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Assessment of the impact of shared brain imaging
data on the scientific literature
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Data sharing is increasingly recommended as a means of accelerating science by facilitating
collaboration, transparency, and reproducibility. While few oppose data sharing philosophi-
cally, a range of barriers deter most researchers from implementing it in practice. To justify
the significant effort required for sharing data, funding agencies, institutions, and investiga-
tors need clear evidence of benefit. Here, using the International Neuroimaging Data-sharing
Initiative, we present a case study that provides direct evidence of the impact of open sharing
on brain imaging data use and resulting peer-reviewed publications. We demonstrate that
openly shared data can increase the scale of scientific studies conducted by data con-
tributors, and can recruit scientists from a broader range of disciplines. These findings dispel
the myth that scientific findings using shared data cannot be published in high-impact
journals, suggest the transformative power of data sharing for accelerating science, and
underscore the need for implementing data sharing universally.
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ow more than ever, the potential and actual benefits of

open data sharing are being debated in the pages of
premier scientific journals, funding agency communica-

tions, scientific meetings, and workshops!=3. Throughout these
discussions an array of potential benefits are acknowledged,
ranging from increased transparency of research and reproduci-
bility of findings to decreased redundancy of effort and the
generation of large-scale data repositories that can be used to
achieve more appropriate sample sizes for analyses. Equally
important, data sharing is commonly described as a means of
facilitating collaboration across the broader scientific community.
Despite its potential, for many, the benefits of data sharing are
more theoretical than practical®*. The reality is that data sharing
is relatively limited in many disciplines and little information on
its outcomes exists®. In the absence of clear demonstrations of
data sharing’s impact, debates on the topic are dominated by
formidable—albeit hypothetical—downsides. Common concerns
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include loss of competitive advantage (especially for junior
investigators)®, fear of being scooped with one’s own data, sci-
entifically unsound uses of the data, and concerns that high-
impact journals will not accept manuscripts that report findings
generated by secondary analysis of open data sets.

To assess the tangible benefits of open data sharing, we
provide a bibliometric analysis of a large brain image data-
sharing initiative. The brain imaging community is a particu-
larly valuable target for examination, as its challenges are
representative of those commonly encountered in biomedical
research. The high costs and workforce demands required to
capture primary data limit the ability of individual labs to
generate properly powered sample sizes. These obstacles are
amplified when addressing more challenging (e.g., developing,
aging, and clinical) populations or attempting biomarker dis-
covery—both prerequisites for achieving clinically useful
applications. Inspired by the momentum of molecular genetics,

b

Publications by type

739
(81%)

800 =

600 o

400 4

Publication count

200 o

65
(7%) 21

58
(6% (2%)

Peer Other
reviewed

journal

Preprint Thesis Non-peer
reviewed

journal

Publications by field

| RES

Jj 208

B CoRR
ABIDE

B NKI
ADHD

W FCP

100

200
Publication count

300 400

Fig. 1 Publications that used INDI shared data. Publications sorted (a) by INDI data set and year, for the period of 2010-2016 (2017 is not included since
that year was in progress at the time this study was conducted), (b) by publication type, and (c) by journal discipline (limited to peer-reviewed publications
and based on Web of Science classifications)
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the first functional neuroimaging data-sharing initiative
was launched in 20007, though it encountered logistical chal-
lenges (e.g., lack of standardization for task-based fMRI
methods) and vigorous social resistance. Since then, a range of
initiatives for sharing brain imaging data have emerged (e.g.,
OASIS®, ADNI°, Human Connectome Project!0, and
OpenfMRI'1).

While some open data sharing initiatives work to aggregate and
share previously collected data sets, others explicitly generate large-
scale data resources for the purpose of sharing. The present work
focuses on the International Neuroimaging Data-sharing Initiative
(INDI)!2, as it uniquely embodies both of these models of sharing.
The bibliometric measures we have employed could be easily
applied to other initiatives in future work. Another distinctive
aspect of INDI is its reliance on the formation of grassroots con-
sortia as a primary vehicle for achieving its goal of aggregating and
sharing previously collected data. Self-initiated and organized by
scientists in the community, these consortia aggregate and share
independently collected data from sites around the world. Examples
of INDI-based consortia include the 1000 Functional Connectomes
Project (FCP; n = 1414, released in December 2009)13, the ADHD-
200 (n = 874, released in March 2010)4, the Autism Brain Imaging
Data Exchange (ABIDE; n = 1112, released in August 2012)!°, and
the Consortium for Reliability and Reproducibility (CoRR; n=
1629, released in June 2014)!°. In the present work, we use the
grassroots consortium component of the INDI model to examine
the relative benefits of open data sharing versus “pay to play”
models, in which only those who give data can benefit from sharing.
To examine the benefits of data resources explicitly generated for
the purposes of sharing, we use INDI's Nathan Kline Institute-
Rockland Sample (NKI-RS) initiatives, a combination of large-scale
cross-sectional and longitudinal multimodal imaging samples of
brain development, maturation, and aging (ages 6.0-85.0)17-18
(initial release in October 2010; quarterly releases ongoing, current
n=1000+). INDI efforts have been lauded by funding agencies,
journal editors, and members of the imaging community. However,
such subjective recognition does not quantify research impact.
Drawing from the field of bibliometrics, we carried out a range of
citation analyses!? to quantify the impact of INDI data sets on the
brain imaging and broader scientific literatures.

Our bibliometric analyses demonstrate the positive
impact of openly shared data in the neuroimaging literature.
In particular, they highlight the ability of openly shared data
to invite the participation of scientists from a broad range
of disciplines, to increase the scale of sample sizes, and
to yield publications in moderate-to-high-impact journals with
a frequency comparable to that of non-shared data.

Results

Data use. A keyword-based search identified 1541 possible INDI-
related publications as of March 22, 2017 of which 913 were
determined to have used data from INDI. Figure la provides a
non-cumulative breakdown of the 913 publications by year and

initiative, revealing steady yearly increases in shared data use.
Author affiliations for the 913 publications using INDI data
spanned 50 countries across 6 continents, with peak affiliation
densities in the United States (48.5%), China (10.7%), Germany
(6.5%), and the United Kingdom (6.0%) (see http://fcon_1000.
projects.nitrc.org/indi/bibliometrics/map/map.html for the world
map of author affiliations generated using the Google Maps
JavaScript API V3). The overwhelming majority of publications
were either peer-reviewed journal articles (n=739; 81%) or
preprints (n = 65; 7%); scholarly theses had a substantial presence
as well (n =58 [33 doctoral; 19 master’s; 4 bachelor’s; 2 unspe-
cified]), demonstrating the value of shared data for trainees and
early career investigators (see Fig. 1b). As expected given the
brain imaging focus of the INDI consortia, the largest proportion
(45.7%) of publications were in journals focused on general
neuroscience, neurology, psychiatry, and psychology. However,
INDI data sets were also used in other domains (e.g., mathe-
matics, computer science, physics, and engineering journals
accounted for 6.6% of publications) (see Fig. 1c).

Publication impact. The impact of each of the major INDI efforts
(FCP, NKI-RS, ADHD-200, ABIDE, and CoRR) on the scientific
literature was quantified using an array of commonly used
citation-based indices, including the h- (the number of publica-
tions with at least the same number of citations) and i10- (the
number of publications with at least 10 citations) indices (see
Table 1). As of March 22, 2017, the 913 publications that explicitly
used INDI data had been cited 20,697 times by publications
referenced in Google Scholar, with an average of 4.4 citations per
article per year; h-indices for the five initiatives ranged from 7 to
52 (overall: 66) and i10-indices from 6 to 123 (overall: 295). The
FCP and ADHD-200 have had the highest impact to date across
various measures, though this likely reflects their older age com-
pared to other initiatives (e.g., ABIDE and NKI-RS), which have
enjoyed greater publication growth in recent years (see Fig. la).
To address questions about whether high-impact journals
accept secondary analyses of open data, we also examined journal
impact factors for publications using INDI data. The assessment
of journal impact remains somewhat challenging given the
growing number of indices available (e.g, impact factor,
CiteScore, and altmetrics)??, concerns about the appropriateness
of judging the impact of individual articles based on measures of
the impact of journals, and the potential over-reliance on these
indices for promotion and tenure decisions. Nonetheless, for the
purpose of citation analysis, they can be effective tools for
summarizing literature-level trends. Several articles that used
INDI data have been published in high-impact specialized
journals (e.g., Biological Psychiatry and Neuron) and general-
interest journals (e.g., Proceedings of the National Academy of
Sciences and Nature Communications) (see Fig. 2a for the 15
highest-impact journals in which publications using INDI data
sets have appeared based on CiteScore??). As shown in Fig. 2b, of
all publications measured by 2015 CiteScore values, 50% were

Table 1 Quantifying impact of INDI efforts using common publication-based indices

Initiative Number of papers Total citations Mean citations per year Mean total citations h-Index h-Index i10-Index i10-Index
(5-year) (5-year)

FCP 308 13,147 7.3+20.8 40.8+140.4 52 43 123 104

ADHD-200 210 2935 29+53 145+36.0 33 31 67 66

ABIDE 190 1875 25+6.9 9.2+283 22 22 44 44

CoRR 17 357 41+7.5 16.3+34.6 7 7 6 6

NKI-RS 188 2383 33+56 1M.9+24.7 29 29 55 54

Total 913 20,697 4.4+1.7 20.4+729 66 58 295 274

WoS 4000 56,704 22+35 14.2+27.2 89 74 1506 1nes8
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published in a journal with a CiteScore of 4.05 or higher, 25%
with a CiteScore of 6.71 or higher, 5% with a score of 8.84 or
higher, and 1% with a score of 12.02 or higher. Two of the three
journals with the highest number of publications were Neuro-
Image and Human Brain Mapping, which are among the highest-
ranked field-specific brain imaging journals.

Two questions that may arise regarding our findings concern-
ing the ability to publish in higher-impact journals using openly
shared data are: (1) how would our results compare to those
obtained using the same analysis applied to closed (not shared)
data, and (2) would our results generalize to data-sharing
initiatives other than INDI? To provide insights regarding the
first question, we used PubMed to identify MRI studies of autism
using the following set of keywords: (autism OR autistic OR ASD)
AND (rest fMRI OR resting-state fMRI OR rest state fMRI OR
Intrinsic Brain Function OR MRI OR sMRI OR functional MRI
OR resting-state functional), and then programmatically vetted
them—yielding 80 ABIDE and 1834 non-ABIDE studies. Of note,
there were 50 ABIDE papers identified by Google Scholar that
were not identified by this PubMed search. In large part, this can
be explained by two factors. First, PubMed limits searches to title,
abstract, and keywords; Google Scholar searches the entire
document; some articles use more obscure terminology or
incomplete terminology in their title and abstract. Second, a
subset of papers used ABIDE data to study questions outside the
autism field, such as typical brain development (using only the
neurotypical data sets) or methods development. Post hoc

examination found the cumulative density curves for excluded
and included papers to be highly similar. Next, we generated a
cumulative density plot for studies using ABIDE data and those
using closed (not shared) data. The curves we obtained were
nearly identical, suggesting that papers using open data and those
using closed data fared equally well with respect to the impact of
the journals in which they were accepted. This result extended to
the ADHD literature when the same analyses were repeated with
corresponding search terms (i, “ADHD,” “hyperactivity,”
“inattention” in place of “autism” and “autistic”), which revealed
38 ADHD-200 and 1986 non-ADHD-200 studies. The results for
the ABIDE and ADHD-200 data sets are depicted in Fig. 2c, d,
respectively.

To answer the question of whether our findings would
generalize to other data-sharing initiatives, we searched for
publications using HCP data. Given that this is a supplementary
analysis, we used an automated search strategy that limited our
search to publications in PubMed that included “Human
Connectome Project” as a searchable term; as such, this analysis
was meant to provide a sampling of the papers, but not to be
exhaustive. Manual vetting for these results (n = 232) yielded 175
publications using HCP data, from which we then generated a
cumulative density plot, which we found to be very similar to that
obtained for INDI, suggesting that our findings generalize to
other efforts. Finally, we opted to extend these findings to what
would be obtained for a sampling of the entirety of the MRI
imaging literature for the same time period as INDI. To
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accomplish this, we obtained a random sample (n=4000) of
papers on Web of Science containing the keywords “MRI” and
“brain” within the period from 2010 to 2017 (each year was
equally represented within the sample). The resulting density plot
is similar to those obtained for INDI and HCP (the curves are
higher for INDI and HCP over the general literature due to the
greater number of publications in the higher-impact journals
Neurolmage and Human Brain Mapping) (see Fig. 2e).

Beneficiaries of sharing. A common alternative to open data
sharing is the “pay to play” model, where one must contribute
data in order to gain access to data shared by others; from a
consortium perspective, this means that data access is limited to
members only. While such models can incentivize data sharing,
they miss out on valuable analyses that researchers lacking data to
contribute would perform if given the opportunity. INDI's con-
sortium model provides a unique opportunity to compare use of
shared data by contributing and non-contributing researchers.
Specifically, for each initiative (FCP, ADHD-200, ABIDE, CoRR,
and NKI-RS), “contributing authors” were defined as any coau-
thor of the announcement publication for the respective initiative.
Using this definition, 90.3% of INDI-based publications were
authored by research teams that did not include any data con-
tributors. As shown in Fig. 3, the number of publications by non-
contributors is rapidly increasing year to year. This differential
between publications authored by contributors versus non-
contributors reflects the potential missed opportunity associated
with the “pay to play” model of data sharing.

The publication patterns of INDI consortia members can also
be used to glean insights into the benefits of contributing data
beyond inclusion as a coauthor on data announcement or
descriptor papers. To accomplish this, we focused on the ADHD-
200 and ABIDE consortia, as they consist of data from clinical
populations, which are among the most costly to generate. For
each ADHD-200 or ABIDE paper coauthored by a data
contributor, we calculated the difference between the amount of
data used in the publication (i.e., sample size) and the total
contribution to the consortium (from coauthors on the manu-
script). The median difference between publication sample size
and data contribution by coauthors was 286 for ADHD-200 and
142.5 for ABIDE. Obtaining a similar increase in sample size by
acquiring data from these clinical populations in a single lab
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250 =
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216
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Fig. 3 Data use by authors. Breakdown of publications by contributor status,
for the period from 2010-2016 (2017 is not included since this study was
conducted during that year)

would have been expensive and time consuming. Interestingly, we
found that 20% of INDI-based publications from ABIDE data
contributors used fewer samples than they contributed—largely
reflecting more restrictive inclusion criteria related to age, sex,
diagnostic phenotype, and/or image quality. Application of such
criteria was made possible by the availability of shared data, and
presumably enhanced the validity and reproducibility of the
findings.

Another means by which shared data sets are becoming
increasingly available is the resource generation model,
in which data are specifically collected for the purpose
of sharing (e.g, Human Connectome Project [http://www.
humanconnectomeproject.org/], Brain Genomics Superstruct
[http://neuroinformatics.harvard.edu/gsp/], NIH ABCD [https://
addictionresearch.nih.gov/abcd-study], Child Mind Institute
Healthy Brain Network [http://fcon_1000.projects.nitrc.org/indi/
cmi_healthy_brain_network/], and Chinese Color Nest Project
[http://zuolab.psych.ac.cn/colornest.html]). This model is advan-
tageous in that the explicit open access intent allows researchers
and funding agencies to justify investing in the creation of data
resources that are notably larger in scale and broader in scope
than what would typically be acquired by a single team. In INDI,
the NKI-RS is an ongoing coordinated effort of three principal
investigators and four NIH-funded projects dedicated to
generating an open lifespan data resource for the scientific
community. To date, 189 articles have been published based on
NKI-RS data, 167 of which did not include the NKI-RS PIs and
76 of which were written by individuals completely outside of
their publication sphere (i.e., there is no detectable relationship
between the PIs and the authors of these papers based on
coauthorship histories in the literature).

Impact beyond. It is important to note that the impact of INDI
goes beyond what can be captured by the present analyses. Our
searches revealed 639 publications that mentioned INDI in their
text but did not use INDI data, suggesting that INDI and resul-
tant research has impacted the thinking of authors in ways other
than simply providing data. Additionally, 71 publications
employed either the scripts used for the analysis of data in the
initial FCP release manuscript!? or their derivative platforms?!->2
—again highlighting utility beyond the data alone. INDI has also
given rise to a set of projects sharing preprocessed data including
the Preprocessed Connectomes Project (http://preprocessed-
connectomes-project.org), the R-fMRI Maps Projects (http://
mrirc.psych.ac.cn/REMRIMaps), and the C3-Brain Project (http://
mrirc.psych.ac.cn/3C-BrainProject); these efforts have demon-
strated the feasibility of reducing barriers to data analysis (e.g., the
need for domain-specific knowledge and computational resour-
ces) by sharing various processed forms of the data and estab-
lishing a quality assurance protocol.

Arguably one of the most significant forms of impact is the
money saved through the reuse of data as opposed to de novo
data generation for each study. Depending on the population
being studied, MRI studies can vary dramatically in the costs
associated with recruiting, phenotyping, and imaging. Table 2
provides an estimated cost per participant for the target
populations in each of the five INDI consortia, which range
from $1000 per subject for the FCP to $5000-10,000 per subject
for ABIDE. Taking into account these cost estimates and the
sample sizes for each of the 913 papers identified in our analyses,
a conservative estimate of the cost of de novo data generation
would have been $893,258,000; at the more liberal end, this
estimate reaches $1,706,803,000.

Finally, it is worth noting that ready availability of the
aggregate INDI resource creates an array of unique scientific
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Table 2 Quantifying the money saved through the reuse of data
Database Cost/subject Phenotyping Phenotyping Clinical Population Difficulty No. of No. of scans/ $ Saved
publications subject

Minimal Comprehensive Low Moderate High
FCP $1000 X 308 1 101,003,000
ADHD-200 $2000-5000 X X 210 1 526,275,000
NKI-RS $3000 X 188 1 70,065,000
ABIDE $5000-10,000 X X 190 1 995,560,000
CoRR $2000 X 17 2 70,065,000

opportunities beyond increased sample size. Examples include the
ability to demonstrate reproducibility of findings across indepen-
dent data sets?®, to assess potential solutions for overcoming
batch effects (i.e., scanner/protocol differences)?4-2, and to
provide robust assessments of statistical noise?”

Discussion

The findings of the present work have made the theoretical
benefits of open data sharing for brain imaging research tangible
through citation analysis of the impact of the FCP/INDI data.
Despite common misconceptions, publications using shared data
are well-represented in moderate-to-high-impact journals, and
were found to benefit young investigators (e.g., graduate students)
as well as more senior investigators. Our findings that the scale
(i.e., sample size) of studies carried out by data contributors
increased through the use of data shared by others emphasized
the symbiotic relationship that can emerge when investigators
with common interests make their data open. Simultaneously, we
demonstrated the ability to recruit the broader scientific com-
munity to address the task at hand when data are openly shared;
given the various forms of expertise required to leverage technical
and methodological innovations to achieve ambitions for iden-
tifying clinically useful brain-based biomarkers, the recruitment
of expertise that extends beyond the teams that generated the
initial data sets is essential.

Having demonstrated the impact of data sharing, a remaining
challenge is to make sharing a widespread reality. Multiple
advances are necessary to accomplish this change. First, there is a
need for greater incentivization of both sharing and using open
data sets. While funding agencies increasingly espouse mandates
to share data and encourage secondary data analysis, voices
vilifying openly shared data and its users?® continue to be
expressed in top journals. Second, the mechanisms for recog-
nizing data-sharing contributions remain underspecified in, for
example, grant, promotion, or tenure reviews?’. Third, wide-
spread data sharing requires infrastructure. To date, the storage
costs of the INDI have been relatively limited, requiring about
10TB to share over 15,000 data sets. However, resource limita-
tions must be considered as data sharing and the size of shared
data sets continues to grow along with acceptance of data sharing
and of data sharing mandates by funding agencies and journals.
Central to these considerations will be decisions regarding the
emphasis to be placed on centralized versus federated models for
data storage, as the scope and scale of data sharing increases. Such
decisions are non-trivial, as they entail a range of financial,
logistical, and ethical questions regarding data maintenance and
privacy. Fourth, there needs to be increased attention given to
notification of the possibility of data sharing in the informed
consent process. For studies designed with the intent to share
data, whether due to their own desire or funding agency man-
dates, it is given that the informed consent should make clear that
the data will be shared and provide details as to the nature of
sharing. However, for investigators who are not committed to
data sharing, a key question is whether data-sharing language

6 | (2018)9:2818 | DOI: 10.1

should still be included in the informed consent. This is especially
important given that incentives for sharing may arise over time
(e.g., data sharing supplements for funded grants, data sharing
consortia relevant to the investigator’s interests).

Finally, it is important to note the potential impact recent calls
for harmonization can have on the value of shared data. Har-
monization of protocols involves the adoption of common means
for acquiring data (e.g., MRI scan sequences, experimental pro-
cedures, and phenotyping instruments), as well as the adoption of
consensus standards for data quality. For the most part, discus-
sions of harmonization in the imaging community been limited
to planning large-scale multisite studies, such as the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and the NIH Adolescent
Brain Cognitive Development (ABCD) Study. However, in recent
years, there has been a growing recognition of the need to adopt
common imaging protocols and phenotyping instruments as a
means of improving the value of shared imaging data (see ref. 30
for a comprehensive discussion). The Human Connectome Pro-
ject and ABCD Study are proving to be particularly valuable in
this regard, as their imaging protocols are emerging as standards
that can be adopted by investigators when there is not a clear
rationale to use a custom sequence; the ABCD Study is particu-
larly valuable, as it contains sequences for different scanners. For
phenotyping, numerous efforts to develop standardized instru-
ments that can be used to uniformly capture structured data
elements across studies (i.e., common data elements) are emer-
ging (e.g., NIH Toolbox and PhenX). In the context of INDI,
ABIDE provides an excellent example of how standardization can
benefit data sharing, as nearly every study in ABIDE included the
Autism Diagnostic Observation Schedule (ADOS) due to long-
standing efforts in the autism community to standardize phe-
notyping. This is in contrast to the ADHD-200, where the
instrument for assessing ADHD symptoms varied from site to
site. While investigators can devise strategies for pooling data
across heterogeneous tools, they are inherently suboptimal.

In closing, we assert that it is the responsibility of the entire
scientific ecosystem, from funding agencies to junior scientists, to
accelerate the pace of progress by making data sharing the norm.
While the merits and impact of data sharing are clear, it is up to
all levels of science to make sharing a priority in order for its true
value to be realized.

Methods

Identifying and classifying publications using INDI data. We started our bib-
liometric analysis with a search for publications that used INDI data sets. This was
a non-trivial task due to the lack of requirements for author-line recognition of
INDJ, a policy intended to maximize freedom of use for the data. We identified
publications using a full-text search in Google Scholar; the following names and
URLs were included as keywords: “fcon_1000.projects.nitrc.org,” “Rockland Sam-
ple,” “1000 Functional Connectomes,” “International Neuroimaging Data-Sharing
Initiative,” “Autism Brain Imaging Data Exchange,” “ADHD-200,” and “Con-
sortium for Reproducibility and Reliability.” Next, we downloaded all available
PDF files for manual review by a team of five research assistants, who classified
each as “downloaded and used INDI subject data,” “only mentions or references
INDI data,” “used INDI scripts but not INDI data,” or “irrelevant.” To facilitate
this process and enable rapid review, each PDF was converted to a text file (using
the Unix-based pdftotext shell command). Paragraphs including the keywords from
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the Google Scholar search were then identified and extracted from each PDF for
review in an automated fashion using regular expressions; full PDFs were available
to the reviewers for verification. Classifications were determined from the con-
sensus of two independent reviewers; conflicts were resolved by a third. During this
step, research assistants also indicated the type of publication (e.g., thesis, book
chapter, peer-reviewed journal article, non-peer-reviewed journal article, and
preprint) for each paper.

The work reported here is largely descriptive in nature; as such, we do not
include formal statistical analyses.

Data availability. All data and code used to generate the findings in the present
work are publicly available at: https://github.com/ChildMindInstitute/
Biblio_Reader/blob/165ddc56779a5e55149184a0f95b7c14874cf0c5/biblio_reader/
text_tools/text_tools.py.
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