
Preoperative Computed Tomography Radiomics Analysis for
Predicting Receptors Status and Ki-67 Levels in Breast Cancer

Yuan Fan, MD,* Xuelin Pan, MD,† Fan Yang, MD,† Siyun Liu, MD,‡
Zhu Wang, MD,§ Jiayu Sun, PhD,† and Jie Chen, PhD∥

Background: To assess the prediction performance of preoperative
chest computed tomography (CT) based radiomics features for estrogen
receptor (ER), progesterone receptor (PR), human epidermal growth
factor receptor-2 (HER2+), and Ki-67 status of breast cancer.

Materials and Methods: This study enrolled 108 breast cancer patients
who received preoperative chest CT examinations in our institution
from July 2018 to January 2020. Radiomics features were separately
extracted from nonenhanced, arterial, and portal-venous phases CT
images. The least absolute shrinkage and selection operator logistic
regression was used for feature selection. Then the radiomics signatures
for each phase and a combined model of 3 phases were built. Finally,
the receiver operating characteristic curves and calibration curves were
used to confirm the performance of the radiomics signatures and
combined model. In addition, the decision curves were performed to
estimate the clinical usefulness of the combined model.

Results: The 20 most predictive features were finally selected to build
radiomics signatures for each phase. The combined model achieved the
overall best performance than using either of the nonenhanced, arterial
and portal-venous phases alone, achieving an area under the receiver
operating characteristic curve of 0.870 for ER+ versus ER−, 0.797 for
PR+ versus PR−, 0.881 for HER2+ versus HER2−, and 0.726 for Ki-67.
The decision curve demonstrated that the CT-based radiomics features
were clinically useful.

Conclusion: This study indicated preopreative chest CT radiomics
analysis might be able to assess ER, PR, HER2+, and Ki-67 status of
breast cancer. The findings need further to be verified in future larger
studies.
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B reast cancer is the most frequently occurring female
malignancy in the world, and, is the second leading cause

of cancer deaths among women after lung cancer.1 According
to immunohistochemistry (IHC) or gene expression profiling,
breast cancer is classified into several different subtypes which
mainly include 4 clinically relevant molecular subtypes: lumi-
nal A, luminal B, human epidermal growth factor receptor-2
(HER2) overexpression, and triple-negative (TN) breast
cancer.2–4 Different molecular subtypes have distinct clinical
behaviors, therapy methods, treatment responses, and prog-
noses in clinical practice. Compared with the luminal B sub-
type, the luminal A subtypes are inclined to be indolent, are
more endocrine sensitive, have a better prognosis, and most
patients are able to avoid postoperative chemotherapy and only
receive adjuvant endocrine therapy.5 Moreover, neoadjuvant
chemotherapy is less effective in some luminal breast cancer
patients who need neoadjuvant treatments, and neoadjuvant
endocrine therapy should be considered. Meanwhile, patients
with TN subtypes who have a worse prognosis, are more sen-
sitive to neoadjuvant chemotherapy and are more likely to
achieve a complete pathologic response than luminal
cancers,6–9 whereas most patients with TN breast cancer may
undergo adjuvant chemotherapy.10 Patients with HER2-over-
expression can benefit significantly from HER2-targeted
therapies.11,12 Therefore, accurate molecular subtyping is crit-
ical for individualized treatment and prognosis evaluation of
breast cancer. IHC from postoperative excision samples is the
gold standard for breast cancer classification in most hospitals.
This said, particularly in patients who are to receive neo-
adjuvant therapy, it is necessary to accurately carry out the
molecular classification before surgery. If the assessment of
pretreatment molecular subtypes is inaccurate, the treatment
may be ineffective, and the patient may suffer unnecessary side
effects of treatment.

Currently, pretreatment molecular subtypes are routinely
assessed by IHC on the formalin-fixed paraffin-embedded tissue
samples which are obtained from core needle biopsies (CNB).13,14

It is an invasive procedure and has some limitations. On the 1 hand,
the specimen which consists of 4 to 6 pieces of tissue acquired by
CNB may not be completely representative of the genetic, epi-
genetic, and/or phenotypic alterations of the entire tumor.15,16 Fur-
thermore, IHC results, which are subjectively visually interpreted
can lead to mistakes at the cutoff values.17 A meta-analysis18

showed that the concordance rates of estrogen receptor (ER) and
progesterone receptor (PR) staining between core needle biopsy
specimens and excision specimens were 77.7% to 80%(κ=0.52 to
0.88) and 66.2% to 69.5% (κ=0.06 to 0.85). A recent study with
the largest sample size showed the concordance rates of ER, PR,
HER2 and Ki-67 staining between core needle biopsy specimens
and excision specimens were 78.8% (κ=0.522), 73.5% (κ=0.441),
56% (κ=0.392) and 59% (κ=0.360), respectively.19 Therefore, we
attempted to explore whether there is an alternative noninvasive
method to more accurately predict the total tumor characteristics.
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Radiomics, which can extract large amounts of high-
dimensional features from multimodality medical images to
provide quantitative and objective support for diagnosis, prog-
nosis, and prediction, especially in oncology,20–22 are a rapidly
developing form of image analysis. Previous studies23–25 have
shown that radiomics features from magnetic resonance imaging
(MRI) or simultaneous positron emission tomography (PET) can
potentially be used to assess ER/PR receptor states and molecular
subtypes of breast cancer. However, MRI or PET is time-con-
suming and costly, and PET has not been recommended for
routine clinical breast examinations at the guideline. Computed
tomography (CT) images can be obtained in a quick scanning
time and more cheaply than MRI or PET images. Chest CT is
recommended.26 The initial purpose of chest CT is to assess the
stage of the disease, which is different from mammography,
ultrasound for breast cancer according to the National Compre-
hensive Cancer Network (NCCN) clinical practice guidelines,
and MRI in breast lesions. Several studies have demonstrated the
value of CT radiomics analysis in the evaluation of clinical breast
cancer characteristics. Yang et al27 demonstrated that radiomics
CT analyses could help clinicians predict sentinel lymph node
metastasis in patients with breast cancer. However, the role of CT
radiomics signatures in predicting the histopathological features
of breast cancers has rarely been investigated. Breast cancer
molecular subtype is determined by the status of ER, PR, and
HER2, as well as Ki-67 levels. We assumed that CT radiomics
methods can be used to assess the status of ER, PR, HER2, and
Ki-67 in patients with breast cancer.

The aim of this study was to investigate whether radiomics
features extracted from preoperative chest CT images could be
useful in predicting the status of ER, PR, HER2, and Ki-67 in
patients with breast cancer.

MATERIALS AND METHODS

Patients
This prospective study involving standard care was per-

formed in West China Hospital, at Sichuan University. Ethical

approval was obtained for this prospective analysis, and all
patients signed the informed consent. Patients were enrolled in
our study between July 2018 and January 2020. All patients
underwent a chest CT examination before surgery. The inclu-
sion criteria were: (1) at an age older than 18 years, (2) CNB-
proven invasive breast cancer; (2) no pregnancy or breast-
feeding; (3) patients were scheduled to undergo surgery within
2 weeks; (4) they were all female; (5) had a single lesion. The
exclusion criteria were as follows: (1) standard contra-
indications to CT and/or allergy to contrast agent injection; (2)
previous oncological disease; (3) tumor diameter under 1 mm.

Pathologic Evaluation
IHC was used to assess the status of ER, PR, HER2, and the

Ki-67 index. A cutoff value of 1% was used to define ER and PR
positivity.28 HER2 expression was initially assessed by IHC
staining (IHC staining of 0 or 1+ was defined as HER2− whereas
tumors with IHC staining of 3+ were defined as HER2+), and
tumors with an IHC staining value of 2+ were further assessed by
fluorescence in situ hybridization (nonamplified results were
considered HER2− and amplified results were considered HER2+).
According to the 2013 St. Gallen Consensus Recommendations,
the cut-point of the Ki-67 index was set to 20%.3 The excision
specimen was considered the standard of reference for histologic
analysis. Three breast pathologists with at least 10 years of breast
pathology experience in our institution interpreted the IHC results.

CT Imaging Acquisition and Region of Interest
(ROI) Segmentation

The imaging analysis and data processing workflow are
illustrated in Figure 1.

All patients underwent a 64-slice multidetector spiral chest
CT examination preoperatively using a Somatom Definition
Flash CT scanner. After a nonenhanced (NE) CT scan, 80 mL to
100 mL of iodinated contrast agent (Omnipaque 350 mgI/mL,
GE Healthcare) was injected using a power injection at a flow
rate of 3.0 mL/s. The arterial phase (AP) and portal-venous phase
(PVP) images were obtained with a postinjection delay of the

FIGURE 1. Radiomic workflow. AP indicates arterial-phase imaging; DCA, decision curve analysis; GLCM, gray-level cooccurrence matrix;
GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; NE, nonenhanced images; PVP, portal-venous phase
imaging.
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30s, and 60s, respectively. The slice thickness of the recon-
structed images was 1.0 mm. A 3-dimensional ROIs segmenta-
tion was conducted by ITK-SNAP (version 3.6.0, http://www.
itksnap.org). Two radiologists (P.X.L. and Y.F., with 12 and
9 years of experience in chest imaging, respectively) delineated
the ROIs separately in the images of NE, AP, and PVP along the
area of maximal tumor extension layer-by-layer, avoiding
necrosis, air, and calcification areas. The 2 radiologists delineated
the ROIs independently and if their results were inconsistent, a
third senior radiologist arbitrated and helped reach an agreement.

Radiomics Features Extraction
AK software (GE Healthcare, version 3.2.5) was used to

extract radiomics features from each segmented ROI. All image
analyses and calculations were performed separately for NE,
AP, and PVP CT images. The consistency and reproducibility
of the intra and interobserver agreement of the radiomics fea-
tures were assessed by intra and interclass correlation coef-
ficients (ICC). Two radiologists (P.X.L. and Y.F.) initially
delineated the ROI for 20 random CT images. P.X.L. repeated
the same procedure 1 week later. An ICC > 0.75 was consid-
ered reflective of good reproducibility and consistency.

Feature Selection and Radiomics Signatures
Construction

An ICC value > 0.75 of radiomics features was selected for
further data analysis. The reserved radiomics features were pre-
processed by replacing missing values with median values, z-
score normalizing, and deleting features with zero variance. To
overcome overfitting, a least absolute shrinkage and selection
operator (LASSO) logistic regression method with 10-fold cross-
validation was applied for further feature selection. The features
with nonzero coefficients were further selected by stepwise
regression analysis with the minimum Akaike Information Cri-
terion. According to their respective LASSO coefficients, a
radiomics score (Rad-score) was calculated for each patient
through a linear combination of selected features. The radiomics
signature (Rad-score) of the NE Rad-score, AP Rad-score, and
PVP Rad-score was constructed using selected features based on
the logistic regression coefficients to predict the status of ER, PR,
HER2, and Ki-67 levels. In addition, the combination model was
also constructed using the Rad-scores of such 3 phases.

Assessment of Signatures and Model
Performance

The discrimination performance of the radiomics sig-
natures and model was quantified by calculating the area under
the receiver-operator characteristic (ROC) curve (AUC) with
5-fold cross-validation. Thereafter, the calculation of radiomics
signatures and prediction model was assessed with a calibration
curve. Decision curve analysis (DCA) curves were measured to
assess clinical benefits.

Statistical Analysis
A 2-sided Mann-Whitney U test was used for continuous

variables and 2 independent samples t tests were used for cat-
egorical variables. The Delong test examined the differences in
predictive performance between the combined model and the
radiomics signatures. All these statistical analyses were con-
ducted in SPSS Software (Version 25, IBM) and R software
(Version: 3.5.3, https://www.r-project.org). The following R
packages were mainly utilized: “glmnet” for logistic regression
including the LASSO algorithm, “pROC” for ROC analyses,
and “rmda” for DCA. A P-value under 0.05 was considered
statistically significant.

RESULTS

Patients Characteristics
A total of 158 patients met our study criteria. Fifty patients

were excluded for pathology results demonstrating types of
cancer other than invasive carcinoma, before treatment and
incomplete IHC reports. The study eventually enrolled 108
breast cancer patients (with a mean age of 53 years old, ranging
from 32 to 85). The patients’ clinicopathological characteristics
are provided in Table 1.

Radiomicss Analysis
A total of 396 radiomics features were extracted from each

CT image (NE, AP, and PVP images), including the following
features: (1) 42 histogram features; (2) 9 morphologic features;
(3) 144 gray-level cooccurrence matrix features; (4) 180 gray-
level run-length matrix features; (5) 11 gray-level size zone
matrix features; and (6) 10 haralick features. Of these features,
20 features with a potential predictive value were finally
selected through the LASSO method. The intraobserver ICCs
ranged from 0.796 to 0.893 and the interobserver ICCs ranged
from 0.819 to 0.926, both achieving satisfying feature extrac-
tion reproducibility. The Rad-score for each patient was cal-
culated by a linear calculation formula. There were significant
differences among the Rad-scores of ER, PR, HER2 receptors,
and Ki-67 levels (P< 0.01).

Radiomics Signatures of ER, PR, HER2, and Ki-67
at Nonenhanced, Arterial and Portal-venous
Phases, and the Combined Model

The combined model demonstrated better performance for
the prediction of breast cancer molecular subtypes related
indicators than each of the 3 radiomics signatures, as shown in
Figure 2. Table 2 summarizes the ROC analysis results in a
combined model.

TABLE 1. Clinical Characteristic of Patients

Characteristic All patients, N= 108

Age (y), mean (range) 53 (32-85)
BMI 23.6 (17.6-34.4)
Menopausal, n
Premenopausal 43
Postmenopausal 65

Tumor type, n
Ductal carcinoma 95
Lobular carcinoma 7
Mucinous carcinoma 3
Endocrine carcinoma 1
Mixed carcinoma 2

Tumor size (cm), mean (range) 2.4 (0.6-9.0)
Axial lymph nodes, n
Positive 38
Negative 70

Receptor status, n
ER+ 83
ER- 25
PR+ 75
PR- 33
HER+ 23
HER- 85

Ki-67, n
< 20% 40
≥ 20% 68

BMI indicates body mass index; ER, estrogen receptor; HER, human epi-
dermal growth factor receptor; PR, progesterone receptor.
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For the assessment of ER state (ER+ vs ER−), we obtained
the following prediction accuracies: AUC values were 0.701
(95% CI, 0.526-0.770, based on NE images), 0.816 (95% CI,
0.730-0.903, based on AP images), 0.857 (95% CI, 0.780-
0.934, based on PVP images), and 0.877 (95% CI, 0.749-0.942,
based on the combination of the 3), respectively.

For the assessment of PR state (PR+ vs PR−), we obtained
the following prediction accuracies: AUC values were 0.739
(95% CI, 0.637-0.841, based on unenhanced images), 0.754
(95% CI, 0.659-0.850, based on AP images), 0.757 (95% CI,
0.656-0.858, based on PVP images), and 0.797 (95% CI, 0.704-
0.917 based on the combination of the 3), respectively.

TABLE 2. The Diagnostic Performance of Combinated Model

Set AUC Sensitivity (95% CI) Specificity (95% CI) Cutoff value

ER 0.870 0.60 (0.496-0.704) 0.92 (0.739-0.989) > 1.955349099
PR 0.797 0.74 (0.628-0.827) 0.70 (0.525-0.828) > 0.900829986
HER2 0.881 0.91 (0.720-0.988) 0.70 (0.593-0.737) >−1.437605357
Ki-67 0.726 0.79 (0.678-0.833) 0.62 (0.459-0.751) > 0.063262441

AUC indicates area under the ROC curve; ER, estrogen receptor; HER, human epidermal growth factor receptor; PR, progesterone receptor.

A B

C D

FIGURE 2. Receiver-operator characteristic curve analysis showing the ability of each Rad-score and combined model to discriminate
among receptors statue and Ki-67 level of breast cancer: (A) ER+ versus ER−, (B) PR+ versus PR−, (C) HER2+ versus HER2−, (D) high Ki-67
versus low Ki-67.
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For the assessment of the HER2 state (HER2+ vs HER2−),
we obtained the following prediction accuracies: AUC values
were 0.848 (95% CI, 0.757-0.939, based on unenhanced images),
0. 689 (95% CI, 0.570-0.807, based on AP images), 0.816 (95%
CI, 0.724-0.909, based on PVP images), and 0.881 (95% CI,
0.812-0.921 based on the combination of the 3), respectively.

For the recognition of Ki-67 levels (high and low Ki-67
proliferation), we obtained the following prediction accuracies:
AUC values were 0.685 (95% CI, 0.582-0.787, based on NE
images), 0.725 (95% CI, 0.619-0.830, based on AP images),
0.707 (95% CI, 0.601-0.813, based on PVP images), and 0.726
(95% CI, 0.657-0.859 based on the combination of the 3),
respectively.

The calibration curve for the 3 radiomics signatures and
the combined model is shown in Figure 3. The DCA is pre-
sented in Figure 4.

DISCUSSION
Breast cancer is a heterogeneous disease with different

prognoses, treatment protocols, and treatment responses based on
tumor subtypes.7,13,14 It is fundamental to accurately assess the
statuses of ER, PR, HER2, and Ki-67 of pretreatment breast
cancer patients as they form the basis for the discrimination of
different molecular subtypes. In this study, we assessed the
availability of radiomics features from preoperative chest CT

A B C D

E F G H

I J K L

M N O P

FIGURE 3. Calibration curves of each Rad-score and combined model (from left to right in each row are NE, AP, and PVP Rad-score and
model). A–D, ER+ versus ER−, (E–H) PR+ versus PR−, (I–L) HER2+ versus HER2−, (M–P) high Ki-67 versus low Ki-67. Calibration curves
indicate the calibration of the Rad-score and combined model in terms of the agreement between the predicted value and the IHC
results. The 45 degrees gray line represents a perfect prediction and the blue lines represent the predictive performance. The closer the
blue line fit is to the ideal line, the better the predictive accuracy is.
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images to noninvasively evaluate breast cancer molecular sub-
types related indicators without additional radiation exposure and
cost. The best results were obtained for the discrimination of ER+

versus ER− (AUC, 0.870) and HER2+ versus HER2− (0.881) by
the combined model in our preliminary study.

Previous studies have shown radiomics biomarkers asso-
ciated with the histologic characteristics of breast
cancer.23–25,29,30 Ma et al29 respectively selected 11, 10, and 12
radiomics features in 331 breast cancer cases from a cranio-
caudal view, mediolateral oblique view, and the combination
thereof mammogram images using the LASSO method, finding
that the AUCs for TN versus non-TN, HER2-enriched versus
non-HER2-enriched luminal versus nonluminal subtypes were
0.865, 0.784, and 0.752, respectively. Guo and colleagues
extracted ultrasound radiomics features from 215 breast inva-
sive ductal carcinoma patients to distinguish hormone receptor-
positive, HER2− and TN. Results showed a strong correlation
with an area under the curve of 0.760.30 Moreover, several
studies23–25 have demonstrated that MRI-based radiomics fea-
tures can assess the molecular subtypes related to indicators
receptor state of breast cancer. However, published studies of

CT radiomics for predicting the molecular subtypes of breast
cancer are rarer, our study preliminarily proves CT images can
reflect potential tumor traits in helping assess breast cancer
receptors from image-derived radiomics features.

Notably, radiomicss analyses in breast cancer are almost
exclusively dominated by MRIs at present, yielding encourag-
ing results.23,25 However, due to the nature of MRI scanning,
which is costly and limited in its availability, or patient ineli-
gibility (pacemakers, metallic implants, claustrophobia, and
renal insufficiency), it remains an inappropriate choice for some
women. Currently, the NCCN for breast cancer recommends
that patients with stage III to IV disease typically need to
undergo CT or PET/CT imaging and that early-stage patients
with pulmonary symptoms undergo a chest CT.26 Importantly,
it states that there are many other causes (eg, chest pain) in
many patients that can warrant a chest CT scan. Preoperative
CT examinations can assess not only the extent of the lesion,
but also the skin, chest wall, regional lymph nodes, distant
organs, and bone metastases, which play a vital role in breast
cancer management and have been increasingly performed in
clinical practice in our institution. CT is different from MRI as

A B

C D

FIGURE 4. DCA for the Rad-scores and combined model. A, ER+ versus ER−, (B) PR+ versus PR−, (C) HER2+ versus HER2−, (D) high Ki-67
versus low Ki-67.
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regards potential imaging traits that they can be readily acces-
sible, our study showed CT-based radiomics analyses could be
performed to noninvasively obtain data that could help evaluate
breast cancer molecular subtypes related indicators. Besides,
these radiomics features are extracted from routine preoperative
chest CT, which would not impose extra financial costs and
radiation exposure to the patients.

Previous studies have attempted to assess the correlation
between ER and PR status and radiomics features, especially
using MRI scanning. Saha et al25 used a machine learning
approach based on MRI radiomics features to predict the ER
and PR status in 922 patients, yielding an AUC of 0.649 and
0.622, respectively. Castaldo et al31 achieved excellent results
for the differentiation of ER+ versus ER− (0.86) and PR+ versus
PR− (0.93) statuses using 3 machine learning techniques based-
MRI radiomics features from the Cancer Imaging Archive. We
also achieved favorable results in predicting ER+ versus ER−

and PR+ versus PR− status, yielding an AUC of 0.870 and
0.797, respectively. Our results show that ER and PR status
may be discriminated by CT-based radiomics features.

A recent study by Yang et al27 reported AUCs of 0.829 for
predicting HER2 status in breast cancer based on preoperative
multidetector CT radiomics features. Compared with their
research, although we did not independently validate our
results, the AUC was higher than that of their study on HER2
status prediction (AUC, 0.881). Considering the sample size,
we used a cross-validation method, which has been applied in
multiple studies in this field, without further dividing our
population into a training and validation cohort.24

Ki-67 not only forms the basis of molecular subtypes
discrimination but is also an independent predictor of prognoses
and treatment responses in breast cancer patients.3,7 Many
studies have reported that radiomics features were correlated
with Ki-67 levels. Zhang et al32 and Liang et al33 showed that
the Ki-67 levels in breast cancer patients can be predicted by
MRI-based radiomics features, with an AUC of 0.750 and
0.762, respectively. Similar to Zhang, we used a 3-dimensional
analysis of the entire tumor, which allows for the complete
assessment of the heterogeneity of breast cancer tumors. To the
best of our knowledge, no research has assessed the relationship
between CT image information and Ki-67 levels. Our results
demonstrated differentiation of low Ki-67 proliferation from
high Ki-67 proliferation with an AUC of 0.726 based on the
combination of the 3.

In addition, we compared the abilities of NE, AP, and PVP
radiomics imaging signatures and the combination thereof in
predicting breast cancer molecular subtypes related indicators
in this study. The best results were achieved for the differ-
entiation of ER+ versus ER− (AUC 0.870), PR+ versus PR−

(0.797), HER2+ versus HER2− (0.881), and high Ki-67 versus
low Ki-67 (0.726) in the combination. Our results showed that
the combination of the 3 images enabled a better performance,
likely due to the fact that the 3 images together were able to
provide more information.

Our study has some limitations. First, this was a small
sample study carried out in a single institution, which lacked
external validation. Some of our results might be the product of
overfitting as the dataset is relatively small. We tried to mini-
mize the risk of overfitting by feature normalization31 and
selection by LASSO.34 It is necessary to recruit more patients
from additional medical centers to confirm these results in
clinical practice. At present, we are also actively carrying out
this work. Second, all of our imaging data originated from the
same CT machine. We will assess the robustness of our
methods on various imaging data obtained from different

machines in the future. Moreover, the ROI was manually drawn
by an expert radiologist based on favorable ICC. Although
many previous studies28,30 have achieved good results by
manually drawing ROIs, there remains a certain degree of
inevitable interrater variability. In future studies, we will try to
use semiautomatic or full-automatic methods to draw the ROI
to minimize unnecessary variability.

In conclusion, breast cancer receptor status may be
assessed by radiomics signatures based on preoperative CT
images. This noninvasive preoperative prediction method can
be an important complement to biopsy. These findings need to
be further assessed and confirmed in larger studies in the future.
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