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A meta-analysis of catalytic literature data reveals
property-performance correlations for the OCM
reaction
Roman Schmack1, Alexandra Friedrich2, Evgenii V. Kondratenko 3, Jörg Polte4, Axel Werwatz2 &

Ralph Kraehnert1

Decades of catalysis research have created vast amounts of experimental data. Within these

data, new insights into property-performance correlations are hidden. However, the incom-

plete nature and undefined structure of the data has so far prevented comprehensive

knowledge extraction. We propose a meta-analysis method that identifies correlations

between a catalyst’s physico-chemical properties and its performance in a particular reaction.

The method unites literature data with textbook knowledge and statistical tools. Starting from

a researcher’s chemical intuition, a hypothesis is formulated and tested against the data for

statistical significance. Iterative hypothesis refinement yields simple, robust and interpretable

chemical models. The derived insights can guide new fundamental research and the dis-

covery of improved catalysts. We demonstrate and validate the method for the oxidative

coupling of methane (OCM). The final model indicates that only well-performing catalysts

provide under reaction conditions two independent functionalities, i.e. a thermodynamically

stable carbonate and a thermally stable oxide support.
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Meta-analysis1 is a powerful tool to rigorously assess the
findings of published research. Successful meta-analysis
studies were reported in research fields where quanti-

tative analysis of independently conducted experiments is pre-
valent, e.g., medical research2, genetics3,4, biology5, and
economics6. Particularly in medical research, meta-analysis is
used to aggregate individual studies aiming at the same treatment
effect and employing the same research design (randomized
control trials). In this case, the main goal and benefit of meta-
analysis is to obtain a more precise and robust effect estimate
than any individual study can deliver.

Despite the existence of a vast amount of well-documented
experiments also in heterogeneous catalysis, hardly any corre-
sponding meta-analyses have been reported. Efforts to collect and
analyze sets of literature data have been reported primarily for the
water gas shift reaction (WGS)7, CO-oxidation8–10, transester-
ification in biodiesel production11, and electro-catalytic oxidation
of alcohols in direct alcohol fuel cells12. However, neither did
these studies identify new structure–activity relationships nor
could they provide simple chemical explanations for the observed
statistical effects.

The shortcomings of these reports can be attributed, e.g., to
(1) rather small datasets being used (data from 85 publications
or less7–12), (2) statistical learning methods that search explora-
tively for relationships in the data, and (3) failure to incorporate
existing chemical knowledge to inform and direct the statistical
work. Another challenge faced in heterogeneous catalysis results
(4) from the unsystematic heterogeneity of the available data.
Each experimental report typically explores a narrow range of
catalyst compositions and reaction conditions. However, the
employed reaction conditions vary widely between different
publications, which influences the catalytic performance via
chemical kinetics, and makes a meta-analysis challenging.

A significant break-through in terms of the dataset quality was
reported by Zavyalova et al. in 201113 and in a recent follow up14

(see Supplementary Notes 1 and 2 for details). The dataset of
Zavyalova et al.15 was made freely available and covered 1866
distinct catalyst compositions collected from 421 reports. The
dataset provides for the oxidative coupling of methane (OCM)
information on catalyst composition, reaction conditions and
catalyst performance. The study employed formal mathematical
approaches (multiway ANOVA, Pearson’s and Spearman’s cor-
relation coefficients, regression trees) to search for correlations
between catalyst composition and catalyst performance. The
study concluded that some combinations of key elements
contained in a catalyst can contribute to high C2 selectivity or
yield, but did not result in a general model that correlates
catalyst composition to catalytic performance with proven sta-
tistical significance and robustness. Unfortunately, a simple cor-
relation between elemental composition and performance is also
not likely to exist, since materials with the same nominal com-
position can often adopt very different structures and surface
terminations that should result in different OCM performances.
Hence, descriptors other than just elemental composition are
needed.

We report a meta-analysis method that can identify statistically
significant correlations between the physico-chemical properties
assigned to a catalyst material and its performance in a given
reaction. The method employs three distinct sources of infor-
mation to achieve this goal. It incorporates in addition to (i) the
experimental data reported in literature also (ii) general textbook
knowledge about fundamental material properties and (iii) the
experienced intuition of a chemist or material scientist about
possible property–performance correlations. The OCM is used
here as an example to illustrate the approach and derive
property–performance correlations.

Results
Meta-analysis approach. The method is schematically outlined in
Fig. 1. It starts out from the chemist’s intuition expressed as a
hypothesis (iii) about a supposed relationship between the
properties of a catalyst material and its catalytic performance. In a
first step, data on the composition, reaction conditions and per-
formance of different catalysts are assembled from the body of
literature (i) into a dataset (1) for this reaction. Then, related
textbook knowledge (ii) on all relevant elements is collected in the
form of tables that provide, e.g., the ability of an element to form
certain types of chemical compounds (e.g., oxides, carbonates),
their thermal stability, formation enthalpies, and melting points.
Moreover, descriptor rules (2) are derived that define how to
calculate the so-called physico-chemical descriptors that are
required to express the hypothesis (iii). Applying the descriptor
rules to each catalyst entry in the dataset creates an extended
dataset (3) that includes for each catalyst additional physico-
chemical property descriptors. One particular strength of this
procedure is the fact that the descriptors can be computed as a
function of temperature and pressure, i.e., at conditions that
closely reflect the individual conditions at which a catalyst was
experimentally tested in the original experimental report. Hence,
the computed properties closely reflect the state of the catalyst
during the actual performance testing.

The chemical hypothesis (iii) can now be translated into a set
of formal sorting rules (4). These sorting rules express in a formal
way, which descriptors are assumed to correlate with high
catalytic performance. More precisely, a sorting rule states that
a catalyst will be assigned to one specific property group (5) if
the catalyst’s descriptors possess values within a defined range.
Applying the rules to the extended dataset (3) divides the data
into smaller subsets of so-called property groups (5). Then, the
measured performance value of each catalyst is used to compute
for each property group a density distribution of the performance
indicator (6), its averaged value as well as a standard deviation.
If the descriptors chosen in step 4 represent properties that are
indeed relevant to the catalysts performance, then the perfor-
mance distributions (6) should differ significantly between the
corresponding property groups. However, these performance
distributions do not account yet for the fact that each catalyst was
measured at different reaction conditions.

In order to compensate for these differences in reaction
conditions, a multivariate regression analysis (7) is invoked that
approximates the influence of, e.g., temperature (T) and the ratio
of feed gases (here: pCH4/pO2). Moreover, it considers to which of
two compared property groups a given catalyst had been
assigned. The regression procedure adjusts all regression
coefficients βi in order to minimize the deviation between
experimental and computed yield values over all entries in the
two groups. The computed regression results (8) quantify the
influence of temperature (βT), pressure ratio (βCH4/O2), and most
importantly, the effect of belonging to either one of the two
compared catalyst groups (βgroup) on the catalysts performance
(YC2). The results significance is judged via a t-test that calculates
for each β-regression coefficient a corresponding p-value. Low
p-values (p < 0.05) indicate a high statistical significance, with,
e.g., p < 0.05 implying a confidence exceeding 95% that two
compared catalyst groups are indeed distinctly different in their
performance (All p-values reported in this paper were obtained
via t-test, see method section and Supplementary Note 8 for
further details.).

In step (9), the obtained models are compared to additional
spectroscopic, computational and fundamental evidence from
literature. An iterative refinement of hypotheses (iii), descriptors
(3), sorting rules (4) and if possible also the studied data (2) results
in robust and statistically significant property–performance models.
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Literature OCM dataset. The oxidative coupling of methane
aims to convert methane and oxygen selectively into C2 coupling
products (ethane, ethylene) while avoiding total oxidation16. The
OCM reaction is catalyzed by numerous materials with very
diverse elemental compositions17. Economic viability of the
process would require C2 yields well above the best values (ca.
30%) reported so far17,18. Despite decades of research, the reac-
tion mechanism is not fully understood even for extensively
studied catalyst such as Li/MgO and Mn-Na2WO4/SiO2

19,20. It is
generally presumed that the reaction network involves gas-phase
reactions coupled to reactions at the catalyst surface21–23, where
surface defects facilitate C–H bond activation. Unfortunately, the
required high reaction temperatures (500 to 1000 °C)20 obstruct
many common in situ analytical tools. Hence, definite proof
exists so far neither for the relevance of such defects under
practical operation conditions nor the critical contribution of gas-
phase reactions. Moreover, no generally valid correlation between
a catalyst’s composition, its structure and its OCM performance
has been established yet.

We illustrate the developed meta-analysis approach in a
complete re-analysis of the OCM data compiled by Zavyalova
et al 13 after corrections and outlier removal from the data (see
Supplementary Note 3). The data is represented by a table that
contains 1802 rows (different catalyst compositions) and 37
columns (see Supplementary Note 4 and Supplementary Data 1).
The columns encode for each catalyst (a) the elements contained
in the catalyst and their molar fractions, (b) parameters indicating
the reaction conditions (T, pCH4, pO2, pCH4/pO2, ptotal, contact

time) and (c) numerical values that describe catalyst performance
(XO2, XCH4, SCOx, Sethane, Sethene, SC2, YC2). Out of these categories,
elemental composition, reaction temperature (T), reactant partial
pressure ratio (pCH4/pO2) and C2 yield (YC2) were evaluated.
Figure 2 displays for the corrected dataset exemplarily YC2 as a
function of (a) reaction temperature, (b) pCH4/pO2, and (c)
contact time to illustrate the covered data range and the data
heterogeneity. (See also Supplementary Note 20 for individual
catalyst examples Li–Mg and Mn–Na–W–Si.)

Derived final model. Numerous hypotheses were tested. The
derived best model employs four different hypotheses to divide
the OCM dataset into a total of 18 different property groups as
illustrated by the tree-like representation shown in Fig. 3. Each
displayed box represents a group of N catalysts. Starting out from
the complete dataset (group 0, n= 1802), the physico-chemical
criteria related to hypothesis (1) divide the contained catalysts
into two subgroups (groups 1a, 1b). The subsequently applied
hypotheses (2), (3), and (4) divide these subgroups further,
resulting in 10 terminal subgroups 1a, 4a…4h, and 2d. For each
terminal subgroup, the respective five most frequent catalyst
compositions are listed in Fig. 3 (see Supplementary Note 10 for
a complete list of the catalysts contained in each group). Bold
box frames indicate on each level the catalyst group that shows
the best catalytic performance in terms of average C2 yield.

Figure 4a displays in a similar representation the most
important results of the regression analysis and statistical
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Fig. 1 Proposed meta-analysis approach. Starting out with (i) experimental catalytic data reported in literature, (ii) general textbook knowledge and (iii) a
researchers chemical intuition a working hypothesis is formulated, processed, tested against the data for its statistical significance, and iteratively refined
into a property–performance model (steps 1–9). Bold arrows mark the flow of the data. All specific examples relate to the studied OCM reaction and
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evaluation that produced the final model displayed in Fig. 3.
For each group, a diagram is provided that illustrates the C2

yield distribution within the group along with the mean C2 yield
(�YC2,uncorr, marked by a dashed line, i.e., YC2 prior to regression
analysis) and its standard deviation. The horizontal arrows that
connect two respective boxes represent the performed statistical
tests. Figure 4b summarizes the final model outcome in terms
of performance (�YC2,corr) for each terminal group. All observed
p-values are lower than 0.005, which underlines the extremely
high statistical significance of the derived final model.

Hypothesis 1—ability to form at least one carbonate compound:
An initial assessment of the dataset gave the impression that
many OCM catalysts contain components that can form a
carbonate. Hypothesis 1 therefore proposes that a good OCM
catalyst contains at least one chemical element that is known
to form a carbonate compound.

All catalysts that can form at least one carbonate were assigned
to group 1b “Can form a carbonate”, all other catalysts to group
1a “Cannot form a carbonate” (Fig. 3). Only a small fraction of
catalysts (n= 38) is not able to form any carbonate, whereas the
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level. “t.d.” and “carb.” refer to “thermodynamically” and “carbonate”, respectively. A full list of catalyst compositions (i.e., cation combinations) is provided
in Supplementary Data 5
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vast majority of reported catalysts can form at least one carbonate
(1b: n= 1764) (Fig. 3).

Catalysts that can form at least one carbonate (1b) show on
average a 7.6 % higher yield of C2 hydrocarbons (�YC2,uncorr= 9.7
%) than catalysts in group 1a (�YC2,uncorr= 2.1 %). The
difference in C2 yield computed via multiple regression analysis
(Δ�YC2,corr= βgroup=+ 7.51) proves to be statistically highly
significant on a >99.5 % confidence level (p < 0.005). Also the
regression coefficients obtained for temperature (βT=+0.0015;
p= 0.000) and pressure ratio pCH4/pO2 (βCH4/O2=−0.452; p=
0.000) show high statistical significance with higher C2 yields
corresponding to higher temperatures and higher oxygen partial
pressures (see Supplementary Note 9 for a discussion and
interpretation).

Group 1a contains mostly Si, Al, V, W, Nb, Sn, Pt, Ti, and
combinations thereof (Fig. 3), i.e., elements typically not
associated with high OCM activity. In contrast, group 1b includes
all the usual suspects of high OCM performance, i.e., the Li/MgO
system (Li–Mg), catalysts based on lanthanum oxide and calcium
oxide, as well as variations of the Mn–Na2WO4/SiO2 system (see
Supplementary Note 10 for full list). Hence, hypothesis 1 is able
to sort catalysts that are not very active (silica, alumina) or
combust methane unselectively (vanadium on silica, Pt) into

group 1a using an objective chemical criterion. Thus, statistical
noise is removed from the remaining set of catalysts (1b).

Hypothesis 2—presence of a stable oxide acting as a support:
Many reported OCM catalysts feature two components. One of
the components often appears to be able to form a thermally
stable metal oxide. Such metal oxides are frequently used in
heterogeneous catalyst to support an active phase. Hypothesis 2
therefore defines two criteria that attempt to describe a property
“catalyst support”. Criterion (i) states that among all the oxides
that can possibly be formed by a catalyst’s cations, at least one
oxide is present that possesses a Tammann temperature higher
than the individual temperature at which the catalyst was tested
in OCM. An additional criterion (ii) imposes that the mass
content of this stable oxide amounts to at least 50 wt% of the
catalyst’s constituents, assuming that they are present in the form
of their respective most stable oxides. An additional criterion (iii)
used for the group assignment is the presence of an element other
than the designated support oxide, and its ability to form a
carbonate.

A catalyst was assigned to group 2a “unsupported” (n= 197) if
none of a catalyst’s components fulfilled both support criteria (i)
and (ii) (Fig. 3). Group 2b “supported” (n= 1257) represents all
catalysts where one component fulfils both support criteria (i, ii),
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and where an additional cation is present that is able to form a
carbonate. Catalysts were assigned to group 2c “self supported”
(n= 263) when a catalyst contained only one component, and if
this component satisfied both support criteria AND could form a
carbonate. All remaining catalysts were assigned to group 2d “not
assigned” (n= 47) for further noise reduction.

Catalysts in group 2b “supported” showed higher C2 yields
(�YC2,uncorr= 10.7%) than catalysts in the group 2a “unsupported”
(�YC2,uncorr= 7.7%) and group 2c “self-supported” (�YC2,uncorr=
6.5%). The differences are statistically highly significant.

The best-performing group (2b “supported”) features the
highest number of catalyst entries (n= 1257) and contains most
of the classical OCM catalysts (e.g., Li/MgO, Mn–Na2WO4/SiO2).
Most group entries consist of a binary combination of La or alkali
metals with an alkaline earth element (Li–Mg, Na–Ca, Li–Ca).
Typically, the support criteria are satisfied by the thermally stable
oxide of the alkaline earth element. Many of the cation
combinations that include heavy metals (Pb, Bi) and alkali
elements (Li, Na, K, Cs) are assigned to group 2a “unsupported”
because their respective (super)oxides fail the thermal stability
criterion (i), or because the stable oxide is not present in
sufficiently large amounts (ii). The “self-supported” catalysts 2c
contain only a single cation, which is either a lanthanide or an
alkaline earth element, and forms a thermally stable oxide. The 47
catalysts placed in group 2d “not assigned” comprise mostly
binary combinations that contain a large amount of a stable
support oxide, but fail criterion (iii) because the second element
(that is not the designated support) cannot form a carbonate.

Hypothesis 3—ability of the support oxide to form a carbonate:
Hypotheses 1 and 2 suggest that the ability to form a carbonate
plays a critical role in OCM catalysis. All catalysts retained in
group 2b contain at least one element that can form a carbonate,
and another element that can form a thermally stable oxide.
Hypothesis 3 tests, if also for this support oxide the ability to form
a carbonate impacts a catalyst’s OCM performance.

All catalysts for which the designated support oxide can form a
carbonate were assigned to group 3a “carbonate-supported” (n=
935), all other catalysts to group 3b “oxide-supported” (n= 322).
Most of the “carbonate supported” catalysts consist of La or an
alkali element combined with an alkaline earth element where
typically the alkaline earth elements provide the support
functionality. The “oxide-supported” catalysts (the designated
support oxide cannot form a carbonate) comprise mostly alkali
and alkaline earth elements or Na2WO4 supported on either
alumina, silica or titania (see element combinations listed in
groups 4e and 4f in Fig. 3).

The carbonate-supported catalysts (group 3a, �YC2,uncorr=
11.5%) clearly outperform the oxide-supported group 3b (8.6%)
by about 2.9% C2 yield (βgroup= -3.30) and with high statistical
significance (p= 0.000), providing further evidence for the
beneficial and important role of carbonates in OCM catalysis.

Hypothesis 4—thermodynamic stability of carbonates during
OCM: A property often attributed to good OCM catalysts is their
so-called basicity24–27. One possible measure for the basicity of a
metal oxide is its ability to form a carbonate and the carbonate’s
thermal stability. If such a carbonate is thermodynamically stable
also at the high temperatures of OCM, then the carbonates are
likely to be present on the catalyst surface during the OCM
reaction.

Hypothesis 4 therefore assesses the thermodynamic stability
of all carbonates that can be formed by the elements present
in a catalyst by comparing the decomposition temperature of
the most stable carbonate to the temperature at which the
OCM performance was measured. A catalyst is assigned to a
subgroup “carbonate thermodynamically stable” if the OCM
test was performed at a reaction temperature that is lower

than the temperature at which the most stable contained
carbonate decomposes (corrected for a constant offset that
accounts for experimental uncertainties and dependence of
carbonate decomposition equilibria on CO2 partial pressure,
here: TOCM measurement < Tcarbonate decomposition+ 100 K; for other
offsets see Supplementary Note 14h-k).

Hypothesis 4 was applied to all subgroups that had been
derived via positive sorting criteria in the previous hypotheses
(i.e., not to the “not-groups” 1a and 2d). It divides the groups 2a,
3a, 3b, and 2c into the respective subgroups 4a, c, e, g (“no
thermodynamically stable carbonate”), and subgroups 4b, d, f, h
(“at least one thermodynamically stable carbonate”) (Fig. 3).
Three out of four corresponding comparisons, i.e., 4a/4b, 4c/4d,
4e/4f, show a strong statistical significance indicated by p-values
being equal or lower than 0.026 (Fig. 4a). In all three statistically
significant cases the catalysts that can form at least one
thermodynamically (“t.d.”) stable carbonate outperform the
corresponding catalysts that cannot form a stable carbonate,
with C2 yields �YC2,corr being higher by 2.04% (4a/4b), 2.36% (4c/
4d), and 5.11% (4e/4f) (see βgroup values in Fig. 4a).

Despite the fact that the two most common OCM catalyst types
(Li/MgO, Mn–Na2WO4/SiO2) were assigned to different groups
on level 3 (Li–Mg: 3a; Na–Mn–W–Si: 3b), both end up in the
respective subgroups that can form at least one t.d. stable
carbonate (Li–Mg: 4d; Na–Mn–W–Si: 4f). In general, the role of
the thermodynamically most stable carbonate is typically fulfilled
by alkaline, alkaline earth, or lanthanide elements in the
subgroups 4b/d/f/h. In absence of these elements no thermo-
dynamically stable carbonate can be formed and lower yields are
observed (see Supplementary Note 13 for a more detailed
discussion).

Hypothesis 4 thus illustrates another strength of the method:
the same sorting criteria can be applied to different groups, in this
case groups derived on hypothesis levels 2 and 3. Consistent
results obtained across different groups point towards a general
validity of the proposed effect.

Model robustness. The robustness of the final model (Figs. 3
and 4) was assessed using different approaches of parameter
variation, changing the independent variable to ln(YC2) and with
a so-called “robust regression” (see Supplementary Notes 14–18
for details). The model retained the same statistically significant
correlations, except for few instances where some correlations on
level 4 lost their statistical significance. The final model is
therefore highly robust despite the data heterogeneity, potential
publication bias within the data and the small size of some of the
formed terminal groups.

Discussion
The derived model reveals clear property–performance correla-
tions. It establishes for the first time a generalized set of physico-
chemical properties that discriminate between high- and low-
performing OCM catalysts. Four simple hypotheses suffice to
divide 1802 catalysts into 10 groups of distinct properties and
OCM performance (Fig. 4b). Following the path of the best-
performing groups on each hypothesis level indicates a combi-
nation of properties that correlates with high C2 yields. The
model predicts the highest C2 yield (4d, �YC2, corr= 11.8%) when
(1b) at least one of the elements contained in the catalyst can
form a carbonate, (2b) the catalyst contains an additional element
that forms a thermally stable oxide, (3a) this oxide is also able to
form a carbonate, and (4d) at least one of the possible carbonates
is thermodynamically stable at the applied OCM reaction tem-
perature. Also a comparison of the best-performing terminal
group 4d with each other terminal group (1a, 4a-h, 2d) in terms
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of yield difference (βgroup) and p-value shows a very high statis-
tical significance (p < 0.005).

The nature of the hypothesis formulation in terms of chemical
conditions facilitates a direct physico-chemical interpretation.
Good OCM catalysts comprise at least two elements, with one of
the elements being able to form a carbonate at the temperatures
of OCM reaction, and a second element that can form a thermally
stable (non-sintering) oxide under OCM conditions (hypothesis
2). Good OCM catalysts thus provide two functionalities, i.e., a
“support” and an “active phase”. The thermally stable oxide
(alkaline earth and lanthanide oxides, alumina, silica, titania) acts
as support and provides a high surface area during OCM (2b).
The active phase appears to be related to the ability to form a
carbonate. The ability to from a carbonate24 is one out of several
possible descriptors for basicity (Smith scale28; optical basicity29,
an ionic-covalent parameter30). Basicity has been proposed by
many authors as an important feature of OCM catalysts13,24–26,31.
However, no general quantitative model for the impact of basicity
on OCM performance has been established so far.

The ability to retain a stable carbonate at the studied OCM
temperature results in higher C2 yields (hypothesis 4). Hence, the
actual presence of carbonates during OCM is likely. Carbonates
could therefore contribute to the reaction, i.e., via ongoing tran-
sitions from carbonate into oxide and vice versa, which would
continuously produce new defect sites32. However, the presence
of carbonate phases can assist also the formation and stabilization
of peroxide species33–36. Such peroxides species could activate
methane in a selective fashion to generate methyl radicals32,35,37.
Otsuka et al.38,39 reacted CH4 with bulk peroxides (Na, Sr, Ba)
and observed C2 coupling products already at 400 °C.

C2 yields benefit also from the ability of the support oxide to
form a carbonate (3a “carbonate-supported”). Possibly, carbonate
formation suppresses unselective combustion of methane and C2

hydrocarbons, which was reported to occur on oxide-supports
(Al2O3

40, SiO2
41, and TiO2

42, group 3b “oxide-supported”).
The essential role of carbonates in the model provides a clear

incentive to rethink the classical OCM reaction mechanism and
in particular the role of CO2. Carbon dioxide was so far typically
regarded only as an undesired byproduct. However, the only way
that carbonates can form during OCM is a reaction with CO2.
Hence, CO2 could be essentially required to stabilize carbonate
phases that contribute directly to C2 formation or prevent further
oxidation of C2 products. This could provide also a new

explanation of the observation that a maximum of ca. 30% C2

yield has not been overcome so far when feeding CH4/O2 mix-
tures to the reactor17. Methane combustion would be essentially
required to form CO2 and the carbonate phase, thus limiting the
achievable C2 yield. Supplying the required CO2 to the catalyst via
CO2 co-feed instead of methane combustion could provide a
simple path to improved C2 yields.

The influence of CO2 was experimentally verified. The stability
of a carbonate depends on both temperature and CO2 partial
pressure. Increasing the CO2 partial pressure should increase the
carbonate’s stability, which, according to the model, should
increase the C2 yield. We tested this effect experimentally using
nine different catalysts belonging to group 3b (see Supplementary
Note 19). Figure 5 compares the C2 yields measured at 800 °C,
both in the absence and in the presence of CO2 co-feed. When
carbon dioxide is added to the OCM feed the observed C2 yields
either increase (by up to 2.5%) or remain constant. For the alu-
mina support alone, which cannot form a carbonate, CO2 addi-
tion does not have a measurable impact. The experimental data
further support the model interpretation that carbonates are
likely to be formed during OCM and result in higher C2 yields.

The following paragraphs discuss the power of the developed
meta-analysis method as well as current limitations. The exem-
plarily performed evaluation of 1802 observations in OCM cat-
alysis provides a clear picture of physico-chemical properties that
have a statistically significant impact on the observed C2 yield.
What sets the presented meta-analysis apart from previous work
is that chemical knowledge and chemical reasoning become an
integral part of the analysis, i.e., a chemical instead of mathe-
matical perspective.

The method yields a robust and meaningful model, with C2

yield distributions becoming narrower with each model level. Yet,
a considerable variety of C2 yields remains within each property
group. This could be improved by further refined hypotheses,
additional property descriptors, or more complicated combina-
tions/interactions of the catalyst constituents.

A substantial contribution to the broadness of the distribution
results from the variance in the underlying data (see Supple-
mentary Note 20 for yields reported, e.g., Li/Mg and Mn/Na/W/
Si). This could result from the diversity of employed experimental
conditions, but also subtle changes in the synthesis procedure that
can strongly influence the structure and performance of a catalyst.
In future work it would be desirable to incorporate also intricate
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Fig. 5 Experimental verification of the influence of CO2 co-feed in OCM. The effect of adding CO2 to the OCM feed gas was measured for nine different
alumina-supported catalysts as well as the bare alumina support. The yield of C2 hydrocarbons (ethane plus ethylene) measured at 800 °C is plotted for
two different feed conditions, i.e. with CO2 co-feed (green bars, CH4/O2/N2/CO2= 26.2: 14.8: 3.0: 56.0 and without CO2 co-feed (gray bars, CH4/O2/N2

= 26.2: 14.8: 59.0). Within the limits of experimental accuracy, CO2 addition either increases YC2, or shows a negligible effect for all studied catalyst. All
catalysts were prepared and measured under identical conditions, changing only the precursors employed to support the different active metals
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details such as catalyst structures, synthesis recipes or kinetic
information.

One major advantage of our approach is the combination of
experimental data with sound chemical textbook knowledge.
Thus, hypotheses with a high level of abstraction can be for-
mulated. Pioneering work of, e.g., Schueth43–46, Rothenberg47–51,
and Baumes52,53 provides access to more advanced descriptors.
Also descriptors based on DFT calculations54–58, e.g., efficiently
computed d-band centres59, could be incorporated. Alternative
basicity descriptors such as the Smith scale28, optical basicity29, or
the ionic-covalent parameter30 should be implemented to test
whether OCM performance is primarily governed by basicity
or indeed the presence of carbonates. In the future, hypotheses
could be generated via rapidly improving algorithms and
machine-learning approaches (see e.g., refs. 60–62 for excellent
reviews), or following schemes suggested by Rothenberg and co-
workers50,63,64.

In general, statistical tools can explore only correlations
between variables that are quantitatively accessible. Quantity,
quality, and distribution of literature data could be improved by
adopting standardized testing and benchmarking procedures for a
particular reaction65,66, depositing complete sets of original data
in open repositories and using data formats designed for facile
data sharing67.

The developed meta-analysis method allows the identification
of catalytic property–performance correlations hidden in the vast
body of existing experimental research. Applying the method to
the OCM, we identify general correlations between a material’s
physico-chemical properties and its OCM performance. Good
catalysts comprise at least two elements, with one element being
able to form a thermodynamically stable carbonate at the tem-
peratures of OCM reaction, and a second element forming a
thermally stable (non-sintering) oxide under OCM conditions.
Good catalysts apparently require a support that provides a high
surface area at OCM temperatures, and carbonate(s) that either
contribute directly to C2 formation and/or prevent subsequent
unselective oxidation of the C2 products. Future work could
assess the specific role of CO2 and carbonates in OCM using, e.g.,
in-situ spectroscopic experiments or quantum-chemical calcula-
tions. In a broader context, the developed meta-analysis method
provides a generic and open platform for data science in het-
erogeneous catalysis. The concept allows the extensions to other
reactions, more complex and fundamental descriptors derived,
e.g., from quantum chemistry, and ultimately also the incor-
poration of a catalyst’s structure. Consequently, it could empower
all chemists to work as data scientists and explore the full
potential of their valuable experimental data.

Methods
Dataset corrections. The dataset compiled by Zavyalova et al.13 was corrected for
errors (wrong temperature or composition, duplicate entries) based on a com-
parison with the original literature. Some entries were removed that contained
highly unusual feed compositions and contact times, lacked essential information
(T, pCH4, pO2) or were not measured in continuous-flow with methane and oxygen
co-feed. Moreover, we removed the predefined data categories “promotor” and
“support”, to which Zavyalova et al.13 had assigned some elements, and reassigned
the respective elements to the more general categories “cation” and “anion” (see
Supplementary Note 3 and Supplementary Note 4). The corrected dataset is
available as Supplementary Data 1 (20160720_corrected-dataset_.xls).

Physico-chemical properties. The physico-chemical properties of individual
chemical elements and chemical compounds formed by these elements were
compiled from literature and own measurements. The properties include the molar
mass of an element, its position in the periodic table, the ability to form a
carbonate, and the carbonate’s decomposition temperature (thermal stability,
indicator for basicity). Moreover, properties of potentially formed oxides were
incorporated (oxidation number, the stoichiometry of the most stable oxide, and
the oxide’s melting point). From this melting point, the Tammann temperature68

was computed as a measure of the onset of sintering and loss of surface area.

Supplementary Note 5 describes the complete property table, the respective data
are provided as Supplementary Data 2 (20160811_element-properties.xls).

Physico-chemical descriptors. The physico-chemical descriptors were computed
by a set of instructions that combine values extracted from the OCM catalyst table
as well as the elemental-property table. The descriptor values were written into new
columns (so-called dummy variables) of an extended data file. Important
descriptor categories employed in the present study are the ability of each catalyst
component (e.g., “cation”) (i) to form a carbonate compound, (ii) the thermal
stability of this carbonate, and (iii) the ability to form a sufficiently stable oxide that
could act as catalyst support. A value “true” (“1”) is assigned to a carbonate
descriptor (i) if the respective catalyst component is able to form a carbonate.
Descriptor (ii) describes whether this carbonate is stable under OCM reaction
conditions. A value “true” is assigned if the OCM reaction is measured at a tem-
perature that is lower than the actual temperature at which the carbonate starts to
decompose, corrected for an offset that accounts for experimental uncertainties
(TOCM measurement < Tcarbonate decomposition+ 100 K). A “true” value is assigned to the
respective support descriptors (iii) if the catalyst contains a cation that can form a
thermally stable oxide, i.e., an oxide that possesses a Tammann temperature
(TTammann= Tmelt,oxide × 0.6) higher than the actual temperature at which the OCM
data were measured for the catalyst, and if the concentration of this oxide
amounted to at least 50 wt% of the catalysts constituents, each in the form of its
most stable oxide. The descriptor rules take the reaction temperature explicitly into
account for each catalyst, hence the same descriptor can adopt different values
depending on the actual conditions under which a catalyst was measured. Sup-
plementary Note 6 provides further details on descriptor computation and
resulting values. Respective data are provided in Supplementary Data 3
(20160729b_corrected_preprocessed_dataset_descriptors_.xlsx).

Sorting rules. Sorting rules assigned each catalyst entry to one of at least two
distinct “property groups” based on the values of the corresponding descriptor
variables. In the studied OCM example, sorting rules were implemented to generate
property groups that, e.g., (1) contain at least one element that can form a car-
bonate (“can form carbonate”), that (2) contain at least one additional element that
fulfils the proposed support criterion of a stable and abundant oxide (“supported”),
evaluate (3) whether the element that has been assigned the support function is also
able to form a carbonate (“carbonate-supported”), and probe (4) whether the
carbonate with the highest decomposition temperature is thermodynamically stable
under the respective OCM conditions. Thus, very complex and hierarchically
nested hypotheses can be formulated. Supplementary Note 7 discusses the
employed sorting rules in detail. Respective data are provided in Supplementary
Data 4 (20160729b_corrected_preprocessed_dataset_property_groups.xlsx).

Regression analysis. A multiple regression analysis was employed in order to
quantify the performance difference between catalysts assigned to two different
property groups while compensating also for the effect of differences in the OCM
measurement conditions. OCM catalysts are often compared based on the obtained
yield of C2 products. However, it is obvious from chemical kinetics that the
measured C2 yield is critically influenced not only by a catalyst’s composition, but
also the reaction conditions (T, pCH4, pO2, ptotal, contact time) employed in a
catalytic test. Due to the lack of standardized OCM test protocols, employed
operation conditions vary significantly between different literature reports.
Unfortunately, the limited amount of catalytic data available in the studied dataset
did not allow a complete kinetic description for each catalyst. In order to mitigate
this problem to some extent, the regression equation (1) implements a linear
correction for the variables “ratio pCH4/pO2” and “temperature”:

Yi ¼ β0 þ βgroup ´Dgroup;i þ βT ´ΔTi þ βCH4=O2 ´ΔpCH4=O2;i þ Ui ð1Þ

whereas the dummy variable Dgroup,i{0, 1} describes to which of the two compared
property groups each catalyst i had been assigned. The regression procedure then
adjusts all β values in order to minimize the sum of squares of the residuals Ui

between experimental (Yi) and computed yield values over all entries in the two
groups. The derived β values quantify the influence of temperature (βT), pressure
ratio (βCH4/O2), and most importantly, the effect of belonging to either one of the
two compared catalyst groups (βgroup) on YC2. Hence, βgroup is the obtained
quantitative measure (in terms of corrected C2 yield) for the influence of a set of
physico-chemical properties on the catalytic performance in OCM.

Significance testing. The statistical significance of information derived from each
β regression coefficient was judged via a t-test. The t-test relates the value of a β
regression coefficient to its estimated standard error. From this, a probability value
p is calculated for each β regression coefficient. It gives the significance of the
observed effect by the probability that an estimated β value is decided to be non-
zero, whereas the true value is zero. Lower p-values correspond to a lower
probability of erroneous assignment of an effect, and thereby a high statistical
significance of the observed effect. A p-value < 0.05 corresponding to a confidence
of 95% is typically used as indicator of statistical significance. The p-values
p= 0.000 (equivalent to p < 0.0005) obtained for most of the hypotheses of our
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OCM example corresponds to a confidence exceeding 99.95% that two compared
catalyst groups are indeed distinctly different in their C2 yield. Supplementary
Note 8 provides details on the employed regression analysis and significance
testing. Supplementary Note 9 illustrates the results of a typical regression analysis
exemplarily for the tested OCM hypothesis 1 with respect to group assignment,
pressure ratio, temperature, β values, p-values, and property distributions.

Estimation strategy. The estimation strategy evaluates four different
property–performance hypotheses labeled (1, 2, 3, 4) that divide the initial OCM
data successively into smaller subgroups (1a, 1b,…). All individual hypotheses are
then assembled into one overall property–performance model (Figs. 3 and 4). The
best-performing property group is identified and compared to each other subgroup
in terms of YC2.

Robustness. The robustness tests for the final model varied systematically the
threshold values of important descriptor values (4× wt% of support oxide (Sup-
plementary Note 14a–d), 3× Tammann factors (Supplementary Note 14e–g), 4×
offsets for carbonate stability (Supplementary Note 14h–k)). Moreover, the
regression analysis was performed also without reaction-condition compensation
(Supplementary Note 15), and with a frequency-weighted multiple regression that
accounts for the different frequency of elemental catalyst composition reported in
the database (Supplementary Note 16). Moreover, the regression was performed
with ln(YC2) as independent variable instead of YC2, (Supplementary Note 17) and
using a so-called robust regression approach that reduces the influence of outliers
in the data (Supplementary Note 18).

Result presentation. The regression results are presented in terms of the number
of catalysts assigned to each group (N), the effective (corrected) difference in C2

yield (regression coefficient βgroup, in mol% C2) between two compared groups
along with the p-value corresponding to the regression coefficients (three sig-
nificant digits). Moreover, the arithmetic mean of uncorrected C2 yield (�Y , in mol%
C2) and corrected (�Ycorr) are reported along with the corresponding standard
deviation. The presented diagrams display for each subgroup the density of yield
observations vs. the uncorrected C2 yields (see Supplementary Note 12 for details
on the calculation of density plots via Epanechnikov kernel density). Supplemen-
tary Data 5 (20160713_list_cat-combination_property-groups_.xlsx) provides for
the final model a full list of catalyst compositions (i.e., cation combinations)
contained in each property group.

Catalytic testing and experimental validation. Catalytic tests were performed to
validate the main findings. Alumina-supported catalysts containing similar load-
ings of the precursor of either one alkali element (Li, Na, K, Rb, Cs) or one alkaline
earth element (Mg, Ca, Sr, Ba) were prepared via impregnation of the corre-
sponding carbonate or acetate onto the same pre-calcined alumina support. The
employed γ-Al2O3 support was supplied by Südchemie/Clariant as pellets (Al2O3-
100), which were ground, sieved to a size fraction of 200–500 µm, and calcined for
12 h at 800 °C in air. The support was then loaded via wet impregnation with
aqueous solutions (alkali carbonates, alkaline earth acetates) and dried at 60 and
150 °C under vacuum, i.e., following a procedure adapted from Kusche et al.69

Catalyst loadings amounted to 23.1 wt% of the employed salt in anhydrous state
(alkali elements: carbonates; alkaline earth elements: acetates).

OCM catalytic tests were performed in a parallel fixed bed reactor featuring 48
quartz tube reactors with 4 mm inner diameter. Each tube carried 50 mg catalyst
powder 300 mg of pre-calcined SiC granules placed upstream to ensure efficient
feed preheating. Catalytic performance was measured in 25 K intervals (450 °C →
5 K/min ramp → 475 °C,…) up to 850 °C, holding each temperature to analyze
product composition via GC14. OCM testing was performed with two different feed
compositions, i.e., CH4/O2/N2 (26.2:14.8:59.0) and CH4/O2/N2/CO2

(26.2:14.8:3.0:56.0), using fresh catalysts for each run and a flow rate of 14.7 Nml/
min per reactor channel.

Data availability
All data employed in this work are available in the Supplementary Files.
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