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ABSTRACT Potato (Solanum tuberosum) is a staple food crop and is considered one of the main sources of
carbohydrates worldwide. Late blight (Phytophthora infestans) and common scab (Streptomyces scabies) are two of
the primary production constraints faced by potato farming. Previous studies have identified a few resistance genes
for both late blight and common scab; however, these genes explain only a limited fraction of the heritability of
these diseases. Genomic selection has been demonstrated to be an effective methodology for breeding value
prediction in many major crops (e.g., maize and wheat). However, the technology has received little attention in
potato breeding. We present the first genomic selection study involving late blight and common scab in tetraploid
potato. Our data involves 4,110 (Single Nucleotide Polymorphisms, SNPs) and phenotypic field evaluations for late
blight (n=1,763) and common scab (n=3,885) collected in seven and nine years, respectively. We report moderately
high genomic heritability estimates (0.466 0.04 and 0.456 0.017, for late blight and common scab, respectively).
The extent of genotype-by-year interaction was high for late blight and low for common scab. Our assessment of
prediction accuracy demonstrates the applicability of genomic prediction for tetraploid potato breeding. For both
traits, we found that more than 90% of the genetic variance could be captured with an additive model. For
common scab, the highest prediction accuracy was achieved using an additive model. For late blight, small but
statistically significant gains in prediction accuracy were achieved using a model that accounted for both additive
and dominance effects. Using whole-genome regression models we identified SNPs located in previously reported
hotspots regions for late blight, on genes associated with systemic disease resistance responses, and a new locus
located in a WRKY transcription factor for common scab.
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The potato (Solanum tuberosum L.) is considered the sixth most im-
portant agricultural commodity worldwide after sugar cane, maize, rice,

wheat and milk. In 2014, the global production of potatoes exceeded
385 million tons, positioning China as the largest producer with more
than 66 million tons, followed by Russia, India and the United States
(FAOSTAT 2016). As a staple food, this crop represents one of the
main sources of carbohydrates, fiber, minerals and vitamins, providing
essential nutrients and energy needed for healthy body development
and function (Kolasa 1993; Drewnowski and Rehm 2013).

Despite its great economic and food security importance, potatoes face
high production losses caused mainly by biotic factors. Among them,
pathogens such as late blight (Phytophthora infestans (Mont.) de Bary),
represent the most devastating disease for potato worldwide. Late blight
infects vegetative tissues, typically killing the entire plant, within 7 to
10 days. This pathogen accounts for annual losses of 16% of the global
potato production (Haverkort et al., 2009). Under increasingly variable
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weather conditions, late blight incidence is expected to escalate worldwide,
affecting mainly highlands in developing countries (Sparks et al. 2014).

Soil-borne pathogens such as common scab (Streptomyces scabies
Thaxter), reduces the potato quality and marketability by causing su-
perficial lesions on the tuber surface (Dees andWanner 2012). Suscep-
tibility to common scab is dependent upon genotype, time and
environmental conditions (Wanner 2006; Wanner and Kirk 2015),
having a negative impact mainly in underground tissues in develop-
ment, such as stolons and tubers. This pathogen has spread worldwide
and due to its saprophyte nature, (common scab can survive in winter),
thus becoming a permanent source of inoculum for the next planting
seasons, causing losses up to $100/Ha (Wanner and Kirk 2015).

Pathogen infection can be controlled by using protectants or sys-
tematic fungicides; however, there methods can be ineffective if the
environmental conditions favor pathogen dispersion (Nowicki et al.
2011) or the emergence of fungicide-resistant genotypes (Pomerantz
et al. 2014). The most effective way to control the incidence of late
blight and common scab in potatoes is through the generation of re-
sistant varieties (Ahn and Park 2013). However, breeding for resistant
varieties via phenotypic selection can take up to 15 years, making
traditional breeding time-consuming and sometimes ineffective against
fast-evolving pathogens (The Potato Genome Sequencing Consortium
2011; Lozano et al. 2012).

Marker-assisted (Barone 2004) and genomic selection (GS) strate-
gies (Meuwissen et al. 2001) can accelerate the process of breeding
disease resistance. Several studies on late blight and common scab re-
sistance have reported variants conferring resistance to these patho-
gens; however, most of the genomic research has focused on late blight
(Gebhardt et al. 2004; Malosetti et al. 2007; Muktar et al. 2015;
Mosquera et al. 2016; Braun et al. 2017a) and are largely based on
phenotype-single marker association analyses. To the best of our
knowledge, no study so far has considered the use of GS for breeding
resistance to late blight and common scab in potato. Therefore, in this
article, we useWhole-Genome Regression methods commonly used in
GS to: (i) study important features of the genetic architecture of re-
sistance to late blight and common scab (including trait heritability,
extent of genetic-by-environment interactions (G·E) and the impor-
tance of non-additive effects), (ii) identify large-effect variants contrib-
uting to resistance to late blight and scab, and (iii) assess the prediction
accuracy of GS for resistance to those two pathogens.

Our data involves (up to) nine years offield evaluations for late blight
and common scab at two Michigan State University’s (MSU) research
centers. We considered models that accounted for additive effects and
various forms of dominance and evaluated two different statistical
methods. Our results suggest that sizable fraction of the inter-individual
differences in disease resistance (�46% for late blight and 45% for
common scab) can be captured by the SNP set used in the study.
The extent of G·E was low for common scab and high for late blight.
We found that additive models can capture more than 90% of the
genetic variance.We report large-effect SNPs contributing to late blight
resistance in chromosomes V and IX, that have been previously report-
ed to harbor resistance genes to this pathogen. We also report the first
SNP associated with common scab resistance, located on chromosome
IX, and positioned in a transcription factor known for its role in sys-
temic defense and resistance responses. Our results demonstrate that
genomic selection can yield moderately accurate prediction of disease
resistance for genotypes that have been not evaluated in field trials.
Thus, GS could be used for rapid cycling selection for resistance to
both late blight and common scab in tetraploid potato.

MATERIALS AND METHODS

Data
Data were collected from early generation and advanced tetraploid
potato genotypes derived from bi-parental crosses at the MSU potato
breeding program.Additional advanced breeding genotypes from other
United States breeding programs and reference varieties were also
included. The available genotypes (n = 381) represent different market
classes for fresh market, chip-processing, and russet-type fresh market
and processing varieties. These genotypes were evaluated in field trials
that included annual selections from MSU’s potato breeding program,
where each year poorly performing genotypes were replaced with new
genotypes, while maintaining control genotypes during consecutive
years.

Late blight field resistance trials (273 genotypes and a total of 1,763
disease records) were conducted in inoculated foliar field trials during
seven years (2010-2015 and 2017) at the MSU’s Clarksville Research
Center (Clarksville, MI). Potato seed tubers were hand planted early- to
mid-June as four-plant hills in 1.5 m plots in a randomized complete
block design with one to three replicates. Late blight-susceptible rows
and plots were planted around the perimeter and between blocks to
promote an even late blight distribution in the field. After approxi-
mately 60 days, all plots were inoculated with a zoospore suspension
of late blight at 3x106 spores/mL at the end of July or beginning of
August of each year. Over the 7-year period, different isolates were used
to infect the trial depending on the prominent isolate in the region. The
P. infestans strain (clonal lineage) detected in each year in the trial can
be found in Table S1 in File S4. Following inoculation, plots were rated
visually for the percentage of foliar area affected by late blight. Ratings
were taken at 3 to 7-day intervals, based on the rate of disease progres-
sion during 35-50 days post inoculation (DPI). Finally, the percent
defoliation data were used to calculate the relative area under the dis-
ease progress curve - RAUDPC (Fry 1978).

Common scab field resistance trials (370 genotypes and a total of
3,885 disease records) were conducted under field conditions during
nine years (2009-2017) in a disease nursery at the MSU’s Montcalm
Research Center (Lakeview, MI). The field was inoculated with com-
mon scab from aggressiveMichigan isolates, and has been cultivated for
high disease pressure for the past nine years. The trials were planted in a
randomized complete block design consisting of one to four replica-
tions of five-hill plots. After harvesting, mature tubers in plots were
assessed for their overall plot disease rating scale of 0-5. The rating was
based on a combined score for common scab coverage and lesion
severity in which a rating of 0 indicates zero infection and 3.0 or greater
scores represent highly susceptible genotypes with.50% infection and
severe pitted lesions (Driscoll et al. 2009).

SNP genotypes were obtained using the Infinium 8303 Potato Ar-
ray. Plant DNA was isolated from young potato leaves or tubers using
the Qiagen DNeasy Plant Mini Kit (Qiagen, Germany), following man-
ufacturer’s instructions. DNA was quantified using the Quant-iT Pico-
Green dsDNAAssay kit (Invitrogen, SanDiego, CA). Genotype scoring
was performed using the GenomeStudio software (Illumina, San Diego,
CA). The tetraploid SNP calling was performed as per Hirsch et al.
(2013), using a custom tetraploid genotype calling based on theta values
from the Illumina GenomeStudio (Illumina, San Diego, CA) and sub-
sequently filtered, removing poor quality markers. SNPs were coded by
counting the number of copies of a reference allele (e.g., B) where
0 denotes fully homozygous allele (AAAA), 1-3 represent heterozygous
genotypes (AAAB, AABB, ABBB, respectively) and 4 the other homo-
zygous genotype (BBBB). The genotype file was filtered by retaining SNPs
with minor allele frequency (MAF) .0.05 and missing rate ,0.15. The
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remainingmissing SNP-based genotypes were imputed with the SNPmeans.
The final number of SNPs that passed the quality filtering were 4,110.

We compared the observed and expected rates of heterozygous loci,
the later derived under the assumption of Hardy-Weinberg (HW)
equilibrium. Averaged across loci, the observed rates of heterozygosity
(0.663) was only slightly higher than the one predicted from estimated
allele frequencies (0.647). The regression of the observed and expected
frequency of heterozygous loci had an estimated slope of 0.98 (SE =
0.0025) and a R2 of 0.974. Moreover, we did not identify any clear
outlier SNP that may have indicated a significant deviation of the
observed frequency of heterozygous relative to the one predicted from
the estimated allele frequency of the locus.

Genomic relationships were computed from centered and scaled
SNP-based genotypes according to VanRaden (2008): GRM ¼ ~X~X9

ncolð~XÞ.
Here, GRM is a matrix describing genomic relationships between ge-
notypes, ~X ¼ f½Xim 2meanðXimÞ�=sdðXimÞg is a matrix of centered
and scaled SNP-based genotypes (Xim 2 f0; 1; 2; 3; 4g counts the num-
ber of copies of the reference allele at the mth loci. Subtracting the
meanðXimÞ; centers the SNP-based genotypes to a null mean and di-
viding by the SNP standard deviation, sdðXimÞ, scale SNP-based geno-
types to unit variance). Finally, division by the number of SNP-based
genotypes, ncolð~XÞ, makes the average diagonal value of GRM equal to
one.We use thismatrix to quantify genomic relationships and to derive
principal components, the later were computed by applying the eigen()
R-function to GRM.

Statistical analyses
Weuse whole-genome regressionmodels (Meuwissen et al. 2001; de los
Campos et al. 2013) for estimation of marker effects and variance
component analyses and for assessment of prediction accuracy. The
general form of the statistical model used was as follows:

yijk ¼ mþ
X5

h¼1

PChigh þ bj þ gi þ geij þ eijk [1]

where yijk is a phenotypic score (for either late blight or common
scab) of the kth replicate of the ith genotype collected in year j, m is
an intercept,

P5
h¼1 PChigh is a regression on the first five SNP-derived

principal components, bj are year effects, gi is the main effect of the ith

genotype (alternative specifications of this effect are discussed below),
geij represents a genotype-by-year interaction and eijk are error terms,
which were treated as normal, independently and identically distrib-
uted (iid) with year-specific variances, that is eijk iid� Nð0;s2

j Þ.
Year had seven levels for late blight and nine levels for common scab

(2009, 2010,.., 2017) and was treated as a random effect. Genetic and
genetic-by-year interactions were also modeled as random effects. We
considered four specifications formodeling themain effect of genotypes:

• Genotype effect. In this specification we assumed that the main
effects of the genotypes where iid draws from normal distributions
gi iid� Nð0;s2

gÞ. In this specification, no genetic information (SNPs)
was used and no assumptions about gene action (additive, domi-
nance, epistasis) were made. This specification was used as a base-
line for a model that could be fitted without having genomic
information. The other three specifications included genotypes as
inputs.

• Additive model (A): Here, the main effect of the genotype was
represented using a linear combination of the marker genotypes, that
is gi ¼

P4110
m¼1

~Ximam where ~Xim ¼ ½Xim 2meanðXimÞ�=sdðXimÞ
were centered and scaled genotypes code at the mth SNP in the ith

genotype and am is the additive effect of the markers.

• Additive + Dominance (A+D). In this case, the main effects of
genotypes have an additive component plus one that accounted for dom-
inance; therefore in this model gi ¼

P4110
m¼1

~Ximam þP4110
m¼1

~Dimdm
where ~Dim ¼ ½Dim 2meanðDimÞ�=sdðDimÞ are (centered and standard-
ized) dummy variables for heterozygous loci, here Dim=1 (=0) indi-
cates that the mth SNP of the ith genotype was in heterozygous
(homozygous) state and dm is the dominant effect of the markers.

• General model (G): Here, gi ¼
P4110

m¼1

P4
n¼0

~Wimngmn, where
~Wimn are (centered and standardized) dummy variables for geno-
types carrying n copies of the reference allele and gmn is the general
effect of the markers. Since there are up to five distinct genotypes
(0,1,. . .,4) this model includes up to four degree of freedom per locus.
This parameterization allows for any form of interactions of alleles
within locus; thus, it can be considered the most general specification
for a model accounting for additive and dominance effects.

Prior distributions for effects
Marker effects (including both additive, dominance and those of the G
model) were treated as random.We considered two prior distributions
of effects: (i) treating SNP effects as draws from normal distributions
with null mean and model-specific variances (i.e., there were separate
variances for additive and dominance), this approachwas implemented
using the Bayesian Ridge Regression (BRR) specification in the Bayes-
ian Generalized Linear Regression (BGLR) R-package (Pérez and de los
Campos 2014), and (ii) a Bayesian shrinkage-variable selectionmethod
(BayesB, Meuwissen et al. 2001). As with BRR, in BayesB different
regularization parameters (probabilities of non-null effects and scale
parameters) were assigned to effects in additive and dominance. BayesB
was implemented in BGLR using the “BayesB” keyword for the model
argument of the linear predictor.

Genotype-by-year effects (geij) were treated as IID normal with
mean zero and variance common to all the interactions, that is,
geij iid� Nð0;s2

geÞ:

Sequence of models: Using the specifications described above, we
produced a sequence of models designed to quantify the amount of
variance explained (and the contribution toprediction accuracy) of each
of the terms entering in the model of expression [1]. The sequence of
models considered is summarized in Table 1.

We used the whole-genome regression models described above for
threepurposes: (1) estimationof variance components, (2) identification
of variants with high contribution to additive variance and (3) assess-
ment of prediction accuracy in cross-validation.

Variance components: The amount of variance accounted for by each
of the terms included in the model was estimated using the methods
described in de los Campos et al. (2015) and Lehermeier et al. (2017)
(see Supplementary File S1 for further details).We use thesemethods to
decompose the total phenotypic variance into components due to year,
genetics factors, genotype-by-year interactions (G·E) and within-year
error variance. We also use this approach to assess the relative contri-
bution of SNP-additive and dominance effects.

Identification of SNPs With a sizable contribution to additive
variance: Response to selection is directly proportional to additive
variance (Falconer andMackay 1996). Thus, inGS, the single-loci additive
variance represents a natural metric to assess the relative importance of
individual loci from a breeding perspective. Under linkage equilibrium,
the contribution of each locus to additive variance is given by
VarðXimamÞ ¼ VarðXimÞa2

m. In our case, genotypes were standardized
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to unit variance; therefore, VarðXimamÞ ¼ a2
m. We used samples from

the posterior distribution of SNP effects from the A model to assess the
contribution of individual loci to additive variance. (Further details about
how these quantities were computed can be found in the script provided
with the Supplementary File S1). It is important to note that this measure
does not account for linkage disequilibrium; thus it can only be taken as a
proxy of the contribution of a locus to additive variance.

Prediction accuracy evaluation:Weimplemented twocross-validation
schemes. First, we used afivefold cross-validation, assigning genotypes
to folds. When using this approach all the phenotypic records of a
genotype are assigned to either training or testing populations. Thus,
this approach yields an estimate of the prediction accuracy that can be
achieved predicting the performance of genotypes that have not been
evaluated in field trials (i.e., prediction based on genotype data only)
and is equivalent to the method labeled as Cross-Validation one
(CV1) in Burgueño et al. (2012). For this scheme, genotypes were
assigned to folds completely at random and the fivefold Cross Vali-
dation (CV) was repeated 100 times to obtain accurate estimates of
the average prediction correlation and its standard deviation.

In a second prediction scheme (CV2), we assigned years to folds (i.e.,
there asmany folds as years). Thus, when analyzing the jth fold, data from
the jth year was assigned to testing and data from all the other years was
used for training. This CV approach yields an estimate of the prediction
accuracy that can be achieved when attempting to predict future year
performance based on past data. Note that in this case, unlike CV1, when
predicting data for the ith genotype on the jth year all the data from the ith

genotype collected in other years was part of the training dataset.
In both CV schemes prediction accuracy was evaluated by comput-

ing thewithin-year correlationbetweenphenotypes andCVpredictions.

Software: All the analyseswere conductedusingR (TheRDevelopment
Core Team 2010).Models were fit using the BGLR-R package. For each
model, we ran the Gibbs sampler algorithm for a total of 33,000 cycles,
discarding the first 3,000 samples for burn-in; one of every five of the
remaining samples was saved and used to estimate posteriormeans and
standard deviations.

Data availability
Scripts demonstrating how each of the models were implemented in
BGLR are given in File S1. The genotype and phenotype data are
provided inFilesS2andS3 for lateblight andcommonscab, respectively.
File S4 contains Tables S1-S5. Supplemental material is available at
Figshare: https://doi.org/10.6084/m9.figshare.6336911 and https://doi.
org/10.25387/g3.6262214.

RESULTS
The distribution of late blight and common scab infection varied
substantially between years (Figure 1). In general, RAUDPC median
values decreased from 2010 to 2012, with US-22 as the prevalent late
blight strain on infected plants. In subsequent years, a differential re-
sponse for late blight resistance was observed when US-23 was the
prevalent strain. Disease pressure changes, together with the environ-
ment fluctuations between years contribute to explain the phenotypic
variation observed for the late blight resistance response. Similarly, for
common scab, a reduced frequency of resistant genotypes (0-1 score)
was observed from 2009 until 2013, having at the same time an in-
creasing number of intermediate susceptible genotypes (2-3 scores).
Since 2013 and until 2017, an increased frequency of common scab
resistant genotypes was observed (Figure 1).

A principal component (PC) analysis showed that potato genotypes
clustered in two groups, one involving 391 genotypes, and a small one
including 22 genotypes (Figure 2). The eigenvalues associated to thefirst
two PCs explained about 8% of the total genotypes variance (Figure 2).
A cluster analysis using a correlation matrix derived from SNPmarkers
supports the PC-analysis results (Figure 3). The heatmap also reveals
that the strength of genomic relationships among the different mate-
rials is relatively small (the clear majority of the genotypes have geno-
mic relationships with other genotypes smaller than 0.1, with only a few
genotypes showing relationships comparable to parent-offspring or
full-sib relations, i.e., 0.5, Figure 3).

Variance Components Estimates
The variance components analyses for late blight resistance (Table 2
and Table S2 in File S4) revealed that year explained roughly 25% of
the variance in disease scores. For this trait, and taking as a reference
the model M3, the main effect of genotype explained about 34% of the
variance, genotype-by-year interactions explained 25% of the vari-
ance and the error term explained roughly 14% of the variance in late
blight scores. These results suggest that a substantial proportion of
within-year variance in late blight scores (roughly 70%, computed
as 0.34/[0.34+0.144]) can be explained by main effects of genotypes.
For late blight, the amount of genetic variance captured by the A
model was roughly 94% of the variance captured by the G model
(computed as 0.330/0.352).

For common scab (Table 2 andTable S2 in File S4) themain effect of
genotype explained about 44% of the total variance, year and genotype-
by-year effects explained only 3% and 6% of the total variance, respec-
tively, and the error term accounted for almost one half (48%) of the
variance in disease scores. For common scab we also observed that the
amount of genetic variance captured by the Amodel was very similar to
the one captured with the G model.

n Table 1 Sequence of models

Model
# (label)a

Effects Included

Year Genotypeb PCc Additived Dominancee Generalf Genotype-by -Yearg Error

M1 · ·
M2 · · ·
M3 · · · ·
M4 · · · · ·
M5 (A) · · · · ·
M6 (A+D) · · · · · ·
M7 (G) · · · · ·
a
M1-M7 are model numbers. bRandom effect of the genotype (no SNPs used, no assumption about gene action are made).

c
Principal components, dlinear regression on allele content (0/1/2/3/4), eSimple dominance (1 degree of freedom per locus representing heterozygous) and fGeneral
model for additive + dominance (with up to 4 degrees of freedom per locus). gGenotype-by-year interaction. An ‘·’ indicates that the effects was included in the model.
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The proportion of the total genetic variance that could be attrib-
uted to the first-5 PCs was substantial for late blight (�30%, com-
puted as 0.107/0.352) and low for common scab (�10%, 0.051/
0.451).

For the A model (fitted using BayesB), we computed single-locus
variances and used these estimates as proxies for the SNP relevance
(Figures 4a and 4b). Additionally, we report in Figures S1 and S2,
linkage disequilibrium (LD) plots for the 10 leading SNPs (i.e., those
with the larger single-SNP variance) for each trait. For both pathogens,
there were a few regions with large single-SNP-variance. Specifically,
for late blight, there were multiple SNPs distributed across the potato
chromosomes (Figure 4a and Table S3 in File S4) with a sizable con-
tribution to variance, suggesting that multiple genes contribute to the
resistant phenotype. Conversely, for common scab, there was one SNP,
located in chromosome IX (Figure 4b and Table S4 in File S4), that
stands out for its contribution to variance and a few SNPs with a
moderate contribution to phenotypic variance.

The results from the first cross-validation analysis (CV1) yielded an
estimated prediction correlation of about 0.31 for late blight resistance
using the G model. For this trait, there was a relatively small, albeit
significant, increase in prediction correlation for the Gmodel relative to
theAmodel. Likewise, there was a slight superiority of BayesB over BRR
(Table 3). In the case of common scab, the A model (with a prediction
correlation of �0.27) outperformed the A+D (correlation �0.26) and
G (correlation �0.22) models. These results agree with the variance
component analyses results, where we also found evidence of a slightly
higher relevance of non-additive effects in the case of late blight, com-
pared to common scab.

Note that in Table 3 we only included results from models using
genotypes. Results from other models (e.g., M2 and M3) are not pre-
sented because in CV1 they render zero within-year correlation. This
happens because in CV1 predictions are entirely depending on bor-
rowing of information between genotypes, a feature that is not possible
in models that do not use genotype or pedigree information.

The results from the second cross-validation (i.e., where years were
assigned to folds, CV2) yielded higher estimates of prediction accuracy
than those obtained in CV1 (Table 4 and Table S5 in File S4). This
happens because in CV2 there is within-genotype borrowing of infor-
mation across years. For late blight, prediction correlations ranged from
0.41 to 0.74, depending on the model and year. Likewise, for common
scab, we obtained correlations ranging from 0.46 to 0.76. For both
traits, the across-year average correlations showed small differences
between models (with a slight superiority in favor of the G model).

DISCUSSION
Genomic selection has been quickly adopted for breeding in diploid
species (Heffner et al. 2009; Daetwyler et al. 2013; de los Campos et al.
2013). However, the volume of research and the adoption of the GS
technology for breeding of polypoid species has been much more lim-
ited (e.g., Habyarimana et al. 2017; Sverrisdóttir et al. 2017). In this
study, we demonstrate how genomic models commonly used in GS of
diploid organisms can be applied for the analysis and prediction of
disease susceptibility in autotetraploid potato.

Our results indicate that a sizable fraction of the within-year inter-
individual differences in disease resistance (about 0.46 6 0.04 for late
blight and 0.456 0.02 for common scab) can be explained using 4,110

Figure 1 Boxplot of late blight scores
(A, relative area under the disease
progress curve- RAUDPC) and bar plot
for common scab scores (B, 0-5 rating
scale).

Figure 2 Principal component analy-
sis of the Michigan State University’s
potato breeding genotypes derived
from 4,110 SNPs: loadings on the first
two marker-derived principal compo-
nents (A) and proportion of variance
explained by the top 10 principal
components (B).
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codominant SNPs from the Infinium 8303 Potato Array used in this
study. These moderately high genomic heritability estimates for com-
plex disease phenotypes indicates that, in principle, genomic prediction
could be used successfully to select for resistance to late blight and
common scab.

Previous studies have reported heritability estimates for these traits;
however, differences in the nature of the genetic materials (diploid vs.
tetraploid, hybrids vs. genotypes) and of the environmental conditions
(natural vs. induced infection) makes the comparisons across studies
difficult (Nelson 1978; Braun et al. 2017b). For instance, Haynes and
Christ (1999) reportedmuch higher heritability estimates for late blight
resistance (0.8), but this study was based on diploid hybrids. For the
same trait, estimates of heritability obtained using tetraploid genotypes
are closer to the ones reported here (ranging from 0.31 to 0.69,
Pajerowska-Mukhtar et al. 2009; Solano et al. 2014).

For common scab, previous heritability estimates are also highly
variable, depending on the genetic material and the environmental
conditions. For instance, using diploid potatoes derived from a cross
between wild relatives (S. phureja · S. stenotonum) and cultivated
potatoes (di-haploid S. tuberosum · S. chacoense), Haynes et al.
(2009) and Braun et al. (2017b) reported broad sense heritability esti-
mates ranging from 0.18 to 0.72 for different environments. However,
studies involving tetraploid potatoes have reported higher heritability
estimates with values ranging from 0.32 to 0.93 (Haynes et al. 1997;
Bradshaw et al. 2008; Tai et al. 2009). More recently, 18 dedicated
common scab and standard breeding program trials were conducted
in fields with high disease pressure. The broad sense heritability
estimates reported from these studies ranged from 0.75 to 0.90 for
dedicated common scab trials and from 0.06 to 0.82 for standard
breeding programs trials involving advanced breeding materials
(Navarro et al. 2015).

The amount of variance in disease resistance that could be attributed
to genotype-by-year interactions was high for late blight and very small
for common scab. These differences are likely to be due to the different
nature and characteristics of infection on the fields used to evaluate late

blight and common scab. Specifically, for late blight, the mean scores
varied substantially between years (e.g., it was clearly low in 2013)
reflecting changes on the late blight aggressiveness and late blight ge-
notypes present in different years, resulting in a large extent of geno-
type-by-year interactions for this pathogen. On the other hand, our
common scab data were generated in a nursery that has been used to
evaluate common scab resistance in potato breeding genotypes for
several years. Consequently, there was less variability in the mean
scores across years and therefore we observed substantially less extent
of G·E. A similar result was reported under comparable conditions by
Murphy et al. (1995). Results based on fields trials performed in dif-
ferent locations for this pathogen have shown much higher variability
over the years (Haynes et al. 2009).

The comparisonof the genomic variance estimates obtainedwith the
A model and those obtained with the G model suggest that, for both
pathogens, a sizable fraction of the total genetic variance (0.94 and 0.98,
for late blight and common scab, respectively) can be captured by an
additivemodel (Table 2 and Table S2 in File S4). The amount of genetic
variance captured by the A model reflects an estimate of the variance
that can be captured by regression on allele content (i.e., by allele sub-
stitution effects). However, when dominance is included in the model
(A+D), the estimated ‘additive variance’ no longer represents the var-
iance explained by allele substitution effects; therefore, the additive
component in the A+D model is smaller than the additive component
estimated with the A model.

While our variance component estimates indicate that most of the
genetic variance can be captured by an A model, our cross-validation
analysis suggests that accounting for non-additive effects could improve
prediction accuracy by a small but statistically significant margin in the
case of late blight. These results agree with the theory that suggests that
dominance and epistasis are expected to contribute to the expression of
traits subjected todirectional selectionor those affecting theplantfitness
such as late blight resistance (Killick and Malcolmson 1973). This may
explain why the Gmodel captured slightly more variance and predicted
slightly more accurately late blight scores than the A model.

The presence of linkage disequilibrium (LD) between locimakes the
partition of the total genetic variance into (orthogonal) locus-specific
components not possible (de los Campos et al. 2015). However, it is
worth looking at the relative size of estimated effects to explore features
of the genetic architecture of the trait. We did this by inspecting the
estimated SNPs variances (Figure 4). Overall, the proportion of vari-
ance explained by individual SNPs was low, reinforcing the idea that
resistance to both common scab and late blight is polygenic. However,
there were some SNPs with relatively large SNP-variances for both late
blight (located mainly in chromosomes V and IX) and common scab
(located in chromosome IX). (Figure 4, Table S3 and S4 in File S4). For
late blight resistance, multiple quantitative trait loci (QTL) have been
reported across the 12 potato chromosomes in tetraploid and diploid
potato populations (Tiwari et al. 2013). Most of these major QTL are
located in chromosomes III, IV, V, VII, XI and XII, characterized for
harboring hotspot regions for resistance to late blight and other path-
ogens, not only for genes involved in quantitative resistance such as R
genes, but also for genes involved in qualitative resistance (Malosetti
et al. 2007; Pajerowska-Mukhtar et al. 2009; Álvarez et al. 2017). For
instance, genes involved in carbohydrate metabolism such as sucrose
synthase (Table S3 in File S4) play an active role in the defense response
elicitation. Sucrose synthesis down-regulation has been described in the
Capsicum annuum - Phytophthora nicotianae pathosystem, showing
a decreasing concentration after challenging with beta-aminobutyric
acid (BABA) and priming the synthesis of metabolites associated with
the production of defense-related compounds (Stamler et al. 2015).

Figure 3 Heatmap of the genomic relationship matrix (GRM) from the
Michigan State University’s potato breeding genotypes.
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Additionally, these results validate earlier QTL reports obtained from
MSU-derived populations using potato varieties carrying different late
blight resistance genes coming from species previously used in resis-
tance breeding such as S. demissum and S. berthaultii (Massa et al. 2015;
N. Manrique-Carpintero, personal communication).

For common scab resistance, our results suggest an additive re-
sistance effectwith a clearmajor-effect SNP located on chromosome IX.
ThisSNPisassociatedwithaWRKYtranscriptionfactorknownfor their
role in the modulation of the resistance responses in systemic and
acquired plant resistance, activating or repressing the transcription of
genes involved in the synthesis of defense related-proteins such as R
proteins (Pandey and Somssich 2009; Buscaill and Rivas 2014). In
addition to the loci discussed above, we were also able to identify
additional SNPs with a sizable contribution to variance across the
potato chromosomes (Figure 4). Interestingly, the SNP in the WRKY
gene that appeared to have a sizable contribution to inter-individual
differences in common scab resistance is located in a regionwhere LD is
relatively weak (see Figure S2).

For instance,we foundoneSNP located in chromosomeIII (Table S4
in File S4) associated with the primary metabolism-related protein
fructokinase, whose concentration increases under pathogen attack as
amechanism to reduce the costs attributed to the defense response in soil-
borne pathogens (Zimaro et al. 2011). Likewise, in chromosome V, we
found one SNP related to the RNA synthesis-related protein DEAD-box

ATP-dependent RNA helicase, reported for its role in plant resis-
tance by enhancing the defense response in both necrotrophic and
biotrophic pathogens (Li et al. 2008). Overall, the evidence we found
support the hypothesis that resistance to common scab involves
multiples mechanisms of defense including the activation of genes
related to systemic and R gene-mediated resistance.

There are few studies reporting QTL for common scab resistance.
For instance, two QTL located in chromosome XI were detected in a
diploid parental-derived population for the percentage of surface area
infected and lesion type caused by common scab, explaining 21% and
18.2% of the total phenotypic variance, respectively (Braun et al.
2017a). For tetraploid populations, Amplified Fragment Length
Polymorphisms (AFLPs) and Simple Sequence repeats (SSRs)
markers have been used to establish an association between potato
genotypes and the common scab resistance phenotype in a tetraploid
bi-parental derived-population. Two copies of a dominant allele were
detected in a QTL localized in chromosome II, explaining 8.1 and 7.1%
of the phenotypic variance, respectively. A second QTL was localized in
chromosome VI explaining 6.9% of the total phenotypic variance
(Bradshaw et al. 2008). Therefore, the large-variance SNP detected in
this study represents a new genomic region associated with common
scab resistance, providing a framework for the development of molec-
ular markers for marker-assisted selection and understand the genetics
behind common scab resistance.

Figure 4 Estimated SNP-variances derived from
BayesB model using the additive model for late
blight (A) and common scab (B). (In both cases,
phenotypes were disease scores standardized to a
variance equal to one. Vertical lines indicate the
positions of the top-10, according to estimated
SNP-variance markers).
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Our variance component estimates suggest that for both, late
blight and common scab, a sizable amount of inter-individual dif-
ferences in disease resistance can be captured using whole-genome
regressions. However, the successful implementation of GS requires
beingable topredict futureoutcomes frompastdata.Weassessed this
using two CV analyses. Our results are based on genotypes derived
from potato breeding programs. Some of these genotypes are related
throughpedigrees and there is some level of population stratification.
Therefore, the prediction accuracies reported in our study should be
considered representative of the prediction accuracy that onemay be
able to achieve when applying GS to breeding populations.

We considered two different prediction problems and imple-
mented different CV schemes to represent each prediction problem.
Our first CV focused on the prediction of future scores from
genotypes that were not evaluated in field trials (i.e., prediction
based on information from other genotypes). These analyses ren-
dered moderately low CV-correlations (�0.22-0.31 with some
small differences between traits and models).

It is important tohighlight that inCV1 the correlations reflect the
prediction accuracy that can be achieved when predicting future
phenotypes for genotypes that have not been evaluated infield trials.
These predictions, although imperfect, could enable several rounds
of rapid selection based on genotype data alone. The predictive
correlation obtained in CV1 was about half of the correlation
between phenotypes across years (compare results in Table 3 with
those forM2 in Table 4). Thus, we conclude that with the array and
sample size used in this study, the predictive accuracy for late blight
and common scab scores obtained from a newly developed geno-
type that has been genotyped but not tested in the field is about half
of the predictive power of a single phenotype record. If more than
two selection cycles can be carried out per year, the reduction on
generation interval that can be achieved with genomic prediction
would overcome the lower accuracy and, eventually lead to faster
yearly genetic gains.

Our second CV used years as folds; therefore, in this case, disease
scores predictions for one-year data were obtained from the same
genotypes over years. The results of the model based on year and
genotype (M2), give a baseline estimates of the predictionaccuracy
that can be achieved with phenotypic prediction. In CV2, we obtained
higher prediction correlations (0.56-0.61, Table 4) than with CV1.
However, the performance of the genomic models was only slightly
superior to predictions based on past phenotypes-only (i.e., those that
could be obtainedwith theM2model). This result agreeswith previous
studies (e.g., Crossa et al. 2010) that show that the benefits of genomic
prediction are more important when predicting phenotypes of mate-
rials that have no (or very limited) data from previous field trials.

Conclusions
We confirmed that a sizable fraction of inter-individual differences
in late blight and common scab scores can be attributed to genetic
factors and can be captured using whole-genome regressions. We
found large genotype-by-year interactions for late blight and limited
genotype-by-year interactions for common scab. For both late blight
and common scab, we found that an additive model could account
for a sizable (.90%) of the total genetic variance. However, for late
blight, we found small (but statistically significant) gains in pre-
diction accuracy when accounting for dominance. Our analyses
confirm strong associations with disease resistance to SNPs in pre-
viously reported resistance hotspot regions for late blight and re-
ported a novel locus that has a sizable contribution to common scab
resistance. We demonstrated that prediction of disease resistance,n
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using genomic prediction applied to autotetraploid potato, is feasible
and can be implemented for SNP-based selection in potato breeding.
Further research is needed to explore ways (larger sample size, more
controlled environments, higher marker density) in which genomic
prediction accuracy can be further improved.
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