratio or some other score, a frequent requirement is that the error statistics of
a given score be known. What is the chance that random data would achieve that score or better?
What is the chance that a real signal would achieve a given score threshold?

Results: Here we present a novel general approach to estimating these false positive and true
positive rates that is significantly more efficient than are existing general approaches. We validate
the technique via an implementation within the HMMER 3.0 package, which scans DNA or protein
sequence databases for patterns of interest, using a profile-HMM.

Conclusion: The new approach is faster than general naïve sampling approaches, and more
general than other current approaches. It provides an efficient mechanism by which to estimate
error statistics for hidden Markov model and hidden Boltzmann model results.

Background
Hidden Markov models are employed in a wide variety of
fields, including speech recognition, econometrics, com-
puter vision, signal processing, cryptanalysis, and compu-
tational biology. In speech recognition, hidden Markov
models can be used to distinguish one word from another
based upon the time series of certain qualities of a sound
[1]. In finance, the models can be used to simulate the
unknown transitions between low, medium, and high
debt default regimes in time [2]. In computer vision they
can be used to decode American Sign Language (ASL) [3].
Hidden Markov models are used in computational biol-
ogy to find similarity between sequences of nucleotides
(DNA or RNA) or polypeptides (proteins) [4,5] and to
predict protein structure [6].

Hidden Markov models permit the facile description and
implementation of powerful statistical models and algo-
rithms that are used for calculation of the probability of
sequential data. Furthermore, the algorithms used to
manipulate hidden Markov models are easily applied
more generally. Frequently these dynamic programming
algorithms are instead employed in the calculation of an
odds ratio, which is the the ratio of the probability of
sequential data under a foreground model (signal),
divided by the probability of the sequential data under a
background model (noise). In other applications, the
algorithms are used to compute other scores, frequently
employed as proxies for logarithmic probabilities or loga-
rithmic odds ratios, even though the scores are not
directly derived from known foreground and background
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statistical models. Below, we will precisely define a hid-
den Boltzmann model as a hidden Markov model gener-
alization that admits these odds ratio and other score
calculations.

Perhaps the most common use of hidden Boltzmann
models is for the purpose of hypothesis testing or classifi-
cation. For instance, a speech-recognition model may be
used to quantify the belief that a sound bite is the word
"elephant." However, once a score for a belief has been
computed, the question is how to interpret that value.

1. Is the score strong enough to indicate a signal, or is
it reasonably probable that noise will yield a score this
strong?

2. Is the score weak enough to indicate noise, or is it
reasonably probable that a signal will yield a score this
weak?

The false positive rate (closely related to the type I error or p-
value) for a score threshold is the probability that noise
data will yield a score at least as strong as the threshold.
The true positive rate for a score threshold is the probability
that signal data will yield a score at least as strong as the
threshold.

Within computational biology, error statistics are used
primarily in the subfield of sequence alignment, where
specialized approaches exist for computing them. (See the
next section.) We are hopeful that the availability of the
general approach we describe here will enable the produc-
tive use of error statistics in other subfields of computa-
tional biology, and in other scientific fields where error
statistic estimation has been difficult.

Prior work
Methods for estimating the false positive rate exist in some
settings. For instance, we can consider the Smith-Water-
man pairwise local alignment algorithm [7], which can be
interpreted as a maximum path score calculation via a
hidden Boltzmann model. This well-established algo-
rithm scores the extent to which two sequences have sim-
ilar subsequences; recent techniques permit efficient
estimation of false positive rates for this algorithm to lev-
els as low as 10-4000 [8]. Efficient estimation is also availa-
ble for the more general local profile-HMM sequence
alignments [9].

Furthermore, in the special case where a hidden Boltz-
mann model computes a logarithmic odds ratio and
where the score threshold is not too extreme, there is a
generally applicable technique [10]. In this prior work,
each probability parameter of a hidden Markov model is
modified to be a weighted arithmetic average of applica-
ble background and foreground probabilities, (1 - α)pB +

αpF for α ∈ [0, 1], where pB is the applicable probability
under the background model, and pF is the applicable
probability under the foreground model. When the score
function for a hidden Boltzmann model happens to be a
logarithmic odds ratio, the technique we present here can
be described similarly. However, under such a circum-
stance, our modified hidden Boltzmann model has an
"unnormalized" probability that is a weighted geometric
average of the background and foreground probabilities,
pB

1-α pF
α for α ≥ 0. (Note that even in this limited context

of logarithmic odds ratios, we are able to estimate error
statistics for higher score thresholds than are achievable in
the prior work because, by permitting any α ≥ 0, we allow
an extrapolation beyond the pF value.)

Here we expand and extend the previous false-positive-
rate result for pairwise sequence alignments [8] to the
class of hidden Boltzmann models, which includes the
class of hidden Markov models. In particular, we extend
the result to biologically relevant hidden Markov models
of all sorts, not just profile-HMMs. We demonstrate the
new technique in the Method sections, and we show that
the approach is applicable to true positive rates as well.
We make use of a novel importance sampling distribution
and provide a novel approach to computing its normali-
zation.

In the Results section, we discuss our application of the
technique within the HMMER 3.0 package, which permits
scanning nucleotide and polypeptide sequence databases
for patterns of interest. In particular, we show that it works
well with HMMER global alignments.

Methods
We describe first our models and then the algorithms we
use to manipulate them.

Models
For our building blocks we assume that we are given: a
hidden Boltzmann model that computes scores of interest
for sequences of interest, a simple background model (also
termed null model or random model) that describes noise
sequences, and a computable foreground model (also
termed alternative model or hypothesis model) that describes
signal sequences. Each of these will be described more
thoroughly in the following.

Hidden Boltzmann models: states, transitions, and emissions
With little or no modification, many algorithms applica-
ble to hidden Markov models are useful more generally.
These algorithms, including the present work, function
not only with the strict probabilities of a hidden Markov
model, but also with odds ratios, with logarithms of prob-
abilities or logarithms of odds ratios, and with scores used
as proxies for such logarithms. Nonetheless, the term
"hidden Markov model" is more restrictive and does not
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admit these generalizations. To accommodate these gen-
eralizations, we coin the term "hidden Boltzmann
model," so named because of earlier work with Boltz-
mann chains and Boltzmann machines [11,12]. Much as
is done with Boltzmann chains and Boltzmann machines,
we describe hidden Boltzmann models in terms of scores
rather than probabilities. Although these scores are often
scaled logarithmic probabilities or scaled logarithmic
odds ratios, in general they need not be. A hidden Boltz-
mann model consists of a set of states and a set of directed
transitions between states. Any state or any transition can
be designated as an emitter. Each emitter includes a speci-
fication of the set of emissions that it can produce; these
emissions are from an alphabet, the set of all possible
emissions. Furthermore, each state, each transition, and
each emission of each emitter has a real-valued score (also
termed energy) associated with it.

An emission path through a hidden Boltzmann model
starts at a special start state, ends at a special terminal state,
proceeds from state to state via transitions, and includes a
choice of emission for each encounter with each emitter.
The sequence associated with an emission path is the
ordered set of emissions.

The score of an emission path is the sum of the encoun-
tered transition, state, and emission scores; each score is
included in the sum each time that it is encountered along
the emission path. Note that when each of the scores is the
scaled logarithm of a probability, the summing of scores
along an emission path gives the scaled logarithm of the
joint probability of events modeled as statistically inde-
pendent.

As an example, Figure 1 shows a hidden Boltzmann
model that emits a string of "H" and "T" characters, mod-
eling the "head" and "tail" results from statistically inde-
pendent flips of a possibly biased coin. The score

associated with a particular emission path is the sum of
the encountered scores. For this hidden Boltzmann model
the formula for the score of an emission path is easily
determined; it is a + (h + t)b + hc + td, where a, b, c, and d
are the real-valued scores associated with the transitions
and emissions, where h is the number of "H" characters
emitted and t is the number of "T" characters emitted, and
where state and transition scores not indicated in the fig-
ure are assumed to be zero. Note that hidden Boltzmann
models are not restricted to emitting from discrete alpha-
bets, such as the present {H, T}; a hidden Boltzmann
model can emit arbitrary real number values, for example.
As in the discrete alphabet case, each possible emission for
each emitter has an associated score. In this continuous
case, such a score is equal to, or is a proxy for, the loga-
rithm of a probability density or the logarithm of the ratio
of a foreground probability density to a background prob-
ability density.

Multiple emission paths for an emitted sequence
We say that the Boltzmann models are hidden because, in
most cases, an underlying emission path cannot be
uniquely determined from its sequence of emissions. In
other words, a given sequence can typically be emitted by
any of several emission paths through a hidden Boltz-
mann model, although that is not the case for the simple
model of Figure 1. In this more general case (see Figure 2,
a HMMER Plan7 profile-HMM [13]), the score associated
with an emission sequence is usually determined in either

A simple hidden Boltzmann modelFigure 1
A simple hidden Boltzmann model. A hidden Boltzmann 
model that emits sequences of "H" and "T" characters. The 
score associated with a particular emitted string is a + (h + 
t)b + hc + td where a, b, c, and d are real-valued scores, and h 
and t are respectively the number of "H" and "T" characters 
emitted.
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A Plan7 profile-HMMFigure 2
A Plan7 profile-HMM. This is the Plan7 profile-HMM 
employed in the HMMER package for scans of nucleotide or 
polypeptide sequences [13]. Most transitions are assigned 
scores (not shown). Additionally, each match state (M) and 
each insertion state (I) emits a character, as does each of the 
self-loop transitions for the prefix (N), suffx (C), and joining 
(J) states. Typically, the emission scores vary among the 
match states; they can vary among the insertion states as 
well. A score of zero is employed for each possible emission 
from the N, C, and J self-loop transitions. The D1 and D4 
states are shaded, to indicate that, unlike the other positions, 
the first and last positions of a profile-HMM do not have 
delete states (D).
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one of two ways, maximum score (also termed Viterbi score)
or forward score [1,4].

For a sequence D, the maximum score smax(D) is the larg-
est score achievable by an emission path that emits the
sequence D:

where π ∈ πD indicates that any emission path π that emits
D should be considered, and where s(π) is the sum of all
state, transition, and emission scores encountered on the
emission path p. Despite the usually combinatorially large
number of emission paths π ∈ πD, the value smax(D) is effi-
ciently computable by the standard Viterbi dynamic pro-
gramming algorithm.

The definition of the forward score sfw(D) for a sequence
D reflects a hidden Markov model interpretation of the
hidden Boltzmann model. For any transition, state, or
emission score s from the hidden Boltzmann model, the
value exp(s) is treated as if it were a corresponding hidden
Markov model probability, even though generally it is not
actually a probability. (For instance, these values do not
behave as probabilities in that, for any given state of a hid-
den Boltzmann model, the outgoing transition exp(s) val-
ues need not sum to one.) Because an emission path's
score s(π) is computed as the sum of the scores encoun-
tered as it is traversed, exp(s(π)) is interpreted as the prod-
uct of the encountered probabilities. Furthermore,
exp(sfw(D)) is computed as if it were the overall probabil-
ity of an emitted sequence D, where distinct emission
paths through the model are assumed to be statistically
disjoint events:

The name forward comes from the algorithm used to cal-
culate this sum. The algorithm has run-time and memory
efficiency comparable to those for the corresponding
smax(D) algorithm [1,4].

A third approach for combining scores across emission
paths corresponds to the definition of free energy from
thermodynamics. The partition function Z(D, T) and corre-
sponding free score sfree(D, T) for any temperature T ∈ (0,
+∞) are

Note that exp(sfree(D, T)/T) can be computed via a minor
modification to the forward algorithm that computes
exp(sfw(D)); it is the values of exp(s/T), exp(s(π)/T), and
exp(sfree(D)/T) that are treated as if they were hidden
Markov model probabilities in the forward algorithm. The
run-time and memory efficiency for the sfree(D, T) compu-
tation are essentially the same as those for the sfw(D) or
smax(D) computation. We will make use of this partition
function in the following.

The background model
We assume a simple background model for sequences of
a specified length L. Specifically, we assume that under a
background model B, the L sequence positions are statis-
tically independent and identically distributed according
to some shared probability distribution Pr(d|B), where d
indicates a possible emission:

where di is the ith emission of the sequence D. This
assumption might be relaxed; see Complex background
models in the Discussion section.

Mathematical problem statement
The score for a sequence D of length L is compared to
other sequences of the same length. We write

where the false positive rate fpr(s0) that we wish to esti-
mate is the probability-weighted fraction of background
model sequences of length L that achieve a score of at least
s0, where D ∈ DL indicates that any sequence D of length
L should be considered, where Pr(D|B) is the probability
of a sequence D under the background model, where s(D)
is the score assigned to the sequence D by the hidden
Boltzmann model, and where Θ is a function that has
value one if its argument is true or value zero if its argu-
ment is false. We write s(D) to indicate that this definition
applies to s(D) = smax(D) and to s(D) = sfw(D).

Algorithm
Importance sampling
The error statistic estimation algorithm is a simulation via
importance sampling. Although exhaustive computation
of the sum in Equation 5 is usually not feasible, the value
of fpr(s0) can be estimated via naïve sampling. That is,
sequences are sampled/generated according to the back-
ground model B, and fpr(s0) is estimated by the fraction
of the sampled sequences with a score of at least s0. We
note that if Pr(D|T) is the probability of a sequence D

s D s
D
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under some other model for sequences of length L that is
parameterized by a value T, then we can write

Where

We can estimate the value of fpr(s0) by sampling
sequences according to this alternate model, and then
averaging the corresponding f (D, s0) values. This
approach is called importance sampling [14]. Importance
sampling is useful because estimation via Equation 6 can
be substantially more efficient than estimation via Equa-
tion 5. That is, in terms of the variances of the the estima-
tors, often it is possible to find an importance sampling
model for which

Choice of importance sampling distribution
We define the importance sampling model parameterized
by T as

where Z(T) is the normalization of the Pr(D|T) probabil-
ity distribution and is defined as

Insertion of this definition for Pr(D|T) into Equation 7
gives

The value that we will choose for the parameter T ∈ (0,
+∞) has yet to be specified.

Importance samples
Ultimately we wish to draw sample sequences according
to the distribution Pr(D|T), compute f (D, s0) for each
sample, and use the average of these values as our estimate
for the false positive rate. Here we describe the sampling
of sequences.

Employing the background model specified by Equation
4, we compute the value Z(T) via a novel modification to
the forward algorithm that computes Z(D, T). In the for-
ward calculation of Z(D, T), the emission of a value d
from an emitter E is incorporated via a factor exp(sE(d)/T),
where sE (d) is the score associated with the emission of d
from the emitter E. In the forward calculation for Z(T),
instead of such a factor we use the average factor for the
emitter �exp(sE/T)�B,

regardless of the value of d. Because the needed pre-com-
putation and caching of these average factors are typically
significantly faster than is the forward score computation,
the run time for the Z(T) calculation is essentially the
same as that for the Z(D, T) or s(D) computations.

We sample a sequence of length L via stochastic backtrace
of the Z(T) forward computation. Specifically, we sample
the states and transitions of an emission path π from the
Z(T) computation via standard hidden Markov model
techniques for stochastic backtrace [1,4,15]. In addition,
we sample emissions for the emission path, where the
probability that a value d' is sampled for an encounter
with an emitter E is

Thus, we have sampled p (i.e., its states, transitions, and
emissions) from the probability distribution

We then disregard the sampled states and transitions,
retaining only the sampled emissions, a sequence D.
Because the sequence D could have arisen from any emis-
sion path π that emits it, the probability that we will sam-
ple D by this approach is

which is the promised importance sampling distribution
of Equation 9.

Estimation of the false positive rate
We wish to estimate the false positive rate for a threshold
s0, for either maximum scores or forward scores depend-
ing upon the application. For each of N sampled
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sequences {Di: i = 1 ... N}, we compute s(Di) and Z(Di, T).
An estimate for fpr(s0) is then

where  is an estimate of the statistical true nega-

tive rate. Alternatively, we can estimate fpr(s0) with

There are additional alternatives, such as

and

In our implementation for HMMER 3.0 (see the Results

section) we have found  to work well. The choice for

the best estimator usually depends upon the efficiency of
the estimators, which can be estimated from the N impor-
tance sampled sequences.

Estimation of the true positive rate
The technique for the estimation of false positive rates can
be extended to the estimation of true positive rates or,
equivalently, false negative rates. We can modify the
above technique to estimate

where the true positive rate tpr(s0) is the probability-
weighted fraction of foreground model sequences of
length L that achieve a score of at least s0, where Pr(D|F)
is the probability of a sequence D of length L under the
foreground model F, and where fnr(s0) is the false nega-
tive rate. The importance sampling estimate derives from
the relationship

Where

Special case for the true positive rate
Equation 23 simplifies further under a common scenario.
For this special case, we assume that the scores of the hid-
den Boltzmann model are logarithmic odds ratios built
from some foreground hidden Markov model H and the
background model B, and that the foreground model F is
the restriction of the model H to sequences of a length L:

In Equation 24, D(π) is the sequence emitted by the emis-
sion path π. Use of Equation 24 in Equation 3 and in
Equation 10 gives

Therefore, in this special case:

Thus, two estimators for the true positive rate are
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We can define the estimators  and  in a manner

analogous to the definitions of the estimators  and

 in Equations 18 and 19. Note that when we are esti-

mating the true positive rate for a forward score threshold,
we already have Z(Di, 1) in hand; it is equal to

exp(sfw(Di)) and sfw(Di) is needed for the computation of

Θ(s(Di) ≥ s0).

Choice of temperature
To complete the the Algorithm section, we need an
approach to select a temperature T that will be efficient for
a given score threshold s0. Because the relationship
between temperature and score threshold is not straight-
forward, we recommend the building of a calibration
curve to relate temperature to maximum score, and the
building of a second calibration curve to relate tempera-
ture to forward score. Furthermore, for both maximum
scores and forward scores, we have empirically observed
lower variances for error statistic estimation when the
fraction of sampled sequences exceeding the given score
threshold is 20–60%; thus, we recommend aiming for a
value for the importance sampling temperature parameter
that achieves this statistic.

Conceptually, the approach to building a calibration
curve is straightforward. For each of several temperatures,
compute Z(T) and perform several stochastic backtraces
to sample several sequences from the Pr(D|T) distribu-
tion. For each sampled sequence D, compute its score
s(D). Plot the resulting temperature-score pairs {(Ti, si)}
as points in the x-y plane. Via some reasonable ad hoc pro-
cedure, use such a plot to choose a temperature for each
score threshold of interest. Once a temperature is selected,
draw and process N importance samples to compute the
error statistics, as previously described.

Results
Using the alpha-release source code for the HMMER 3.0
package [9], we randomly generated a length M = 100,
Plan7 profile-HMM, and we estimated its error statistics
for local-alignment scans of polypeptide sequences of
length L = 200. Our calibration curves had 50 tempera-
tures, and required 100 calculations of smax(D) for the
maximum score threshold calibration curve and 100 cal-

culations of sfw(D) for the forward score threshold calibra-
tion curve. We used the appropriate calibration curve to
choose a temperature for each score threshold that we
subsequently considered. For each of 1000 maximum
score thresholds and for each of 1000 forward score
thresholds, we estimated the false positive and true posi-
tive rates.

For each forward score threshold, we used N = 100 calcu-
lations of sfw(D), 100 calculations of Z (D, T), and 1 cal-
culation of Z(T) to estimate the false positive rate, and an
additional 1 calculation of Z(1) to estimate the true posi-
tive rate. Similarly, for each maximum score threshold, we
used 100 calculations of smax(D), 100 calculations of Z(D,
T), and 1 calculation of Z(T) to estimate the false positive
rate, and an additional 100 calculations of sfw(D) and 1
calculation of Z (1) to estimate the true positive rate.
Because all other parts of the error statistic calculations
require comparatively little run time, the calculation of
both error statistics for a specified forward or maximum
score threshold required 202–302 times the run time of a
typical s(D) calculation. The error statistics calculation for
a score threshold is 4.2–6.3 seconds on our platform.
Note, however, that considerable savings in run time
could have been achieved through the selective re-use of
samples from one score threshold for another; see Re-use
of simulations in the Discussion section.

The run-time for a naïve sampling approach for any of
these computations would be significantly larger, on the
order of 0.02 seconds divided by the computed error sta-
tistic; an error statistic less than 10-20 would require a run-
time longer than the present age of the universe. Special
purpose approaches, such as that for profile-HMM local
sequence alignments, are typically faster than the impor-
tance sampling approach. Computed false positive rates
and true positive rates, as a function of score threshold,
are plotted in Figure 3. See the Discussion section.

Previously, we applied the algorithm to real DNA
sequences; we employed the approach to analyze Smith-
Waterman pairwise local alignments of intergenic regions
in five Drosophila species, and easily estimated false pos-
itive rates as low as 10-400 [16].

Discussion
We have provided a technique for the error statistic esti-
mation of hidden Boltzmann model results. For all but
the lowest hidden Boltzmann model scores, the presented
technique is significantly more efficient than naïve simu-
lation. We have demonstrated the effectiveness of the
technique in the HMMER 3.0 package for scanning
sequence databases.
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Review of results
Applicability to hidden Markov models
The approach for the general class of hidden Boltzmann
models is easily specialized to hidden Markov models.
The natural logarithm of any transition or emission prob-
ability p of a hidden Markov model is used in lieu of the

corresponding score s in a hidden Boltzmann model. In
particular, in the above formulae any occurrence of exp(s)
should be replaced with p, and any occurrence of exp(s/T)
should be replaced with p1/T .

Linearity of error statistics as a function of score threshold
The lowermost two curves plotted in each panel of Figure
3, for maximum score and forward score false positive rates,
are relatively straight for false positive rates above 10-100.
This behavior is consistent with theory and observations
that these curves represent Gumbel distributions [9,17].
Also as expected, the curves bend downward as the scores
become more extreme. This is an indication that the Gum-
bel distribution result, which applies asymptotically as
sequence lengths increase without bound, breaks down
for extreme scores. This break down has been observed
before [8,18] and is expected [19]: in short, whether for
maximum score or forward score, a highest achievable
score exists among sequences of a fixed length L, and the
curves will go to a false positive rate of zero as that score
is approached.

The two uppermost curves in each panel of Figure 3, for
maximum score and forward score true positive rates, are
linear for scores under 100, and bend downward for more
extreme scores. We are unaware as to whether this low-
score linear behavior has been observed or predicted pre-
viously. Unlike the false positive rate curves, these curves
experience a "phase transition," near a score of 125; the
slope of the curves changes and then enters another linear
regime. The cause of this phase transition merits further
exploration.

Non-extreme error statistics
In our experience, importance sampling is more efficient
than naïve sampling for false positive rates under 10-6. For
higher values, especially above 10-3, the relationship of
Equation 8 breaks down, and naïve sampling is often
more efficient. Furthermore, the scores that yield these
false positive rates also demark the transition in relative
efficiency for true positive rate estimation.

Future directions
Real problem instances
A significant shortcoming of the present work is our insuf-
ficient testing on real problem instances. Except for the
special case of Smith-Waterman local DNA alignments
[16], this hidden Boltzmann model technique has not
been tested on real data. In future work we anticipate
demonstrating the effectiveness of the present work on
scans of actual protein and nucleotide databases, using
accepted hidden Boltzmann models that are designed to
identify common evolutionary history and/or common
functionality. Such testing has been important in prior
work [9,20].

False positive rate and true positive rate plotted against score thresholdFigure 3
False positive rate and true positive rate plotted 
against score threshold. This figure is demonstrative of 
the ease by which error statistics estimates can be had and 
demonstrates low-score-linear and high-score-concave 
regions. The bottom panel depicts an enlargement of the 
upper left corner of the top panel. In both panels, from top 
to bottom the curves are (1) forward score true positive 
rate, (2) maximum score true positive rate, (3) forward 
score false positive rate, and (4) maximum score false posi-
tive rate. For example, for a score threshold of 100, the max-
imum score false positive rate is 10-55 and the forward score 
false positive rate is 10-51; for this threshold, the maximum 
score true positive rate is 10-5.2 and the forward score true 
positive rate is 10-4.8. The low-score-linear and high-score-
concave regions of the false positive rate curves are qualita-
tively as expected, based upon the Gumbel distribution 
approximation and its break down, respectively. For the true 
positive rate curves, the demonstration of low-score linearity 
and the bend/phase transition near the score of 125 may be 
novel. Despite the extreme statistics, the values for these 
plots are easily computed; we employed N = 1000 impor-
tance samples for each of 1000 maximum score thresholds 
and each of 1000 forward score thresholds.
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Scaling to different problem instances
In past work, for Smith-Waterman local sequence align-
ments, we have noted that the logarithmic false positive
rate curves, such as those depicted in Figure 3, are remark-
ably conserved in shape [8]. That is, we have observed that
an affine transformation of a logarithmic false positive
rate curve for sequences of some length L1 is a remarkably
good approximation of the corresponding curve for
sequences of some other length L2. Furthermore, the
needed affine transformation is easy to calculate without
simulations; it is the unique transformation that takes
both the (minimum score, maximum logarithmic false
positive rate) point and the (maximum score, minimum
logarithmic false positive rate) point for sequences of
length L1 to the corresponding points for sequences of
length L2.

The extent to which conservation of shape applies to the
general class of hidden Boltzmann model error statistic
curves is a topic that merits further consideration.

Re-use of simulations
When the score thresholds in a set of interest are not too
different from one another, a single temperature and a
single set of N sampled sequences can be used to calculate
the error statistics for the entire set of score thresholds.
The calculations of s(D), Z(D, T) and Z(D, 1) are the most
time-intensive part of the error statistics calculations, but
they need be performed only once for each sampled
sequence. Therefore, the error statistics for a set of nearby
score thresholds can be estimated almost as quickly as
they can be estimated for a single threshold. In particular,
if error statistics are needed for a large number of score
thresholds, it will be productive to cache all computed
s(D), Z(D, T) and Z(D, 1) values at each employed tem-
perature, for possible use with subsequent score thresh-
olds. However, because the efficiency of the error statistic
estimators depends significantly upon the choice of tem-
perature, use of samples from a given temperature T
should be avoided unless 20–60% of the samples for that
temperature satisfy s(D) ≥ s0. While a run time equal to a
few hundred score calculations is much shorter than is
achievable by previous techniques, it is still undesirably
slow for many applications, including HMMER 3.0.
Importance sample caching and error statistic curve scal-
ing will help to bring down the overall run time required
for multiple error statistic estimations.

Other scoring functions
Other definitions of score exist. For example, a definition
that corresponds to the thermodynamic concept of aver-
age energy is

We expect that the techniques presented here will success-
fully carry over to free score, average score, and other def-
initions of score.

Complex background models
A modification of Equation 23, which is for estimating
true positive rates under an arbitrary foreground model,
might yield efficient estimation of false positive rates
under a complex background model.

Specifically, if the background model  is more complex
than as indicated by Equation 4, but is sufficiently approx-
imated by a model B that does satisfy Equation 4 then

(together with Equations 6, 3, and 10) prescribes an
importance sampling approach for computing false posi-
tive rates under the complex background model. Under
what circumstances this approach will be efficient is an
open question.

Stochastic context-free grammars
The present technique can be applied to the Inside/Out-
side algorithms that manipulate stochastic context-free
grammars [21]; much as we have described here, use of a
p1/T value in lieu of each probability p in a grammar gives
an unnormalized probability distribution that can be
used for importance sampling. We conjecture that the
resulting importance sampling distribution will lead to
significantly more efficient estimation than naïve sam-
pling. In computational biology, stochastic context-free
grammars are used with RNA secondary structure [4,22],
though we have not seen statistical significance estima-
tion in this context.

Conclusion
We have demonstrated a technique for error statistic esti-
mation for hidden Boltzmann models and shown how it
is applied to hidden Markov models. The approach is
faster than naïve sampling approaches and is more gen-
eral than other current approaches.
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