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Abstract

In imaging systems, image blurs are a major source of degradation. This paper proposes a

parameter estimation technique for linear motion blur, defocus blur, and atmospheric turbu-

lence blur, and a nonlinear deconvolution algorithm based on sparse representation. Most

blur removal techniques use image priors to estimate the point spread function (PSF); how-

ever, many common forms of image priors are unable to exploit local image information

fully. In this paper, the proposed method does not require models of image priors. Further, it

is capable of estimating the PSF accurately from a single input image. First, a blur feature in

the image gradient domain is introduced, which has a positive correlation with the degree of

blur. Next, the parameters for each blur type are estimated by a learning-based method

using a general regression neural network. Finally, image restoration is performed using a

half-quadratic optimization algorithm. Evaluation tests confirmed that the proposed method

outperforms other similar methods and is suitable for dealing with motion blur in real-life

applications.

Introduction

Imaging systems suffer from several types of image degradations. Motion blur is a common

phenomenon, as are defocus blur and atmospheric turbulence blur. All of them reduce the

image quality significantly. Therefore, it is essential to develop methods for recovering approx-

imated latent images from blurry ones in order to increase the performance of imaging sys-

tems. Such methods will find wide applicability in various fields. However, the issue of blur

removal is a notoriously ill-defined inverse problem that has perplexed scholars for decades

[1]. A point spread function (PSF) can be used to describe image blur. The PSF models how

the imaging system captures a point source or object and describes how the point spreads

across an image. Generally, the PSF can be transformed into a parametric model [2], with the

parameters being the motion length, defocus radius, and turbulence degree [3].

For estimating the PSF, Fergus et al. [4] proposed a method that combines the gradient

domain of natural images with the maximum a posteriori (MAP) method. Xu et al. [5]
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introduced a sparsity function with an �0-norm constraint, while Pan et al. [6] estimated the

blur kernel from the dark channel of the blurry images. These estimation techniques perform

well when dealing with hand-drawn PSFs. However, in real-life situations, the blur models are

often known. For example, when monitoring targets on a conveyor belt with a fixed camera,

the PSF can be modeled based on the motion length during the exposure time. Similarly, with

respect to space exploration, the atmospheric turbulence can be modeled by a Gaussian func-

tion, whose variance indicates the blur degree. Defocus blur can be modeled based on the defo-

cus radius. It is more convenient and practical to solve a parameter identification problem

than to estimate the PSF. Given this fact, Jalobeanu et al. [7] used the maximum likelihood esti-

mator (MLE) on the entire dataset available to estimate the parameters for a Gaussian model.

Yin and Hussain [8] combined the non-Gaussianity measures for independent component

analysis to estimate the parameters for blur models. Dash and Majhi [9] suggested a radial

basis function neural network with image features based on the magnitude of Fourier coeffi-

cients to estimate the motion lengths. Yan and Shao [10] proposed a supervised deep neural

network to classify the blur type and adopted the expected patch log likelihood method [11] to

restore the latent image. Further, Kumar et al. [12] used the Tchebycheff moment to estimate

the Gaussian variance for turbulence blurs.

With a known PSF, the latent image can be restored using inverse filters or some other non-

blind deconvolution method. Levin et al. [13] proposed a hyper-Laplacian prior and adopted

the iterative reweighted least squares (IRLS) algorithm to solve the optimization problem.

Joshi et al. [14] adopted the IRLS algorithm for local color statistics and hyper-Laplacian priors

in order to perform deblurring and denoising. Wang et al. [15] introduced a deconvolution

method based on the total variation and employed the half-quadratic minimization (HQM)

algorithm, which was originally proposed by Geman and Yang [16], to solve the nonconvex

problem.

Simultaneous estimation of both the PSF and the latent image is a nonconvex issue that

always results in a nonblur solution [17]. A feasible blind image deblurring framework is to

estimate the PSF and the latent image alternately [4, 6, 18]. However, this framework requires

prior knowledge of both the image and the PSF. In addition, because this procedure would be

sensitive to noise, the image edges must be reconstructed during each iteration [5] before the

next step. In addition, in order to avoid local minima, a coarse-to-fine technique must also be

used during the alternating optimization process. All the disadvantages mentioned above

make the deblurring procedure time-consuming. Furthermore, most existing approaches are

designed for random hand-drawn blurs. However, in real-world situations, the blur model

would always be known. In the case of target detection on a conveyor belt, the PSF only

depends on the motion length. From this viewpoint, the PSF estimation procedure in the exist-

ing methods can be simplified, and the speed of the deblurring algorithm can be increased.

In this paper, a new deblurring framework consisting of two stages is proposed. First, a blur

feature is used to estimate the model parameters via a general regression neural network

(GRNN) in order to determine the PSF. Next, a deconvolution algorithm based on sparse

representation is proposed for latent image restoration. The main contributions of this paper

can be summarized as follows:

• Three common types of blur models are discussed and a blur feature based on autocorrela-

tion of the image gradient domain is proposed. Simulations show that its amplitude rises

with an increase in the blur degree. Then, more than ten thousand natural image samples

were artificially blurred for feature extraction to generate the training dataset for the

GRNNs.
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• A learning-based parameter estimation scheme is proposed. With the help of the GRNNs,

the blur model parameters for input blurry images can be estimated based on their blur fea-

tures. Then, their PSFs can be constructed.

• A nonblind deblurring algorithm based on sparse representation is presented. Its target

image is constrained by an �p quasi-norm in the cost function.

• The solutions for different p values are discussed and their performances on some typical p
values are analyzed. Further, the proposed deblurring method is compared with several

related blur removal approaches.

The remainder of this paper is organized as follows: Section 2 introduces the imaging sys-

tem and the parametric model for the three most common blurs. Next, the proposed blur fea-

ture is described. Section 3 describes the proposed deblurring framework, including the

properties of the GRNN and the restoration algorithm. The results of the simulations and

comparative analysis performed are described in Section 4. Section 5 summarizes the study

and presents concluding remarks.

Blur models and features

Imaging system. An imaging system can generally be regarded as a linear-translation-

invariant system [19], and the image blurring procedure, shown in Fig 1, can be described as

follows:

gðx; yÞ ¼ hðx; yÞ � f ðx; yÞ þ Zðx; yÞ ð1Þ

where f(x,y) and g(x,y) represent the original image and the observed blurry image, respec-

tively; h(x,y) is the PSF; η(x,y) is the additive noise generated during image acquisition or

transmission; x and y represent the coordinates of a digital image; and the symbol “�” repre-

sents the convolution operator. For simplicity, we can also use bold notation (such as f and h)

to represent the image and PSF, respectively.

Parametric model of blurs

a) Linear motion blur [20]. Relative movement between the camera and the target when the

exposure time is insufficiently small results in linear motion blur. Its PSF can be modeled as

follows:

hðx; y; L;FÞ ¼
L� 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
�
L
2
;F ¼ �

x
y

0 otherwise
ð2Þ

8
<

:

Fig 1. Image blurring in imaging system.

https://doi.org/10.1371/journal.pone.0230619.g001
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where L represents the motion length and F is its orientation. An example of linear motion

blur is shown in Fig 2A.

b) Defocus Blur [21]. In the case of defocusing, blurring arises because of the optical system

of the lens. The path followed by light through the lens depends on its wavelength. However,

natural light consists of components with several different wavelengths. This results in physical

limitations with respect to the construction of lenses that prevent the camera from producing

perfectly sharp images, leading to defocus blur. The extent of blur that is visible in an image is

a function of the lens aperture:

hðx; y; rÞ ¼

1

pr2
; ðx � x0Þ

2
þ ðy � y0Þ

2
� r2

0; otherwise

ð3Þ

8
>><

>>:

where the radius, r, determines the blur extent. Further, (x0,y0) is the center of the PSF. This is

depicted in Fig 2B.

c) Atmospheric turbulence blur [7]. The variations in the heat, pressure, and wind velocity in

the atmosphere result in small-scale, irregular air motions characterized by winds, which vary

in speed and direction. These have a determining effect on light propagation and cause atmo-

spheric turbulence blur, which is also known as Gaussian blur. This type of blur usually occurs

during remote sensing. Generally, a low-pass Gaussian filter [3, 22, 23] can be used to model

it:

hðx; y; sÞ ¼
1

2ps
exp �

ðx � x0Þ
2
þ ðy � y0Þ

2

2s2

� �

ð4Þ

where σ indicates the blur degree and (x0,y0) is the center of the PSF. Since Eq (4) is an infinite

impulse response filter, proper truncation and normalization are necessary in practice. Nor-

mally, the support domain is set as [x0−3σ,x0+3σ]×[y0−3σ,y0+3σ], since 99.7% of the energy is

contained in this region; here, × is the Cartesian product. Fig 2C show an example of the

Gaussian blur model.

Fig 2. Examples of the PSF (first row) and its frequency domains (second row). Left: Motion blur with (L,F) =

(30,45˚) in Eq (2). Middle: Defocus blur with r = 9 in Eq (3). Right: Gaussian blur with σ = 3.5 in Eq (4).

https://doi.org/10.1371/journal.pone.0230619.g002
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Blur features

Natural images are diverse, and their statistical characteristics vary significantly. Nevertheless,

in recent years, an increasing number of studies have indicated that the gradient domains of

natural images share common features and that their histograms tend to have sharp tops and

long tails [24]. Generally, a digital image can be treated as a discrete binary function mathe-

matically, and its gradient domain can be represented based on the pixel difference. In prac-

tice, image edge detection operators [3, 25] such as the Roberts and Prewitt operators are used

commonly for detecting the first-order derivatives while the Sobel and Laplacian operators are

used for the second-order derivatives.

In this study, inspired by the properties of image edges, a blur feature based on the autocor-

relation of blurry images in the gradient domain is proposed. By definition, autocorrelation is

the correlation of a signal with a delayed copy of itself as a function of the delay [26]. It is a use-

ful tool for measuring the similarity between a signal and its shifted versions. A digital image

can be treated as a two-dimensional (2D) real signal and its gradient domain e(x,y) as a binary

function. Thus, its autocorrelation R(x,y) can be described as

Rðx; yÞ ¼
X

m2Zx

X

n2Zy

eðm; nÞeðm � x; n � yÞ ð5Þ

where Zx and Zy are the support domains of e(x,y).
In addition, based on the conjugate symmetry of real signals [27, 28], the computation of

Eq (5) can be accelerated with the help of the fast Fourier transform (FFT) and inverse fast

Fourier transform (IFFT). Therefore, the autocorrelation of the image edge, e(x,y), can be sim-

plified to

R ¼ F � 1ðjFðeÞj2Þ ð6Þ

where R and e represent the matrix form of R(x,y) and e(x,y), respectively, for brevity, and

Fð�Þ and F � 1ð�Þ are the FFT and IFFT operators. Further, |�|2 represents the element-wise

square of the modulus of the former.

Since the value range of image edges will vary widely, their blur features should be adjusted

on a notionally common scale. Feature scaling [29], also known as unity-based normalization,

is a technique that is used to bring all values within the range [0,1]. Hence, the normalized blur

feature, Rnorm, can be described as follows:

Rnorm ¼
R � Rmin

Rmax � Rmin
ð7Þ

where Rmax and Rmin are the maximum and minimum values of R.

In Figs 3–5, the left column shows examples of natural images that were blurred artificially

by motion blur, defocus blur, and Gaussian blur using different parameters. Their gradient

domain versions were extracted by using the Sobel operator both in the horizontal and the ver-

tical directions. The image edges, which were obtained by adding them, are shown in the mid-

dle column. As can be seen, with an increase in the image blurriness, the information

contained in the edges decreases. The right column shows the amplitude of the blur feature

described in Eqs (5)–(7). It can be seen from Fig 3 that the features of the motion-blurred

images retain the orientation of the PSF, but the length of the shape of the blur features

increases with the motion length. In the case of the defocus blur, the amplitude range of the

feature increases with the defocus radius, r, as shown in Fig 4. Finally, the feature of the Gauss-

ian blur in Fig 5 expands with an increase in parameter σ.
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Note that, in Figs 3–5, because the size of the blur features depends on the size of the

images, according to Eqs (5)–(7), and most of the amplitude energy is located near the center

of the blur feature, their boundaries have been truncated to ensure that the blur features are all

the same size.

The proposed learning-based blur removal method

General regression neural network. A GRNN is a probabilistic neural network (PNN),

and was first proposed by Specht [30]. It can converge to the underlying function of the data

with only a few training samples available, and its spreading rate is the only additional parame-

ter that requires adjustment by the user. This makes GRNNs a very useful tool in areas such as

regression, prediction, and classification.

Fig 3. Examples of the blur feature in motion blur. Left: Motion blur of the “bikes.bmp” image with L =10 (first row)

and L = 20 (second row) and orientationF = 120˚. Middle: Gradient domain. Right: Amplitudes of the blur features.

https://doi.org/10.1371/journal.pone.0230619.g003

Fig 4. Examples of the blur feature in defocus blur. Left: Defocus blur of the “monarch.bmp” image with r = 3 (first

row) and r = 3 (second row). Middle: Gradient domain. Right: Amplitudes of the blur features.

https://doi.org/10.1371/journal.pone.0230619.g004
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A GRNN is composed of an input layer, a pattern layer, a summation layer, and an output

layer [31]. Its overall block diagram is shown in Fig 6. In the input layer, X = (X1,X2,� � �Xn) rep-

resents the input data of the GRNN G(X).

In the pattern layer, the number of units, s, is equal to the length of training data (x1,x2,� � �

xs) and (y1,y2,� � �ys). The activation function of each unit, i, is given by

ri ¼ exp �
ðX � xiÞ

T
ðX � xiÞ

2d
2

( )

; i ¼ 1; 2; � � � s ð8Þ

where δ is the spreading rate, and T represents the transpose.

In the summation layer, SD ¼
Ps

i¼1
ri and SN ¼

Ps
i¼1
riyi need to be determined. Their

ratio yields the final output, G(X) = SN/SD.

Taking another perspective, a GRNN is a generalization of a radial basis function network

(RBFN) and a PNN. In the pattern layer, the activation function in Eq (8) is similar to the

radial basis function kernel (Gaussian kernel), and it uses the training sample xi as the mean

value of each unit. In the output layer, SN/SD indicates the probability of how well the training

sample can represent the prediction position. In practice, the GRNN outperforms the RBFN as

well as traditional back propagation neural networks in predictions, as the former only

involves a one-pass learning scheme instead of repetitive iterations during the training process

[30]. Therefore, the advantages of the GRNN are fast learning and convergence, even though

the number of inputs is very high.

Framework of the deblurring method. The principal framework of the proposed deblur-

ring method is shown in Fig 7. It consists of two primary steps. The first is a learning-based

parameter estimation procedure while the second involves the use of a nonlinear deblurring

algorithm.

In order to estimate the blur parameters efficiently, more than ten thousand natural images

were artificially blurred using the three above-mentioned blur models and different parame-

ters, and their blur features were extracted using Eq (7). The Frobenius norms [32] of these fea-

tures, k RnormkF , were taken as the inputs to train a GRNN for each blur model. In this

Fig 5. Examples of the blur feature in atmospheric turbulence blur. Left: Atmospheric turbulence blur of the “house.

bmp” image with σ = 2.0 (first row) and σ = 4.8 (second row). Middle: Gradient domain. Right: Amplitudes of the blur

features.

https://doi.org/10.1371/journal.pone.0230619.g005
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manner, for a given blurred image, the PSF could be estimated from its blur feature while

using the GRNN. Next, the latent image was restored via a nonblind blur removal algorithm,

which is discussed in the following subsection. The main steps for parameter estimation are

shown in Algorithm 1.
Algorithm 1: Parameter Estimation
Input: (1) Observed blurry image: g;

(2) GRNN: G(X);
Output: Deblurring result: f;
1: Extract the edges, e, from the input blurry image, g;
2: Calculate the blur feature, Rnorm, using Eq (7);
3: Estimate the blur model parameter, Y, using the network,
Y ¼ Gðk RnormkFÞ;
4: Generate the PSF, h, from the estimated Y;
5: Restore the latent image, f, using Algorithm 2;
6: return f;

Latent image restoration. Once the PSF has been acquired, a variety of nonblind decon-

volution methods can be used to recover the latent image. Wiener filtering and the Lucy-Rich-

ardson method are frequently used. These deblurring techniques were proposed decades ago

based on the MLE. However, they both have the disadvantage of being sensitive to any incor-

rect PSF estimate, and the ringing effect [33, 34] is unavoidable. In recent years, the theory of

sparse representation and machine learning have been introduced in the field of image restora-

tion [35–37]. Based on a statistical analysis of natural images, several studies have shown that

the image gradients tend to have a heavy-tailed distribution [38, 39]. The most commonly

used form of this distribution is the hyper-Laplacian model [13, 38]. For each element of the

image gradientrfi, the hyper Laplacian model can be expressed by the joint distribution of f

as follows:

PðfÞ ¼
Y

i

expf� ajr�f ij
p
g; p 2 ½0:5; 0:8� ð9Þ

where �2{x,y} represents the gradient in two orientations and α signifies the slope of the expo-

nential function. From the perspective of MAP estimation, the image prior is turned into a reg-

ularization term in the logarithm cost function [17]. Let k�kp represent a quasi-norm, which is

Fig 6. Basic structure of a GRNN.

https://doi.org/10.1371/journal.pone.0230619.g006
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defined as

k f kp ¼
X

i

jf ij
p
: ð10Þ

In this study, the cost function was defined as follows:

f̂ ¼ arg min
f
kf � h � gk2

2
þ akrfkp ð11Þ

whererf is short for (rxf,ryf). The first term on the right-hand side of the equation is a data

fidelity term to ensure the best approximation of the original image while the second term is a

constraint on the image gradient.

Because the optimization problem described in Eq (11) is nonlinear, traditional descent

methods are ineffective because of their slow convergence. Fortunately, inspired by the half-

quadratic penalty method [15, 16, 40], which can alternately optimize the �p-based expression

in Eq (11) when 0<p�1, the problem can be simplified to an alternating optimization prob-

lem:

min
f;u
k f � h � g k2

2
þb k rf � u k2

2
þa k ukp ð12Þ

where β is an intermediate coefficient that is varied during the alternating scheme. The solu-

tion of Eq (12) converges to that of Eq (11) as β!1, and the optimization procedure can be

described by the two subproblems given below:

(1) Update u. For a given f, Eq (12) becomes an �p-based constrained optimization prob-

lem,

û ¼ arg min
u
k u kp þ

b

a
k rf � u k2

2
: ð13Þ

Fig 7. Framework of the proposed method. The “Estimation” and “Deblurring” processes are described in

Algorithms 1 and 2, respectively.

https://doi.org/10.1371/journal.pone.0230619.g007
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(2) Update f. For a given u, the minimization problem is reduced to an �2-norm con-

strained optimization problem; this is also known as least-squares minimization,

f̂ ¼ arg min
f
kf � h � gk2

2
þ bkrf � uk2

2
: ð14Þ

For the u subproblem, the solution of Eq (13) varies for different p values. In particular,

when p = 1, it becomes a total variation problem, whose analytical solution can be obtained by

the soft thresholding algorithm [15],

û ¼ sgnðuÞmaxf0; juj � Tg ð15Þ

where sgn(�) is the signum function and threshold T = α/(2β).

In general, for a given p, the minimization problem can be solved by setting the derivative

of Eq (13) to zero. Thus, for the ith element of u andrf, we get

pjuij
p� 1sgnðuiÞ þ

2b

a
ðui � fiÞ ¼ 0: ð16Þ

In particular, when p = 0.5, Eq (16) can be simplified to a cubic function,

u3

i � 2fiu
2

i þ f
2

i ui �
a

4b

� �2

sgnðuiÞ ¼ 0 ð17Þ

which can be solved using Cardano’s formula [41].

When p = 2/3, Eq (16) can be expanded as a quartic function,

u4

i � 3fiu
3

i þ 3f 2

i u
2

i � f
3

i ui �
a

3b

� �3

¼ 0 ð18Þ

which can be solved using Ferrari’s and Descartes’ solutions [41].

For some special cases with 1<p<2, analytical solutions can be obtained as described in

[42]. Finally, for all other p values, no analytical solution exists. However, the Newton-Raphson

method is more effective in these cases.

For the f subproblem, the closed-form solution of Eq (14) can be obtained in the frequency

domain:

f̂ ¼ F � 1
FðgÞ � FðhÞ þ bFðuxÞ � FðrxÞ þ bFðuyÞ � FðryÞ

FðhÞ � FðhÞ þ bFðrxÞFðrxÞ þ bFðryÞFðryÞ

 !

ð19Þ

where Fð�Þis the conjugate operation and � is the Hadamard product. Recognizing that the

operation in the frequency domain is based on an assumption of a circular shift, the image

boundaries should be preprocessed to second-order smoothness, as reported previously [43].
Algorithm 2: Image deconvolution
Input: (1) Observed blurry image, g;

(2) PSF, h;
(3) Regularization coefficient, α;
(4) Convergence criteria, ε and k;

Output: Latent image f;
1: Initialize f≔g;
2: Initialize β≔α;
3: for β<ε do
4: Solve û with f from Eq (13), then u≔û;
5: Solve f̂ with h and u from Eq (14), then f≔f̂;
6: β≔kβ;
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7: end
8: return f;

The pseudocode in Algorithm 2 describes the deblurring method. First, the observed

image, g, is used to initialize f; the temporary coefficient, β, should be set to a small value.

Next, the algorithm updates the intermediate optimal values, û and f̂ , alternately. Meanwhile,

ε is set to a large value and it is ensured that the condition k>1 is met, so that β!1. Finally,

the algorithm converges to a stable state, yielding the best approximation of the original image.

Experimental evaluation

Experimental setup. A training dataset from the Pascal Visual Object Classes (VOC)

dataset was used [44]. The dataset consisted of 16,135 natural images of animals, humans,

transportation, landscapes, and architectures, among other entities. Fig 8 shows some exam-

ples of images from the Pascal VOC dataset. Different artificial blurs were induced in them

using increasing parameters so as to build a training set for each blur type, including a series of

Gaussian blurs whose σ values were increased from 1 to 5 in steps of 0.2 and whose dimensions

were of 25×25 pixels. For linear motion blur, estimating the motion length and the orientation

simultaneously will lead to overfitting. Thus, in the experiment, we maintained the same orien-

tation and trained a GRNN for each of the five values for the angle F; i.e., 0˚, 30˚, 45˚, 60˚, and

90˚, respectively. The motion length, L, increased from 2 pixels to 20 pixels.

Next, the blur features, Rnorm, were extracted from each training set. Hypothesis testing [45,

46] was performed to counter the adverse effects of the outliers. Finally, the features and their

corresponding parameters were used as the training sets for the GRNNs while setting the

spreading rate, δ, to 0.6–0.9. The training procedure is similar to that of an RBFN: 1) An unsu-

pervised learning method is needed to determine a set of offsets in the activation function. 2)

A least squares method is used to train the weights in the summation before the output. Fur-

thermore, the difference is that each unit of a GRNN is influenced by every sample from the

training set. Thus, each training sample xq acts as the offset of the activation function in each

pattern unit of a GRNN. Additionally, in the summation layer, the outputs of the pattern unit

ρq are weighted with the corresponding values of the training samples, yq, when going to the

denominator unit SD, but are weighted with one when going to the numerator unit SN. Because

of the use of the one-pass algorithm, the training procedures converged rapidly and stably.

The training was implemented in MATLAB using an Intel Xeon E5-2620 v4 CPU (2.1 GHz)

and an NVIDIA 1080 GPU. It took approximately 10–15 minutes to generate a network.

As can be seen from the flowchart in Fig 7, for an image blurred by an unknown PSF, the

blur feature should be extracted first. Then, using the GRNN as well as the parametric blur

models, its PSF can be estimated successfully. In this manner, the latent image can be restored

from the blurry image and the PSF estimated by the deconvolution method described in Algo-

rithm 2. The value of coefficient α in Eq (12) was determined by trial and error, while the crite-

ria for convergence in the algorithm were set as ε = 1e4 and k = 2, respectively.

Next, we evaluated the convergence speed of Algorithm 2 for different p values. A series of

defocus blurs with increasing radii were simulated in order to test the performance of the solu-

tion methods for Eq (14). The simulations were performed on the same platform as that used

in the training procedure discussed above. Fig 9 shows the cost times for p values of 1/2, 2/3, 3/

4, 4/5, 1, and 2. Generally, the Newton-Raphson method is effective for solving Eq (14). How-

ever, as discussed in the previous section, for special cases, such as those where p = 1/2 and

p = 2/3, analytical solutions exist, as given in Eq (17) and Eq (18), that converge faster than

those for 0<p<1 values. This fact is also shown in Fig 9A and 9B. Moreover, when p = 1, Eq

(14) becomes a one-dimensional shrinkage problem [15] and converges much faster, as shown
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in Fig 9C. When p =2, the image prior reduces to a Gaussian prior, and its deblurred equiva-

lent exhibits a greater number of ringing artifacts and more noise than does the sparse prior

[47]. As a result, we used p = 1 for the rest of the evaluations and comparisons.

The test images were taken from the LIVE database [48]. In this paper, they are numbered

as “Img01,” “Img02,” etc. for ease of comprehension. Table 1 shows their labels and filenames

as well as the parameters for the simulated blur models. Fig 10 presents the examples of ground

truth images. The testing process is described in the following subsection.

We compared the proposed method with several other blind image deblurring methods.

Cho and Lee [49] used the shock filter and bilateral filter with multiple orientations of images

to enhance the structures, with the aim of ensuring that the histograms of the gradient domain

of the reconstructed images were similar to those of the original one. Krishnan et al. [50] pro-

posed an image prior model based on a piecewise function that approximates the statistical

characteristics of natural images using a sparsity representation technique. They solved the

deblurring problem using an iterative shrinkage-thresholding algorithm. Zhao et al. [51] pro-

posed another PSF-estimating method based on the bilateral filter and shock filter, whereas

Wu and Su [52] restored an image by adopting a unified probabilistic model of the image for

solving the MAP problem.

Fig 8. Examples of the pascal VOC dataset.

https://doi.org/10.1371/journal.pone.0230619.g008

Fig 9. Cost duration for different p values. Algorithm 2 was tested for a 768×512×3 image that was blurred by a series

of defocus blurs. The x-axis represents the radius while the y -axis shows the runtime (in seconds).

https://doi.org/10.1371/journal.pone.0230619.g009
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To measure the performance of the proposed method and compare it with other similar

methods, we used the peak signal-to-noise ratio (PSNR) [53], structural similarity (SSIM)

index [53, 54], and feature similarity (FSIM) index [55] as the image quality assessment (IQA)

metrics.

Experimental results

The test images were blurred by motion blur, defocus blur, and Gaussian blur using the model

parameters listed in Table 1. An example of “Img04” blurred by motion blur using (L,F) =

(18,30˚) and the deblurring results are shown in Fig 11. The brand names written on the caps

and the grains in the wood wall behind them are blurred and indistinct in Fig 11A. The deblur-

ring methods described in [49] and [50] introduce ringing effects both around the caps and

the image borders, as shown in Fig 11B and 11C. This phenomenon is reduced by the methods

described in [51] and [52], as is evident from Fig 11D and 11E. However, the wood grains in

the image are not sharp and clear. In contrast, as can be seen from Fig 11F, the proposed

Table 1. Test images used and their blur parameters.

No. Test images Parameters

Motion blur Defocus blur Gaussian blur

Img01 bikes.bmp L = 10,F = 90˚ r = 4 σ = 1.8

Img02 building.bmp L = 8,F = 0˚ r = 5 σ = 2.2

Img03 buildings.bmp L = 16,F = 60˚ r = 6 σ = 2.6

Img04 caps.bmp L = 18,F = 30˚ r = 7 σ = 2.4

Img05 carnivaldolls.bmp L = 18,F = 45˚ r = 5 σ = 2.0

Img06 cemetry.bmp L = 21,F = 90˚ r = 6 σ = 2.8

Img07 churchandcapitol.bmp L = 16,F = 30˚ r = 4 σ = 2.2

Img08 coinsinfountain.bmp L = 15,F = 45˚ r = 3 σ = 2.6

Img09 dancers.bmp L = 15,F = 60˚ r = 5 σ = 2.0

Img10 flowersonih.bmp L = 16,F = 0˚ r = 3 σ = 1.8

Img11 house.bmp L = 17,F = 90˚ r = 4 σ = 2.4

Img12 lighthouse.bmp L = 19,F = 30˚ r = 6 σ = 2.8

Img13 lighthouse2.bmp L = 16,F = 45˚ r = 8 σ = 3.2

Img14 manfishing.bmp L = 25,F = 60˚ r = 9 σ = 3.4

Img15 monarch.bmp L = 18,F = 60˚ r = 4 σ = 2.2

Img16 ocean.bmp L = 15,F = 0˚ r = 8 σ = 3.2

Img17 paintedhouse.bmp L = 8,F = 90˚ r = 3 σ = 2.4

Img18 parrots.bmp L = 19,F = 45˚ r = 9 σ = 3.6

Img19 plane.bmp L = 22,F = 30˚ r = 8 σ = 3.2

Img20 rapids.bmp L = 12,F = 90˚ r = 4 σ = 2.2

Img21 sailing1.bmp L = 18,F = 0˚ r = 9 σ = 3.4

Img22 sailing2.bmp L = 17,F = 30˚ r = 5 σ = 2.2

Img23 sailing3.bmp L = 18,F = 45˚ r = 7 σ = 2.8

Img24 sailing4.bmp L = 15,F = 60˚ r = 6 σ = 2.0

Img25 statue.bmp L = 16,F = 30˚ r = 3 σ = 2.4

Img26 stream.bmp L = 9,F = 0˚ r = 7 σ = 1.8

Img27 studentsculpture.bmp L = 8,F = 90˚ r = 5 σ = 2.2

Img28 woman.bmp L = 11,F = 60˚ r = 4 σ = 2.0

Img29 womanhat.bmp L = 17,F = 45˚ r = 8 σ = 3.2

https://doi.org/10.1371/journal.pone.0230619.t001
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method restores both the texture and the background. Table 2 lists the IQA data of a compara-

tive analysis performed on the blurred images.

Fig 12 shows another example of motion blur with (L,F) = (16,45˚); the image here is

“Img13.” The lighthouse and cabins are blurred and unclear in Fig 12A. As can be seen from

Fig 12B, the deblurring method described in [49] reduced some of the blurriness; however, the

visual effect is still lacking. Further, as can be seen from Fig 12C, the method described in [50]

restored the sharpness but introduced strong artifacts. These limitations were overcome by the

methods described in [51] and [52] (see Fig 12D and 12E, respectively) as well as by the

Fig 10. Examples of the ground truth images. (A) “caps.bmp.” (B) “lighthouse2.bmp.” (C) “monarch.bmp.” (D)

“plane.bmp.”.

https://doi.org/10.1371/journal.pone.0230619.g010

Fig 11. Motion blur with L = 18 andF = 30˚ for the “caps.bmp” image. (A) Blurred image. (B) Method in [49]. (C)

Method in [50]. (D) Method in [51]. (E) Method in [52]. (F) Proposed method.

https://doi.org/10.1371/journal.pone.0230619.g011
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proposed method (see Fig 12F), which restored most of the details. The statistics related to the

IQAs as determined from a comparative analysis of the motion-blurred images are shown in

Fig 13. For both examples, namely, “Img04” and “Img13,” the PSNR, SSIM, and FSIM were

the highest for the proposed method. In addition, Table 2 lists the original IQA data.

Similarly, Fig 14 shows another example, namely, “Img15,” which was blurred by defocus

blur with r = 4. In daily life, photograph degradation resulting from the camera being out of

focus is a common phenomenon. As can be seen from the figure, the texture on the wings are

blurred and fuzzy, although the extent of the blurriness is low. The compared methods are all

able to restore the details effectively, but our method has the least ringing effect. It should be

noted that there are spatially varying blurs in part of the ground truth image, such as the back-

ground and some of the flowers; consequently, these details cannot be restored. Nonetheless,

in the case of the “mornach.bmp” image, the proposed method outperformed the others, as is

evident from the IQA data obtained from a comparison of the defocus-blurred images (see

Table 2 and Fig 15).

In Fig 16, an image, namely, “Img19,” blurred by Gaussian blur with σ = 3.2 is shown. The

outline of the plane is unclear and so are the words on the fuselage (see Fig 16A). Atmospheric

Table 2. IQA data for the comparison results of Figs 11, 12, 14 and 16.

Test images Parameters IQA Method in [49] Method in [50] Method in [51] Method In [52] Proposed method

caps.bmp Motion blur L = 18

F = 30˚

PSNR 30.964 28.212 28.451 29.768 31.864

SSIM 0.9597 0.9388 0.9413 0.9495 0.9737

FSIM 0.9295 0.9010 0.9091 0.8909 0.9489

lighthouse.bmp Motion blur

L = 16

F = 45˚

PSNR 23.311 22.610 22.533 23.102 24.465

SSIM 0.8419 0.8347 0.8238 0.8492 0.8746

FSIM 0.8496 0.8518 0.8447 0.8737 0.8905

mornach.bmp Defocus blur

r = 4

PSNR 25.969 25.123 25.954 25.989 26.990

SSIM 0.9547 0.9484 0.9596 0.9550 0.9628

FSIM 0.9212 0.9166 0.9264 0.9121 0.9371

plane.bmp Atmospheric turbulence blur

σ = 3.2

PSNR 26.064 25.846 27.189 26.972 28.030

SSIM 0.8865 0.8710 0.9060 0.9020 0.9343

FSIM 0.9039 0.8972 0.9371 0.9244 0.9508

https://doi.org/10.1371/journal.pone.0230619.t002

Fig 12. Motion blur with L = 16 andF = 45˚ for the “lighthouse2.bmp” image. (A) Blurred image. (B) Method in

[49]. (C) Method in [50]. (D) Method in [51]. (E) Method in [52]. (F) Proposed method.

https://doi.org/10.1371/journal.pone.0230619.g012
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turbulence is a complex phenomenon that has troubled scholars for decades. Its PSF is sym-

metrical and its support domain is infinite both in the spatial and frequency domains. In prac-

tice, truncation in the spatial domain makes the deblurring procedure feasible. However, it

Fig 13. Results of comparisons of test motion-blurred images. The corresponding motion length, L, and orientation,

F, values are listed in the third column of Table 1.

https://doi.org/10.1371/journal.pone.0230619.g013

Fig 14. Defocus blur with r = 4 for the “monarch.bmp” image. (A) Blurred image. (B) Method in [49]. (C) Method

in [50]. (D) Method in [51]. (E) Method in [52]. (F) Proposed method.

https://doi.org/10.1371/journal.pone.0230619.g014
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leads to unavoidable errors that reduce the accuracy of the restoration results. As shown in Fig

16B–16F, all the methods could recover the outline of the plane successfully but were incapable

of restoring the words on the fuselage. Their quality assessments are listed in Table 2. It can be

seen from the results that the proposed method outperformed the others. In addition, Fig 17

Fig 15. Results of comparisons of test defocus-blurred images. The corresponding radius, r, values are listed in the

fourth column of Table 1.

https://doi.org/10.1371/journal.pone.0230619.g015

Fig 16. Atmospheric turbulence blur with σ = 3.2 for the “plane.bmp” image. (A) Blurred image. (B) Method in

[49]. (C) Method in [50]. (D) Method in [51]. (E) Method in [52]. (F) Proposed method.

https://doi.org/10.1371/journal.pone.0230619.g016
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shows the IQA parameters for all the tested images. It can again be seen that the proposed

method was superior to the other methods in most cases.

In addition, the comparative analysis showed that ringing effects are inevitable in the case

of the conventional blind blur removal method [49, 50]. Further, while the ringing effects were

reduced to a certain extent in the cases of the methods given in [51] and [52], they did exist.

Fig 17. Results of comparisons of test atmospheric turbulence-blurred images. The corresponding parameter, σ,

values are listed in the fifth column of Table 1.

https://doi.org/10.1371/journal.pone.0230619.g017

Fig 18. Results of average processing speed for the compared methods. The x-axis lists the PSF sizes, which range

from 3×3 to 25×25, while the y-axis shows the total runtime (in seconds).

https://doi.org/10.1371/journal.pone.0230619.g018
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On the other hand, the proposed deblurring method exhibited promising results in terms of

both the visual quality and objective assessment parameters.

Fig 18 compares the proposed method with the other methods in terms of speed. The size

of the testing images was 768×512×3, and the sizes of the testing PSFs ranged from 3×3 to

25×25. As can be seen, the processing time of the methods in [50–52] increases rapidly with

the PSF size. The method in [49] converges rapidly, but the IQAs of its results are unsatisfac-

tory. Our method requires the lowest runtime and produces a deblurring result within five sec-

onds, whereas tens of seconds or even more than a minute are required by the other methods.

Real-life applications

In the electronics industry, integrated circuit boards moving on a conveyor line are examined

by a fixed-position camera hanging over them. As a result, these boards suffer from a signifi-

cant degree of motion blur and their photographs are of extremely poor quality (see Fig 19 and

Fig 20A). The deblurring results from the methods in [49–52] are shown in Fig 20B–20E. As

the movement of the conveyor can be regarded as linear motion with a constant orientation,

Fig 19. Motion-blurred photograph in real-life application.

https://doi.org/10.1371/journal.pone.0230619.g019

Fig 20. Results of comparisons with Fig 19. (A) Blurred image. (B) Method in [49]. (C) Method in [50]. (D) Method

in [51]. (E) Method in [52]. (F) Proposed method.

https://doi.org/10.1371/journal.pone.0230619.g020
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its PSF can be estimated using the proposed method. The thus-obtained deblurring results are

shown in Fig 20F. It can be seen clearly that the text is clearer and the area around the pins of

the chip shows more details.

Conclusions

In this study, a blur parameter estimation technique based on deep learning and a nonlinear

regularized deblurring method based on sparse representation for image blur removal were

proposed and evaluated. The blur features were determined based on the autocorrelation of

the gradient domain of the image, which is strongly related to the blur degree. Further, a

GRNN was adopted for learning-based parameter estimation. More than ten thousand natural

images were used to generate training samples of motion blur, defocus blur, and atmospheric

turbulence blur. Using the GRNN, the PSF of the test blurry images could be estimated cor-

rectly. Moreover, the deblurring algorithm converged quickly owing to the use of a half-qua-

dratic method. The results of simulations and a comparative analysis confirmed that the

proposed method is superior to other deblurring methods. The main disadvantage of GRNN is

that its size can be huge, which results in expensive computation. Another limitation of the

proposed method is that it can only deal with spatially invariant blurs in specific scenarios.

Although the training process is time-consuming, it only needs to be carried out once. In

future work, a better training dataset and blur features will be considered to improve the per-

formance of the neural network, and the deblurring model can be extended into nonlinear

blurs for wider application.
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