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Abstract

Background: Neurons and astrocytes are generated from common neural precursors, yet neurogenesis precedes astrocyte
formation during embryogenesis. The mechanisms of neural development underlying suppression and de-suppression of
differentiation- related genes for cell fate specifications are not well understood.

Methodology/Principal Findings: By using an in vitro system in which NTera-2 cells were induced to differentiate into an
astrocyte-like lineage, we revealed a novel role for Sin3A in maintaining the suppression of GFAP in NTera-2 cells. Sin3A
coupled with MeCP2 bound to the GFAP promoter and their occupancies were correlated with repression of GFAP
transcription. The repression by Sin3A and MeCP2 may be an essential mechanism underlying the inhibition of cell
differentiation. Upon commitment toward an astrocyte-like lineage, Sin3A- MeCP2 departed from the promoter and
activated STAT3 simultaneously bound to the promoter and exon 1 of GFAP; meanwhile, olig2 was exported from nuclei to
the cytoplasm. This suggested that a three-dimensional or higher-order structure was provoked by STAT3 binding between
the promoter and proximal coding regions. STAT3 then recruited CBP/p300 to exon 1 and targeted the promoter for histone
H3K9 and H3K14 acetylation. The CBP/p300-mediated histone modification further facilitates chromatin remodeling,
thereby enhancing H3K4 trimethylation and recruitment of RNA polymerase II to activate GFAP gene transcription.

Conclusions/Significance: These results provide evidence that exchange of repressor and activator complexes and
epigenetic modifications are critical strategies for cellular differentiation and lineage-specific gene expression.
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Introduction

During embryonic development, the generation of three major

neural cell types (neurons, astrocytes, and oligodendrocytes) in the

central nervous system (CNS) sequentially occurs, whereby almost

all neurons are generated before the appearance of glial cells [1,2].

Recent findings demonstrated that glial cells are important in

critical neuronal maturation processes such as axonal pathfinding,

synapse formation, neurotransmitter transport, metabolic func-

tions, and the response to CNS injury [3–6]. Although rodent

brain cultures and neuronal and glial cell lines have provided us

with important information about the structure and function of the

mammalian CNS, we have scanty understanding of astrocytic

differentiation.

There has been longstanding interest in understanding how the

process by which progenitors differentiate into different cell types is

regulated. In a mouse model, the fate of progenitors in the

developing brain is believed to be determined by external cues that

involve various types of cytokines and internal cellular programs.

External cues such as bone morphogenetic proteins, leukemia

inhibitory factor, ciliary neurotrophic factor, Notch-Delta, and basic

fibroblast growth factor promote astrocytic differentiation [7–13],

and most of these factors influence the essential astrogliogenic Janus

kinase-signal transducer and activator of transcription pathway

[14–17]. A molecular basis for the cooperative action between these

families of cytokines involves the formation of a STAT3-Smad1

complex with the coactivator, p300/CBP, that initiates astrocyte-

specific gene expression [15,18–20].

Intrinsic programs regulating cell fate determination of progen-

itors include epigenetic modifications such as DNA methylation and

chromatin remodeling. Methylation of the STAT-binding element

within the glial fibrillary acidic protein (GFAP) promoter in mice

was shown to inhibit the association of activated STATs with the

glial promoter, thereby repressing transcription of the GFAP gene

[10,16,21]. Furthermore, conditional deletion of the maintenance

DNA methyltransferase I from neural progenitor cells (NPCs)
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suggests that DNA methylation regulates the timing and magnitude

of astrogliogenesis [22]. Another class of epigenetic modifications

was found from FGF2, which regulates the ability of ciliary

neurotrophic factor to enhance astrocyte differentiation by inducing

H3 Lys4 dimethylation and suppressing H3 Lys9 dimethylation at

the STAT3-binding site, resulting in access of the STAT/CBP

complex to the GFAP promoter and activation of GFAP expression

[16]. Those reports highlight the diverse epigenetic mechanisms

that control lineage-specific gene expression; however, it remains

unclear how the interplay among DNA methylation, transcriptional

repressors or activators, and histone modifications contributes to

regulation of the processes.

In this study, we used a human embryonal carcinoma cell line,

NTera-2, to develop a model that induces the differentiation of these

cells into an astrocyte-like lineage. NTera-2 is derived from a human

teratocarcinoma which shares many characteristics of neuroepithelial

precursor cells and is widely used as a tool to study the early

development of the human CNS and identify new genes involved in

neurogenesis [23–25]. We also used this system to investigate the

mechanisms underlying GFAP activation. We identified components

of the Sin3A-HDAC complex coupled with MeCP2 present at the

GFAP promoter under undifferentiated conditions. Upon differen-

tiation, the promoter underwent a conformational change triggered

by STAT3 binding, which contributes to CBP/p300-mediated

histone modification and assembly of a transcription preinitiation

complex, resulting in GFAP gene activation.

Materials and Methods

Cell lines and reagents
NTera-2, 3T3, and 293T cells were obtained from the American

Type Culture Collection (Rockville, MD, USA). Cells were cultured in

Dulbecco’s modified Eagle medium (DMEM; Invitrogen, Durham,

NC, USA) containing 10% fetal bovine serum (FBS; JRH Bioscience,

Lenexa, KS, USA), 0.2 mM GlutaMax-1 (Invitrogen), and penicillin/

streptomycin (100 units/mL; Invitrogen). Cells were split every 2 days

in a 0.5% trypsin-EDTA solution and maintained until used.

Design of the Oct-4 RNAi vector
An oligonucleotide containing a stem-loop structure targeting the

Oct-4 gene was designed using the RNAi program (http://athena.

bioc.uvic.ca/). The targeted sequence was GCGAACCAGTATC-

GAGAAC in the Oct-4/POU5F1 gene (515,534 nt; accession

no. NM_203289). This sequence was first cloned into a pBS/U6

vector. Then the U6-RNAi cassette was subcloned into a lentiviral

vector, pFUGW [26], and the sequences were verified by DNA

sequencing.

Lentiviral production and NTera-2 cell transduction
Lentiviral vectors were produced by transient co-transfection of

pCMVDR8.9 (10 mg), VSV-G (pMD.G; 10 mg), and the lentiviral

vector (pFUGW; 10 mg) into 293T cells. Viral supernatants were

concentrated by ultracentrifugation to produce viruses with titers

of 16108 infection units/mL. Multiplicities of infection of 10 and

25 were used to infect NTera-2 cells in the presence of 8 mg/mL

polybrene (Sigma, St. Louis, MO, USA). These transduced cells

expressed green fluorescent protein (GFP) and were analyzed by

fluorescence-activated cell sorting (FACS).

Cell-cycle analysis
Cells were resuspended in PBS and fixed with ethanol overnight

at 220uC. Cells were then resuspended in PBS and treated with

100 mg/ml of ribonuclease A (bovine pancreas; Sigma), 0.1%

Triton-X100, and 40 mg/ml propidium iodide (PI) for 30 min at

37uC. Cell cycles were detected with FACSCalibur, and analyzed

by the ModFit LT program (Verity Software House, Topsham,

ME, USA).

Reverse-transcription polymerase chain reaction (RT-PCR)
Total RNA was extracted from NTera-2 cells using the Qiagen

RNeasy Mini kit following the manufacturer’s protocol (Qiagen,

Valencia, CA, USA). The target RNA was amplified by a one-step

RT-PCR kit (GMbiolab, Taichung, Taiwan). Forward and reverse

primers were as follows: GFAP (forward), 59-GTGGGCAGGTGG-

GAGCTTGATTCT-39 and (reverse), 59-CTGGGGCGGCCTGG-

TATGACA-39 [27]; and internal control b-actin (forward), 59-

TGGAATCCTGTGGCATCCATGAAAC-39 and (reverse), 59-

TAAAACGCAGCTCAGTAACAGTCCG-39. The RT-PCR con-

sisted of two programs. First was complementary cDNA synthesis: one

cycle at 50uC for 30 min and one cycle at 94uC for 2 min. The other

was second-strand cDNA synthesis and the PCR consisted of 35 cycles

at 94uC for 30 s, 59uC for 30 s, and 72uC for 45 s; followed by a final

extension step at 72uC for 10 min.

Western blotting
At different times after viral infection, cells were lysed in lysis buffer

(4 M urea, 1 mM MgCl2, 50 mM HEPES, and 100 U benezonase/

107 cells). Lysates containing the equivalent of 26105 cells per lane

were separated by electrophoresis on 10% polyacrylamide gels and

electrotransferred onto polyvinylidene difluoride membranes over-

night. The membrane was blocked with 5% fat-free milk in a TBST

solution for 1 h and then probed separately with a mouse monoclonal

antibody (mAb) against Oct-4 (Santa-Cruz Biotechnology, Santa

Cruz, CA, USA) at a concentration of 0.2 mg/mL, 1:1000 of an anti-

GFAP rabbit polyclonal antibody (pAb; Chemicon International,

Temecula, CA, USA), and 1:500 of an anti-glutamine synthetase

mouse mAb (Chemicon International). Mouse b-actin was used as an

internal control (Sigma). Horseradish peroxidase (HRP)-conjugated

anti-mouse immunoglobulin G (IgG) and anti-rabbit IgG (Sigma)

were used as the secondary antibodies. Signals were detected using an

enhanced chemiluminescence (ECL) kit (Perkin Elmer, Wellesley,

MA, USA).

Immunoprecipitation
Mock-, vector-, and RNAi-treated cells were solubilized in NP40

lysis buffer (10 mM Tris at pH 7.5, 150 mM NaCl, 0.5% NP40,

5 mM EDTA, 5 mg/ml aprotinine, and 3 mM pAPMSF) and then

centrifuged at 12,000 rpm for 10 min at 4uC. The lysates were

subjected to immunoprecipitation with an anti-STAT3 antibody

(Santa Cruz Biotechnology). Then, these immunocomplexes were

analyzed as described for the Western blot assay. These immunocom-

plexes were detected by an anti-p300 antibody (Santa-Cruz Biotech-

nology).

Immunocytochemistry
NTera-2 cells were grown on 12-well plates. These cells were

washed with phosphate-buffered saline (PBS) and fixed with 3%

paraformaldehyde. Then, cells were permeabilized in 0.25%

Triton X-100 and incubated with the following primary antibodies

overnight at 4uC: anti-Oct-4 rabbit Ab (1:200), anti-Pax6 mouse

Ab (1:50), anti-Olig2 rabbit Ab (1:50; Santa-Cruz Biotechnology),

anti-nestin mouse Ab (1:100), anti-A2B5 mouse Ab (1:200), anti-

glial fibrillary acidic protein rabbit Ab (1:1000), anti-MAP2 rabbit

Ab (1:1000), anti-glutamine synthetase mouse Ab (1:500; Chemi-

con International). The next day, cells were washed with PBS and

secondary antibodies of 1:500 of goat-mouse-594 (Molecular

Probe, Carlsbad, CA, USA), 1:500 of goat-rabbit-cy3, and 1:200
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of goat-mouse-cy3-IgM (Jackson ImmunoResearch, Suffolk, UK)

which were used accordingly for 1 h at 37uC. Cells were then

washed with PBS and counter-stained with Hoechst for 10 min.

Cells were detected under florescence microscopy.

Label-free quantitation method
Preparation of Protein Extracts: Cell pellets were first washed

three times with PBS and lysed in lysis buffer (0.25 M Tris-HCl at

pH 6.8, 1% SDS). Protein concentration was obtained by BCATM

protein assay. Cell lysate was then dried and stored in 230uC.

Gel-assisted Digestion [28]: Acrylamide/bisacrylamide (40%,

29:1), 10% APS, and TEMED were then applied to protein

solution to polymerize as a gel directly in the eppendorf. The gel

was cut into small pieces and washed several times with TEABC

containing 50% ACN. The gel samples were further dehydrated

with ACN and the completely dried by vacuum centrifugation.

Proteolytic digestion was then performed with trypsin (protein:

trypsin = 50:1, g/g) in 25 mM TEABC with incubation overnight

at 37uC and peptides were extracted by 5% FA in 50% ACN,

dried in a SpeedVac and stored in 230uC.

Immobilized Metal Affinity Chromatography (IMAC) [29]: The

IMAC column was first capping one end with a 0.5 mm frit disk

enclosed in stainless steel column-end fitting. The Ni-NTA resin was

extracted from spin column and packed into a 5-cm microcolumn

(500 mm id PEEK column). Automatic purification of phosphopep-

tides was performed using the IMAC microcolumn connected with

autosampler and HP1100 solvent delivery system with a flow rate

13 ml/min. First, the Ni2+ ions were removed with 100 ml EDTA

(50 mM) in NaCl (1 M). Then the IMAC column was activated

with 100 ml FeCl3 (0.2 M) and equilibrated with loading buffer for

30 min before sample loading. For optimization of the phospho-

peptide enrichment, the loading/condition buffer (designated as

loading buffer) was 6% (v/v) AA and the pH was adjusted to 3.0

with NaOH (0.1 M at pH 12.8). The peptide samples from trypsin

digestion were reconstituted in loading buffer and loaded into the

IMAC column that had been equilibrated with the same loading

buffer for 20 min. Then the unbound peptides were removed with

100 ml washing solution consisting of 75% (v/v) loading buffer and

25% (v/v) ACN, followed by equilibration with loading buffer for

15 min. Finally, the bound peptides were eluted from the IMAC

column with 100 ml NH4H2PO4 (200 mM at pH 4.4). Eluted

peptide samples were dried under vacuum and reconstituted in

0.1% (v/v) FA for LC- MS/MS analysis.

LC-MS/MS Analysis: Purified phosphopeptide samples were

reconstituted in 4 ml buffer A (0.1% FA in H2O) and analyzed by

LC-Q-TOF MS (Waters Q-TOFTM Premier from Waters Corp). For

LC-MS/MS analysis by Waters Q-TOFTM Premier, samples were

injected into a 2 cm6180 mm capillary trap column and separated by

20 cm675 mm Waters1 ACQUITYTM 1.7 mm BEH C18 column

using a nanoACQUITY Ultra Performance LCTM system (Waters

Corp). The column was maintained at 35uC and eluted with a linear

gradient of 0–80% buffer B (0.1% FA in ACN) for 80, 120, 210 and

270 min. MS was operated in ESI positive V mode with a resolving

power of 10,000. NanoLockSpray source was used for accurate mass

measurement and the lock mass channel was sampled every 30 s. The

mass spectrometer was calibrated with a synthetic human [Glu1]-

Fibrinopeptide B solution (1 pmol/ml; Sigma) delivered through the

NanoLockSpray source. Data acquisition was operated in the data

directed analysis (DDA). The method included a full MS scan (m/z

400–1600, 0.6 s) and 3 MS/MS (m/z 100–1990, 1.2 s each scan)

sequentially on the most three intense ions present in the full scan mass

spectrum.

Database Search, Protein Identification and Quantitation: Raw

data were processed using Mascot Distiller v 2.1.1.0 (Matrix

science). The resulting MS/MS dataset was exported to *mzdata

data file format. We performed the peptide identification and

assignment of partial post-translational modifications using an in-

house version of Mascot v. 2.2 (Matrix science). The datasets were

searched against International Protein Index (IPI_human v. 3.29,

68161 sequences) using the following constraints: only tryptic

peptides with up to two missed cleavage sites were allowed; 0.3-Da

mass tolerances for MS and 0.1-Da mass tolerances for MS/MS

fragment ions. Phosphorylation (STY), oxidation (M) was specified

as variable modifications. Only unique peptide with scores higher

than 25 was confidently assigned. When unique peptides were

identified to multiple members of a protein family, proteins having

the highest sequence coverage were selected from the Mascot

search output result. To evaluate the protein identification false-

positive rate, we repeated the searches using identical search

parameters and validation criteria against a random database

(from the 68161 sequence). Relative quantification of peptides was

performed by IDEAL-Q software [30,31].

DNA methylation analysis
Genomic DNA sodium bisulfite conversion was performed using an

EZ-96 DNA methylation kit (Zymo Research, Orange, CA, USA).

The manufacture’s protocol was followed using 1 mg of genomic DNA

and an alternative conversion protocol (two-temperature DNA

denaturation).

Seqqunom’s (San Diego, CA, USA) MassARRAY platform was

used to perform the quantitative methylation analysis. This system

utilizes MALDI-TOF mass spectrometry in combination with

RNA base-specific cleavage (MassCLEAVE kit). A detectable

pattern is then analyzed to determine the methylation status. PCR

primers were designed using EpiDesigner (Sequenom). Amplicons

were designed to cover the CpG sites from an approximately

4500-bp region upstream of the GFAP transcription start site to

the intron 1 region. For each reverse primer, an additional T7

promoter tag for in vivo transcription was added, as well as a 10-

mer tag on the forward primer to adjust for differences in melting

temperatures. The PCRs were carried out in a 5-ml format with

10 ng/ml bisulfite-treated DNA, 0.2 units of HotStart Taq DNA

polymerase (Qiagen), 16 supplied HotStart buffer, and 200 mM

PCR primers. Amplification of the PCR was as follows:

preactivation at 95uC for 15 min, 45 cycles of 95uC denaturation

for 20 s, 56uC annealing for 30 s, and 72uC extension for 30 s,

with a final 72uC incubation for 4 min. Dephosphorylation of

unincorporated dNTPs was performed by adding 1.7 ml of H2O

and 0.3 units of shrimp alkaline phosphatase (Sequenom), followed

by incubation at 37uC for 20 min and then at 85uC for 10 min to

deactivate the enzyme. Next, in vivo transcription and RNA

cleavage were achieved by adding 2 ml of the PCR product to 5 ml

of the transcription/cleavage reaction and incubation at 37uC for

3 h. The transcription/cleavage reaction contained 27 units of T7

R&DNA polymerase (EpiCentre, Palmerston North, New Zea-

land), 0.646 of T7 R&DNA polymerase buffer, 0.22 ml T

Cleavage Mix (Sequenom), 3.14 mM DTT, 3.21 ml H2O, and

0.09 mg/ml RNaseA (Sequenom). Reactions were additionally

diluted with 27 ml of H2O and conditioned with 6 mg of CLEAN

Resin (Sequenom) for optimal mass-spectrum analysis. Samples

were then dispensed with the MassARRAY nanodispenser

(Samsung, Irvine, CA, USA) on a 384-well SpectroChip

(Sequenom). Mass spectra were acquired using a MassARRAY

Compact MALDI-TOF (Sequenom), and the methylation ratios

were calculated by comparing the difference in spectra intensity

derived from methylated and non-methylated template DNA by

the Epityper software version 1.0 (Sequenom).

Astrocytic Differentiation in Human NTera-2 Cells
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Bisulfite sequencing
Genomic DNA (500 ng) was bisulfite converted with the EZ DNA

methylation-Gold kit (D5005; Zymo Research, Orange, CA, USA)

according to the manufacturer’s recommendations. Modified DNA

was amplified with the primers listed in Table S1. The PCRs were

carried out with 25 ng bisulfite-treated DNA, 1 ml of HotStart Taq

DNA polymerase (Qiagen), 106 supplied HotStart buffer, 4 ml of

dNTP (25 mM), and 3 ml of PCR primers (5 mM). PCR conditions

were 94uC for 15 min, then 40 cycles of 94uC for 30 s, 57uC for 30 s,

and 72uC for 30 s. The PCR products were subjected to purification

using the PCR cleanup kit (28160; Qiagen) following the manufac-

turer’s instructions. The purified PCR products (150 ng) were then

subcloned into a TA cloning vector (50 ng) (pGEM-T Easy vector;

Promega, Madison, WI, USA). Several clones of each sample were

verified by sequencing with the T7 universal primer.

Chromatin immunoprecipitation (ChIP) and quantitative
real-time PCR

ChIP was performed as previously described [32] with some

modifications. Briefly, ChIP assays were carried out on 56105 NTera-2

and RNAi-treated cells. Cells were harvested by trypsinization,

washed, and resuspended to 26106 cells/ml in PBS with 20 mM

sodium butyrate. The protein-DNA complexes were fixed using 1%

formaldehyde for 8 min, and crosslinking fixation was stopped by

adding glycine to a final concentration of 125 mM for 5 min. Cross-

linked cells were washed twice with cold PBS/20 mM butyrate,

resuspended in 100 ml of lysis buffer (50 mM Tris-HCl at pH 8,

10 mM EDTA, 1% SDS, 1 mM PMSF, and 20 mM sodium butyrate

supplemented with a fresh protease inhibitor cocktail (Sigma) and then

sonicated to an average size of 250 bp by a MISONIX Sonicator 3000

for 30 min (with pulses of 30 s on and 30 s off). We used 5 mg of anti-

Sin3A, 20 mg of anti-MeCP2 (sc-994X and sc-20700X; Santa Cruz

Biotechnology), 5 mg of anti-STAT3 (05-485; Upstate-Millipore, New

York, NY, USA), 5 mg of anti-CBP, 5 mg of anti-p300, 20 mg of anti-

polII (sc-369X, sc-585X and sc-899X; Santa Cruz Biotechnology),

5 mg of anti-H3K9Ac, 5 mg of anti-H3K14Ac (06-942 and 06-911;

Upstate-Millipore), and 2.5 mg of anti-H3K4me3 (ab8580; Abcam,

Cambridge, MA, USA) for immunoprecipitation, which was per-

formed at 4uC with the indicated antibodies by incubation with Protein

A Dynabeads (Invitrogen) equilibrated with 1 ml RIPA buffer (10 mM

Tris-HCl at pH 7.5, 1 mM EDTA, 0.5 mM EGTA 1% Triton X-

100, 0.1% SDS, 0.1% Na-deoxycholate, and 140 mM NaCl) and

protease inhibitors for 2 h. The immunocomplexes were further

incubated with chromatin at 4uC overnight. The bound fraction was

isolated by Protein A Dynabeads according to the manufacturer’s

instructions, and the immunoprecipitated complexes were eluted by

using 300 ml of elution buffer (20 mM Tris-HCl at pH 7.5, 5 mM

EDTA, 50 mM NaCl and 20 mM sodium butyrate) for 30 min at

65uC then for 10 min at room temperature on a rotator. Chromatin

was eluted from the antibody and de-cross-linked by added of 30 ml

pronase (20 mg/ml) and 1 ml CaCl2 (1 M) then incubating it at 42uC
for 2 h and 65uC for 6 h. The immunoprecipitated DNA was

recovered by a PCR purification kit (Qiagen) according to the

manufacturer’s instructions, and the purified samples were analyzed by

real-time quantitative PCR using an SYBR Green master mix and a

LightCycler 480 sequence detection system (Roche Applied Science,

Mannheim, Germany). PCR primers were designed using the software

program Primer Express (Roche Applied Science), and the amplifica-

tion primers are listed in Table S2. For each sample, the PCR analysis

was performed in triplicate, and the bound fraction was compared with

1:40 diluted input DNA of 16105 cells. The results are reported as the

ratio of immunoprecipitated (IP) DNA to input DNA (IP/input). To

obtain relative occupancy values, the IP/input ratio was further

normalized to the level observed at a control region, h, which was

defined as 1.0. Values of NTera-2 cells were compared to those of

RNAi-treated samples.

Results

Induction of differentiation of NTera-2 cells toward an
astrocyte-like lineage

NTera-2 cells are capable of differentiating into mixtures of

neural and glial cells depending upon the induction conditions

[33–35]. Since NTera-2 cells express high levels of Oct-4 [36,37],

we used a lentiviral vector carrying a short hairpin (sh)RNA

(Fig. 1A) to downregulate Oct-4 expression in order to develop a

new protocol for cell differentiation. Three days after transduction

with the shRNA lentivirus, Oct-4 expression was greatly

diminished (Fig. 1B). As shown in Fig. 1C, the cellular morphology

remained the same as control NTera-2 cells at 3 days. However,

dramatic morphological transformation was observed after 21

days of transduction, and cells had become flattened and enlarged,

and showed a bushy morphology with numerous short and highly

branched processes (Fig. 1C). Such a cell morphology exhibited

characteristics similar to protoplasmic astrocytes, distinct from

‘‘fibrous astrocytes’’ [38]. In addition to these morphological

changes, the reduction in Oct-4 expression by NTera-2 cells was

accompanied by a marked reduction in cell proliferation (Fig.

S1A). The growth potential of NTera-2 cells after transduction was

studied by flow cytometry, and these cells had almost ceased cell

cycling with accumulations of cells in the G0/G1 phase on days 4

and 14 (40.6% and 69.1%, respectively, in Fig. S1B). Thereafter,

these cells remained mostly in the G0/G1 phase (e.g., on day 14)

and underwent significant morphological changes, as described

above. In addition, downregulation of Oct-4 expression often leads

to upregulation of Cdx2 in ES cells [39,40]. In NTera-2 cells,

however, Cdx2 expression was not detected in RNAi- transduced

cells (data not shown), indicating that this cell line may be derived

from cells at a stage of embryogenesis later than the origin of the

ES cell line. In addition, NTera-2 cells normally express the

intermediate filament protein, nestin (Fig. 1C), a marker of

neuroglial progenitor cells. But, the expression of nestin disap-

peared 3 days after transduction (Fig. 1C).

The morphological transformation and cessation of proliferation in

RNAi-transduced cells suggested that NTera-2 cells might undergo a

process of differentiation. To further verify that these changes were

accompanied by differentiation toward an astrocyte-like lineage, cells

were examined for the expression of astrocytic markers. The

intermediate filament protein, GFAP, is considered a cell type-specific

marker for astrocytes. GFAP expression was observed in differentiated

cells examined by immunofluorescence and Western blot assays

(Fig. 1D). Another astrocyte-specific marker, glutamine synthetase (GS)

[41], was also detected by immunofluorescence and Western blot

assays in differentiated cells (Fig. 1E). In addition, we detected neither

the oligodendrocyte markers, A2B5 [42] and Gal-C [43], nor the

neuron-specific markers, MAP-2 and Pax6 [44], after 21 days of

transduction (Fig. S1C). Taken together, these differentiated NTera-2

cells produced by our newly developed protocol had an astrocyte-like

morphology and expressed the astrocyte-specific markers, GFAP and

GS, suggesting differentiation toward an astrocytic lineage. Therefore,

these differentiated cells distinctly differed from previous reports of a

mixture of different neuronal cell types after retinoic acid

induction [35].

Nuclear export of olig2 and STAT3 activation during cell
differentiation

Oligo 2 is a basic HLH transcription factor, and its expression in

the nucleus is required for oligodendrocyte development by

Astrocytic Differentiation in Human NTera-2 Cells
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preventing the formation of the STAT3 and p300 complex in the

nucleus [45,46]. To confirm the cellular differentiation of NTera-2

cells, we examined the expression of olig2 and found that olig2 was

expressed in nuclei of undifferentiated NTera-2 cells (Fig. 2A).

During specification for an astrocyte-like lineage, there was a

striking translocation in the distribution of olig2 from nuclei to the

cytoplasm (Fig. 2A). Thus, the translocation of olig2 from nuclei

may suggest activation of STAT3 in nuclei. Therefore, we

analyzed the phosphorylation status of STAT3 and found that

there was significant accumulation of phosphorylated STAT3 in

differentiated cells compared to undifferentiated cells (Fig. 2B).

Furthermore, specific antibodies against STAT3 were found to

Figure 1. Differentiation of NTera-2 cells toward an astrocytic lineage. NTera-2 cells were induced to cellular differentiation by infection with
lentiviruses engineered to express pFUGW-Oct-4-RNAi at a multiplicity of infection of 25. A. Construction map of pFUGW-Oct-4-RNAi. B. Immunofluorescence
(red) and Western blots of Oct4 expression in undifferentiated NTera-2 cells and cells 21 days after differentiation. b-Actin was used as an internal control in
the Western blots. Note the substantial reduction in Oct-4 expression after differentiation. C. Phase-contrast micrographs for the morphological analysis
(upper panel) and immunofluorescence staining for nestin expression (lower panel, red) of NTera-2 cells 3 and 21 days after differentiation, respectively.
Magnification 4006. D. Immunofluorescence (red) and Western blots for GFAP expression in undifferentiated NTera-2 cells and NTera-2 cells 21 days after
differentiation. E. Immunofluorescence staining and Western blot analyses of glutamine synthetase (GS) expression in NTera-2 cells 21 days after
differentiation. The red staining for GS was compared with Hoechst dye (blue) for nuclei. b-actin was used as an internal control in the Western blots.
doi:10.1371/journal.pone.0022018.g001
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have co-immunoprecipitated p300 in differentiated cells, but not

in undifferentiated cells, suggesting specific formation of STAT3-

p300 complexes in differentiated cells (Fig. 2C). These findings

suggest activation of the STAT3 signaling pathway during the

differentiation of NTera-2 cells.

Reduction of histone co-repressor complexes during cell
differentiation

In order to investigate the mechanism of suppression and de-

suppression of astrocyte differentiation-related genes in NTera-2

cells, we investigated and quantified differentially phosphorylated

proteins using a newly developed label-free quantitation technol-

ogy platform [30]. Briefly, phosphoproteins were digested in an

optimized gel-assisted digestion and purified by a highly specific

and reproducible automatic IMAC nanotechnology, followed by

LC-MS/MS analysis. The relative quantification method was

performed by software ‘‘IDEAL-Q’’ which was developed by

SEMI alignment approach (Fig. 3A).

Using NTera-2, it was found that the dynamic phosphopro-

teomic profile was observed after induction toward astrocyte

differentiation. We found that there was a slightly increased in the

overall phosphoproteomic profile levels at day 14 after induction

for differentiation. In contrast, the upregulation and downregula-

tion levels of phosphoproteomic profile increased dramatically and

Figure 2. Translocation of olig2, activation of STAT3 signaling and STAT3-p300 complex formation, and loss of Sin3A after
differentiation. A. Immunofluorescence staining for olig2 (red, upper panel), Hoechst dye (blue, middle panel), and merged images (bottom panel)
are shown for undifferentiated control NTera-2 cells and NTera-2 cells 21 days after differentiation. Magnification 4006. B. STAT3 activation was
examined with a specific antibody against phosphorylated STAT3, and total levels of STAT3 in lysates from undifferentiated NTera-2 cells and NTera-2
cells 21 days after differentiation (left panel) were determined. C. Lysates from cells similarly transduced were subjected to immunoprecipitation with
an antibody against STAT3 and then were also probed with an anti-p300-specific antibody (right panel).
doi:10.1371/journal.pone.0022018.g002
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more than 50% phosphorylation sites have differential levels after

stimulation for 21days, suggesting the dramatic change in

phosphoproteomic pattern.

To gain insight into the putative biological functions of the

identified proteins, differentially phosphorylated proteins were

functionally annotated and classified by using the functional

annotation tool of Database for Annotation, Visualization and

Integrated Discovery (DAVID) [47,48] bioinformatics resources

(http://david.abcc.ncifcrf.gov) on the National Institute of Allergy

and Infectious Disease (NIAID). This software performed a

statistical analysis based on gene ontologies to identify groups

that were significantly overrepresented (enriched) in this filtered

data set. Upon DAVID gene functional classification, there were

two groups of annotated proteins identified that showed

statistically significant enrichment scores; they included phospho-

proteins and those that were posttranslationally modified by

acetylation (Fig. 3B). In addition, these proteins with significant

enrichment scores were separated to nucleus and cytoplasm in

location. And the proteins that function in the nucleus were

remarkably represented by those that control mRNA processing,

chromosome organization, chromatin assembly/disassembly,

DNA packaging, etc, (Fig. 3B).

Among several potential chromatin related functions, we chose

to study epigenetic regulation and chromatin remodeling during

cellular differentiation in more depth. Three important themes

emerge from the shift in the expression of several known,

classifiable proteins (Fig. 3C). First, the data set contains histone

modifying complexes such as Sin3A and SUDS3. Second group of

proteins are the components of chromatin remodeling complexes

including BAZ1B, SMARCC1 and CHD7. They are thought to

regulate chromatin structures using ATPase activity. The third is a

group of chromatin associating proteins, such that RB1, MCM2,

TRIM24, HMGA1 and RCC1. They are involved in diverse

functions such as transcriptional control, DNA replication and

chromosome condensation.

Of particular interest is the significant reduction of Sin3A in the

phosphoproteomic pattern after 3 days of transduction. Sin3A is a

component of Sin3A/HDAC co-repressor complexes, which

functions in transcription repression [49–51], but its role in

astrocyte differentiation has not been characterized. By a Western

blot analysis of samples through the course of differentiation

(control, 7, 14, and 21 days), we further confirmed that the protein

expression of Sin3A decreased significantly and continuously after

differentiation (Fig. 3D). Reduction of the expression of Sin3A

may lead to disintegration of Sin3A/HDAC complexes thus

causing de-suppression of the transcriptional program that favors

astrocyte-like differentiation, such as activation of GFAP.

Locus-specific reduction in Sin3A and MeCP2 occupancy
Since there was a significant reduction in the expression of

Sin3A at the cellular level after cell differentiation in NTera-2

cells, we next investigated regional alterations in chromatin

around the STAT3-binding site at the promoter and transcription

initiation sites of GFAP before and after astrocyte-like differenti-

ation. To ascertain local changes in transcription factor binding,

we performed ChIP assays with specific antibodies against Sin3A

and MeCP2. In addition, the binding of these two co-repressors

was quantitated by a real-time PCR using primers spanning from

the STAT3 binding site at the promoter to exon 1 relative to the

transcription start site of GFAP (primer sets a–g in Fig. 4A). In

addition, a pair of primer, h (Fig. 4A), located between exons 6

and 7 near the end of GFAP gene and remote from the

transcription regulatory region, served as a negative control. It

was found that upon cellular differentiation, the binding of Sin3A

significantly and specifically diminished around the STAT3

binding site about 1500 bp upstream of the GFAP start site in

the promoter region (primer sets a–c in Fig. 4A) (Fig. 4B). In

addition, we also identified that Sin3A occupancy at primer set g

in the vicinity of exon 1 was strongly reduced after cell

differentiation, whereas binding levels of Sin3A across the exon

1 locus (primer sets e and f) were not altered. Since Sin3A lacks an

intrinsic DNA-binding capacity, it must target itself to promoters

via interactions with other DNA-binding or adaptor proteins, such

as MeCP2, a methyl-CpG-binding protein, which was reported to

interact with Sin3A in Xenopus laevis oocytes [52]. To test the

possibility that MeCP2 may target Sin3A to the GFAP promoter,

we performed a ChIP analysis to inspect the binding of MeCP2

around the STAT3-binding site at the GFAP promoter and in the

proximity of exon 1 before and after cell differentiation. As shown

in Fig. 4B, the level of specific binding between MeCP2 and the

STAT3-binding site at the GFAP promoter (primer sets a–c) and

in the proximity of exon 1 (primer sets d–g, except site e) regions of

GFAP in undifferentiated NTera-2 cells was substantially reduced

in differentiated astrocyte-like cells. As the binding patterns for

MeCP2 and Sin3A at the GFAP promoter and exon 1 occurred in

a coordinated manner, these results suggest that MeCP2 may be

responsible for recruiting the Sin3A co-repressor complex to the

area surrounding the GFAP promoter.

MeCP2 is capable of binding to methylated DNA. There is a

possibility that the reduction in MeCP2 occupancy at the GFAP

promoter was triggered by DNA demethylation of the same

region; we therefore examined the DNA methylation status of the

GFAP gene in NTera-2 cells and differentiated astrocyte-like cells.

However, the bisulfite sequencing analysis showed that upon

differentiation toward an astrocyte-like lineage, the CpG dinucle-

otide around the STAT3-binding site at the promoter (primer sets

P1 and P2 in Fig. 4C) and exon 1 (primer sets E1 and E2) was not

demethylated (Fig. 4C). To further confirm these findings, we

performed a quantitative methylation analysis using MALDI-

TOF/MS to examine the mass signal shift of methylated DNA

compared to unmethylated DNA extracted from undifferentiated

NTera-2 cells, differentiated cells, and control human monocytes.

This study confirmed that CpG sites scattered in the approxi-

mately 4500-bp region upstream of the GFAP transcription start

site were stably methylated before and after differentiation

(Fig. 4D). We concluded that the DNA methylation status of the

GFAP promoter and exon 1 remained unchanged during cellular

differentiation. Our results showed that reduced expression of

Sin3A is accompanied by decreased occupancy of Sin3A and

MeCP2 around the STAT3-binding site of the GFAP promoter,

which was not necessarily accompanied by DNA demethylation in

the same region for the induction of GFAP expression. These

results suggest a critical role for Sin3A in regulating GFAP

expression during astrocytic differentiation.

Activation of GFAP expression
The binding of activated STAT3 to a STAT3 recognition

element (21518 to 21510 bp in relation to the transcription start

site) in the mouse GFAP promoter plays a major role in the

transcriptional activation of GFAP [53]. Activation of STAT3 was

also identified in astrocyte-like cells (Fig. 2B), which suggested that

STAT3 may be responsible for GFAP activation. To test this, the

occupancy of activated STAT3 was examined by a ChIP assay,

using similar primer sets a–g as shown in Fig. 4A. As anticipated,

the occupancy of activated STAT3 was more abundant around

the STAT3- binding site at the GFAP promoter (primer sets b and

c, especially primer set b at the STAT3 binding site) in

differentiated cells compared to undifferentiated cells (Fig. 5A).
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Interestingly, at the exon 1 coding region and the 39 end of the

exon 1 region of the GFAP gene, we also detected a second peak of

activated STAT3 binding signals (primer sets e–g) in differentiated

cells but not in undifferentiated NTera-2 cells (Fig. 5A). STAT3 is

a sequence-specific DNA-binding protein; in addition to the

binding site at 21500 bp in the promoter (75% identities), we had

identified a second binding site at +250 bp (TTCCTGGAA) at

exon 1 of human GFAP (85% identities), based on a detailed

sequence comparison with mouse GFAP gene. These results argue

that STAT3 may originally target the binding sequence that

resides at the GFAP promoter, but due to the chromatin

configuration between the promoter and exon 1 in differentiated

cells, STAT3 is also cross-linked to chromatin at exon 1.

Alternatively, the occupancy of activated STAT3 may cause a

Figure 3. Phosphoproteomic signature in cellular differentiation revealed by a label-free quantitation strategy. A. Experiment
workflow for quantitation of astrocyte phosphoproteomics. B. Functional annotation chart of the differentially phosphorylated proteins analyzed by
DAVID [47,48]; the highly represented categories are shown. Ontology terms are shown on the y axis; p-values for the significance of enrichment are
graphed along the x axis. C. Analysis of the regulation of genes through label-free quantitation in NTera-2 cells 3, 7, 14 and 21 days during cell
differentiation compared to undifferentiated NTera-2 cells. Data are expressed as log2 of fold change. D. Western blots showing levels of Sin3A
expression in undifferentiated NTera-2 cells and NTera-2 cells 14 and 21 days after differentiation. b-actin was used as an internal control in the
Western blots.
doi:10.1371/journal.pone.0022018.g003
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Figure 4. Sin3A and MeCP2 co-occupy the promoter of GFAP before differentiation. A. Schematic illustration of the structure of the
proximal promoter and coding regions of GFAP. Black boxes indicate exons numbered with roman numbers. Lines connecting the exons are introns.
Hatched boxes denote the 59-untranslated region (UTR) and 39-UTR. The start and stop codons are also indicated. qPCR primer pairs amplifying the
STAT3-binding site and exon 1 regions are indicated as alphabetic letters. Region 39 to the CpG island, h, served as a control primer pair. B. ChIP-qPCR
analyses showing quantitative occupancies of Sin3A (left panel) and MeCP2 (right panel) in indicated regions of the GFAP gene in undifferentiated
NTera-2 cells and at 21 days after differentiation. Multiples of enrichment are the relative abundances of the indicated regions over the control region,
h. Error bars represent the means of triplicate values, and the standard deviation of one ChIP-qPCR experiment representative of two is shown. C. The
methylation status of CpG sites within the STAT3 recognition sequence and GFAP gene exon 1 regions in undifferentiated NTera-2 cells and NTera-2
cells 21 days after differentiation was analyzed by bisulfite sequencing. Closed and open circles respectively indicate methylated and unmethylated
CpG sites. D. Assays were performed on genomic DNA isolated from control, healthy individual blood samples. NT-2, undifferentiated NT-2 cells;
astrocyte, astrocyte-like cells differentiated from NT-2 cells. The relative methylation levels of the indicated CpG sites (presented as a black bar) for the
25,000 bp upstream promoter were determined by a T-reverse cleavage reaction and MALDI-TOF/MS assay (Sequenom EpiTYPER platform).
doi:10.1371/journal.pone.0022018.g004
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bridge between the promoter and exon 1 which induces a

stereospecific interaction on surfaces around the GFAP promoter

and transcription start site.

To further validate activation of GFAP induced by STAT3

binding, a ChIP analysis was performed to examine the recruitment

of RNA polymerase II. A comparison of undifferentiated NTera-2

cells with differentiated cells revealed increased recruitment of RNA

polymerase II to the GFAP gene transcription start site (primer set e)

after differentiation, consistent with enhanced transcription

(Fig. 5B). Previous studies suggested that H3 Lys4 trimethylated

(H3K4me3) nucleosomes occur near transcription start sites of

actively transcribed genes. Moreover, several large-scale and

genome-wide analyses revealed that about 91% of all RNA

polymerase II-binding sites are correlated with H3K4me3-binding

sites and were positively correlated with gene expression levels

[54,55]. Using a ChIP assay, we also found that H3K4me3 was

enriched at sites of transcription initiation (primer sets e–g), with

maximal enrichment immediately downstream of the start site

(primer sets e and f) and overlapping the peak of RNA polymerase II

at the transcription start site (primer set e) in differentiated cells

compared to undifferentiated cells (Fig. 5C). These results suggest a

close correlation among STAT3-mediated chromatin remodeling,

RNA polymerase II recruitment, and GFAP activation.

Figure 2B and 2C show that activated STAT3 was co-

immunoprecipitated with p300. Furthermore, it was reported that

STAT proteins activate transcription by recruiting the transcription

co-activator, CBP/p300 [56,57], and CBP/p300-induced acetyla-

tion on histone tails is coupled with chromatin remodeling, thereby

enhancing target gene expression [58,59]. We next examined

whether the CBP/p300 co-activator was also associated with the

activated GFAP promoter along with an increase in the histone

acetylation level in the same region. Notably, we did not detect a

significant association between CBP/p300 proteins and the

STAT3-binding site at the GFAP promoter (primer sets a–c), as

indicated by the ChIP analyses (Fig. 5D). Conversely, upon cellular

differentiation, robust recruitment of CBP/p300 proteins was

observed in the vicinity of the exon 1 coding region (primer sets

e–g with the CBP antibody and primer sets d, f, and g with the p300

antibody) (Fig. 5D). Since there is no report of DNA-binding ability

of CBP/p300 in these regions, this result suggested that CBP/p300

was brought to the vicinity of exon 1 by transcription factors such as

STAT3 (Fig. 5A) after cell differentiation. We further inspected the

status of histone acetylation before and after differentiation to survey

the influence of CBP/p300 deposition on exon 1. ChIP assays were

conducted with specific antibodies against acetyl-H3K9 (H3K9Ac)

and acetyl-H3K14 (H3K14Ac) in undifferentiated NTera-2 cells

and differentiated cells. The results showed that there were

significant increases in active markers of H3K9Ac (primer sets b

and c) and H3K14Ac (primer sets a and b) around the STAT3-

binding site at the GFAP promoter region, particularly the STAT3-

binding site (primer set b), but not in the exon 1 coding region

(Fig. 5E). In addition, in a separate experiment (Liao, CH and Yu, J.

unpublished observation), we found that treatment of NTera-2 cells

with HDAC inhibitors led to an increase in the acetylated H3K9

and H3K14 using specific antibodies and also GFAP gene

expression. Therefore, our results raise the possibility that the

chromatin structure of the GFAP promoter may undergo dramatic

changes in organization during cell differentiation.

Discussion

Reduction of Sin3A during cell differentiation
Astrocytes are the most numerous cells in the CNS that provide

important support to neurons and modulate synaptic activity [60].

In the present study, we developed a new protocol to obtain pure

population of astrocyte-like cells from human NTera-2. We

revealed a novel role for Sin3A which coupled to MeCP2 and

bound to the STAT3-binding site in the GFAP promoter and its

occupancy was inversely correlated with de-suppression of GFAP

transcription. Sin3A is thought to be devoid of intrinsic DNA-

binding capacity, but is able to be recruited by MeCP2 that linked

to methylated DNA with HDAC complex. Such formation of

corepressor complex by chromatin-bound MeCP2 may lead to

local deacetylation of core histones with subsequent transcriptional

silencing [52,61]. Recent reports proposed that another corepres-

sor, N-CoR, controls differentiation of neural stem cells into

astrocytes [62] because the complex containing N-CoR, Sin3A

and HDAC mediated transcriptional repression [63,64]. In fact,

our phosphoproteomic analysis also confirmed the presence of N-

CoR2 in the undifferentiated NTera-2, which declined signifi-

cantly after cell differentiation (data not shown). These results

support transcriptional repression by Sin3A/MeCP2 complex

serving as one of the critical mechanisms underlying the inhibition

of astrocytic differentiation. It seems that MeCP2 with Sin3A

binds to the methylated STAT3-binding site of the GFAP

promoter, thus making the site inaccessible to STAT3. Upon

cellular differentiation, occupancy by MeCP2 and Sin3A was

significantly and specifically diminished at the STAT3-binding site

of the GFAP promoter, suggesting a new regulatory path to trigger

GFAP activation, in addition to the regulation by STAT3.

Conformational change in the GFAP promoter during cell
differentiation

On the other hand, in differentiated cells, activated STAT3,

present at both STAT3-binding sites of the GFAP promoter and

its exon 1 suggests that a conformational change may bridge both

sides of the transcriptional start site during GFAP activation. This

conformational change resulted in subsequent recruitment of

CBP/p300 to the exon 1 coding region but not the promoter in

the ChIP assay. Finally the specific increase of CBP/p300

occupancy at GFAP locus implies that the acetylation by these

histone acetyltransferases play roles for gene activation of GFAP.

Furthermore, CBP/p300 targeted histone H3 acetylation of the

promoter but not exon 1 and induced chromatin remodeling,

thereby enhancing recruitment of RNA polymerase II to activate

GFAP transcription (Fig. 6). In addition, this notion of the change

of the acetylation status accompanied with GFAP expression in

NTera-2 cells was also supported by another independent assay in

which specific HDAC inhibitors were used to increase the

acetylated H3K9 and H3K14 in NTera-2 cells (Liao, CH and

Yu, J., unpublished observation).

Processes that regulate gene transcription are directly under the

influence of genome organization, and intrachromosomal inter-

actions such as chromatin looping were shown to be involved in

promoting transcriptional activation of genes in eukaryotes

[65,66]. Our ChIP experiments showed that activated STAT3

was present both in STAT3-binding sites of the promoter and in

the exon 1 coding region of GFAP gene, and CBP/p300 was

specifically recruited to the exon 1 coding region but not to the

promoter. These findings imply that there are conformational

changes in the GFAP brought about by STAT3 activation.

To investigate whether the interaction between STAT3 and

CBP/p300 can result in the formation of a DNA loop between the

promoter and coding region of GFAP, a 3C (chromosome

conformation capture) assay [67] was performed. We also

combined the 3C with ChIP (using p300 as a ChIP antibody) in

a ChIP-loop assay [68] that presumably allowed us to determine

which genomic sites would interact and how the candidate
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proteins mediate the interactions. Unfortunately, we failed to

detect direct evidence of DNA looping at the GFAP promoter and

thus conclusions must await further study. Although we had not

yet establish a cause-and-effect relationship between DNA looping

and GFAP gene transcription, our data of STAT3 and CBP/p300

binding suggest the possibility of DNA looping in the region

surrounding the GFAP promoter. Alternatively, it was shown that

during cell differentiation from a pluripotent to a committed state,

there were global changes in the chromatin structure and

interactions of chromatin-binding proteins [69]. Therefore, we

cannot exclude the possibility that intrachromosomal interactions

occurred in other regions where we did not examine in this study

or that interactions between the promoter and coding region of

GFAP may still occur in a more complicated manner [70].

Figure 5. STAT3 occupies both the promoter and exon 1 of GFAP, recruitment of CBP and p300 to exon 1, and changes in histone
acetylation levels at the STAT3-binding site after differentiation. ChIP analyses were performed using anti-STAT3-P (A), RNA polymerase II
(B), and H3K4me3 (C) antibodies and qPCR primer pairs (Fig. 4A) to detect the indicated regions of the GFAP gene in undifferentiated NTera-2 cells
and cells 21 days after differentiation. D. Chromatin samples from undifferentiated NTera-2 cells and cells 21 days after differentiation were
immunoprecipitated with anti-CBP (left panel) and anti-p300 (right panel) antibodies, and enrichment was quantitated by qPCR. E. A ChIP assay was
performed as described in panel D but with active histone modifications, and anti-H3K9Ac (left panel) and anti-H3K14Ac (right panel) antibodies.
Multiples of enrichment are the relative abundances of the indicated DNA fragments over the control fragment, h. Error bars represent the means of
triplicate values, and the standard deviation of one ChIP-qPCR experiment representative of two is shown.
doi:10.1371/journal.pone.0022018.g005
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Activation of GFAP without DNA demethylation
It is known that binding of activated STAT3 to a consensus site

in the GFAP promoter plays a role in the transcriptional activation

of GFAP [53]. Our observations showed that GFAP expression

was induced during astrocyte-like differentiation of NTera-2. ChIP

experiments confirmed that there was a strong association of

STAT3 with the GFAP promoter, suggesting the existence of

mechanism that facilitates access of the STAT3 complex to the

GFAP promoter. Methylation of CpGs in DNA constitutes one

epigenetic mark that generally correlated with transcriptionally

silent chromatin, and hypomethylated DNA in the promoter is a

hallmark of vertebrate genes that are actively transcribed [71]. In

mouse model, GFAP activation was associated with the loss of

DNA methylation at the STAT3-binding site [22]. However, our

investigation on the epigenetic regulation of GFAP expression in

human NTera-2 cells did not observe changes of DNA

methylation at the promoter (up to 4,500 bp upstream), indicating

that regulation of the interaction of the STAT3 complex in the

GFAP promoter was not mediated by DNA demethylation [21].

There seem to be several explanations that may account for the

discrepancies between our results and previous data from the

mouse study. First, since no enzyme has yet been identified that

actively removes the methyl group from DNA, it is believed that

DNA methylation is passively removed through multiple rounds of

DNA replication [72]. In present study, the differentiated cells

from NTera-2 underwent growth arrest on day 3 after induction.

Therefore, it was not possible for these cells to have reduced the

methylation level of DNA through cell division. Secondly, it was

recently observed that DNA hypermethylation was completely

maintained at the promoter region of the erythroid- specific

carbonic anhydrase II upon hormone-induced activation [73].

Thus this finding challenges the paradigm that the methylation of

promoter-containing CpG islands invariantly causes gene silenc-

ing. Finally, it was reported that parental allele-specific histone

modifications in the promoter, rather than the differentiated

methylated DNA, marked the imprinting status of imprinted genes

[74].

In other word, the promoter-restricted change of histone

modifications is one of the governing epigenetic marks in

transcriptional regulation. Studies in yeast have demonstrated

Figure 6. Model for GFAP gene activation for induced human astrocytic differentiation. In undifferentiated NTera-2 cells, the presence of
the MeCP2 and Sin3A corepressor complex and possibly associated HDAC activity at the GFAP promoter maintain the deacetylated status of
chromatin and repress GFAP transcription. Upon cellular differentiation, MeCP2 and Sin3A became dissociated from the GFAP promoter, and the
subsequent recruitment of the phosphorylated STAT3 caused a conformational change in the region surrounding the GFAP transcription starting site.
This, in turn, facilitated histone H3 acetylation of the promoter resulting from the recruitment of CBP/p300 to exon 1. The combination of chromatin
remodeling and promoter conformational changes enabled the recruitment of RNA pol II.
doi:10.1371/journal.pone.0022018.g006
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that nucleosomes with histone H3K4me3 are associated with

actively transcribed genes [75–80]. Similarly, acetylation of

histone H3K9 and H3K14 is critical for the recruitment of

transcription factor II D, an initiation step in transcription, and

therefore be associated with actively transcribed genes [77,79,81–

83]. Histone acetylation is catalyzed by several evolutionarily

conserved histone acetyltransferases, including Gcn5/PCAF,

TAF1, and CBP/p300 [84]. Genome-wide analysis in human

cells confirmed that H3K4me3, H3K9Ac and H3K14Ac are

present together at actively transcribed genes [85]. Our ChIP

experiments showed that upon GFAP activation after cell

differentiation, there were significant increases in active markers

of H3K9Ac and H3K14Ac around the STAT3-binding site at the

GFAP promoter region. At the same time, H3K4me3 was

enriched and overlapped with the peak of RNA polymerase II

at the transcription start site. These results support the notion that

chromatin remodeling regulated by histone modification is linked

to active transcription and provide evidence that the acetylation

status of chromatin at the GFAP promoter is likely to be

predominant regulator of transcription. Altogether, our study

has added a novel regulatory path to GFAP gene expression in

addition to DNA methylation.

Induction of differentiation of NTera-2 cells toward an
astrocyte-like lineage

Human NTera-2 cells are widely used as models in human

neurogenesis and differentiate into mixtures of various neuronal

cell types [35,86]; but directed differentiation toward specific

lineages such as astrocytic cells has not been accomplished. In this

study, we developed an in vitro model of cellular differentiation in

which human NTera-2 cells were differentiated into a homoge-

nous population of cells with an astrocyte-like morphology and

expressing astrocyte-specific, but not neural or oligodendrocyte

markers. The advantages of this model over other in vitro systems

for human astrocyte-like differentiation include its capability for

robust differentiation and the formation of astrocyte-like cells but

not other neuronal cell types. Such directed differentiation differs

from those which induce differentiation into mixtures of mostly

neurons and a few astrocytes after the 4- or 5-week treatment with

retinoic acid [35]. Thus this in vitro human cell model can be used

to examine a detailed mechanism underlying astrocytic differen-

tiation. By now there is strong evidence that astrocyte develop-

ment and regeneration play critical roles in repair after brain

injury and future studies should clarify how these astrocytes are

regenerated and how precursor cells can be manipulated to

recover from brain injuries.
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arrest induced during astrocytic differentiation. A.
Growth of NTera-2 cells before and after differentiation as

analyzed with a hemocytometer (n = 3; error bars indicate

standard deviations). B. For the cell-cycle analysis, NTera-2 cells

were similarly induced and then collected, stained with propidium
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Pax6 was examined in undifferentiated NTera-2 cells and cells 21
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