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Abstract: The continuous rise of the COVID-19 Omicron cases despite the vaccination program
available has been progressing worldwide. To mitigate the COVID-19 contraction, different contact
tracing applications have been utilized such as Thai Chana from Thailand. This study aimed to predict
factors affecting the perceived usability of Thai Chana by integrating the Protection Motivation Theory
and Technology Acceptance Theory considering the System Usability Scale, utilizing deep learning
neural network and random forest classifier. A total of 800 respondents were collected through
convenience sampling to measure different factors such as understanding COVID-19, perceived
severity, perceived vulnerability, perceived ease of use, perceived usefulness, attitude towards using,
intention to use, actual system use, and perceived usability. In total, 97.32% of the deep learning
neural network showed that understanding COVID-19 presented the most significant factor affecting
perceived usability. In addition, random forest classifier produced a 92% accuracy with a 0.00
standard deviation indicating that understanding COVID-19 and perceived vulnerability led to a
very high perceived usability while perceived severity and perceived ease of use also led to a high
perceived usability. The findings of this study could be considered by the government to promote the
usage of contact tracing applications even in other countries. Finally, deep learning neural network
and random forest classifier as machine learning algorithms may be utilized for predicting factors
affecting human behavior in technology or system acceptance worldwide.

Keywords: contact tracing; deep learning neural network; random forest classifier; machine learning
algorithm; human behavior

1. Introduction

The COVID-19 pandemic has been present for almost 2 years since March 2020. De-
spite the vaccination programs evident in different countries, the continuous rise of infected
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people still prevails. The increasing number of infected people is due to the different vari-
ants and mutations that caused the COVID-19 virus to be highly transmittable, mortal, and
sometimes undetectable [1], as seen in the Omicron variant. The Omicron variant has be-
come evident and continued to spread to different countries, which affected all individuals.

The prominent increase has caused burnout among people [2] especially healthcare
professionals [3,4]. Thus, the need to monitor and trace individuals is necessary to reduce
exposure and contain the COVID-19 virus spread. Siddiqui et al. [5] justified that people
who are knowledgeable will be practicing preventive measures, however, there is only a
weak correlation. Thus, the need to mitigate the COVID-19 virus through monitoring and
tracing should be explored.

The COVID-19 tracking and monitoring application/method is available in different
countries. In Europe, Kahnbach et al. [6] showed that there is evidence of high functionality,
information quality, and esthetics. However, the engagement–orientation quality was
relatively weak. In the United Kingdom, Velicia-Martin et al. [7] showed that perceived
ease of use would lead to perceived usefulness and attitude. Moreover, in Germany,
Behne et al. [8] showed that the application should have an agile set-up and have faster
updates towards changes. There are other available contact tracing applications worldwide,
however, the need to still consider numerous factors were evident to promote and make
the application usable among people in different countries [9]. Despite the availability of
kinds of literature regarding tracing applications, there were limited to none regarding
“Thai Chana” tracing application from Thailand.

Thai Chana is the main contact tracing application from Thailand [10]. It is a self-
reporting online tool for contact tracing among Thais. Thailand was able to consider
strategies such as surveillance, laboratory testing, case management and control, risk
communication, preparation of healthcare staff, facilities, and medical supplies [11]. Thai
Chana helped a lot in the different strategies formulated by Thailand [12]. It has been
required among Thais to be utilized when entering a vicinity. It is stated that the govern-
ment implemented strict compliance to register with the Thai Chana mobile application,
applicable to everyone in Thailand, even the foreign visitors. Thai Chana has the capability
to gather information such as name, age, addresses, and contact numbers. In addition, it
could indicate and transmit information whether someone infected has been in the area. To
which, people are guided whether an area is safe, even the need to isolate, and take the
test to mitigate the spread of the virus. However, Bangkok, the capital of Thailand is still
considered one of the most highly infected cities after China [12]. Thus, the need to explore
Thai Chana is important to promote usage and would mitigate the infection rate in the
country [13].

Research Questions:

1. Would the integrated Protection Motivation Theory and Technology Acceptance
Model holistically measure perceived usability of a health-related application for
COVID-19 contact tracing?

2. Could a machine learning algorithm solely measure and predict factors affecting
human behavior, specifically measuring perceived technology usability?

3. Are the integrated deep learning neural network and random forest classifier enough
to highlight the significant factors affecting perceived usability of a technology?

4. Could the proposed model and methodology be applied and extended to different
studies involving human behavior?

To measure the usability of tracing applications such as Thai Chana, frameworks such
as Protection Motivation Theory and Technology Acceptance Model could be utilized. Pro-
tection Motivation Theory is a fear and coping appraisal theory that is utilized to measure
health-related measures [14]. Technology Acceptance Model on the other hand is utilized
for measuring the usage of a product or technology [15]. Both studies of Ong et al. [14] and
Prasetyo et al. [15] integrated the respective theories to holistically measure an individual’s
intention or usage behavior. Protection Motivation Theory solely measures a person’s
perception of vulnerability and severity [16]. Van Bavel et al. [17] considered Protection
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Motivation Theory to measure the minimization of risk and exposure to improve online
security behavior. Mousavi et al. [18] considered Protection Motivation Theory for privacy
protection behavior on social networking sites. Their results showed that privacy assurance
played a significant role in people’s usage of a system.

Consequently, the Technology Acceptance Model was considered by several studies
for actual usage of a system. Tomczyk et al. [19] integrated health behavior changes and the
Technology Acceptance Model to measure the predicted adoption intentions of the German
contact tracing application. Their study considered hierarchical regression modeling and
showed that there was only a marginal increase in the predictive value. Moreover, Velicia-
Martin et al. [7] considered Technology Acceptance Model regarding the contact tracing
application in the United Kingdom. However, their study utilized partial least square–
Structural Equation Modeling. According to Fan et al. [20], Structural Equation Modeling
alone cannot measure the most significant factor due to the causal relationship among the
framework considered. The farther the independent variables from the dependent variables
may cause low to no significance. In addition, Woody [21] stated how a mediating effect
may be present which hinders the importance and significance level of latent variables due
to connections present in a framework. Thus, it would be best to consider utilizing machine
learning algorithms such as deep learning neural network and random forest classifier to
have high accuracy of prediction among factors affecting human behavior [22].

This study aimed to determine the perceived usability of the COVID-19 contact tracing
mobile application in Thailand, Thai Chana. This was achieved through the integration of
Technology Acceptance Model and Protection Motivation Theory to measure the perceived
usability of Thai Chana as a contact tracing application in Thailand. This was measured
using deep learning neural network and random forest classifier to predict factors affect-
ing the perceived usability of Thai Chana. Specifically, factors such as understanding
COVID-19, perceived severity, perceived vulnerability, perceived ease of use, perceived
usefulness, attitude towards using, intention to use, actual system use, and perceived
usability were considered in this study. This is the first study that considered deep learning
neural network and random forest classifier for contact tracing applications. The results of
this study would be beneficial for contact tracing applications in different countries as a
theoretical foundation for new mobile applications for disease control. Lastly, this frame-
work could also be utilized for another application’s usability among different technologies
and its overall acceptance worldwide.

With the trend of research focusing on human behavior dealing with integrated
multivariate tools and machine learning algorithms [22–28], this study highlighted how
machine learning algorithm alone can accommodate analysis involving technology usability.
Little to no studies were found to deal with studies that considered sole machine learning
algorithm tools in analyzing human behavior, specifically perceived usability of technology
with integrated theories as the framework. In addition, this study is one of the first studies
that provided evidence for analyzing factors affecting technology usability using combined
random forest classifier and deep learning neural network. The flow of the paper is as
follows: (1) Introduction that covers the literature review, gap, and background of the study,
(2) related studies and theoretical framework, (3) methodology, (4) results and validation,
(5) discussion, and (6) conclusion.

2. Related Studies and Theoretical Framework
2.1. Machine Learning Algorithm

The machine learning algorithm has been widely utilized due to the availability of bulk
data nowadays. It is a tool used for predicting, classifying, and recognizing patterns among
different datasets. Several studies [22–24] have utilized machine learning algorithm tools
such as decision tree with random forest classifier and neural networks. Milani et al. [25]
have utilized random forest classifier in classifying factors affecting professional child
removal based on parental factors. Their results presented how random forest classifier
could be utilized in analyzing factors affecting human behavior. Moreover, Chen et al. [22]
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considered random forest classifier for predicting risk evaluation of flood disasters in China.
The different studies have proved how random forest classifier compared to the normal
decision tree provided better classification accuracy [24–26].

On the other hand, neural networks have been utilized to determine pattern recog-
nition. Neural networks have been developed utilizing an algorithm based on how the
neurons transfer information to the brain. It is said to be advantageous since it produces
state-of-the-art results based on large datasets [26]. Yariyan et al. [27] utilized Artificial
Neural Network focusing on risk assessment in Iran. Oktarina et al. [28] considered neural
networks in predicting damages and casualties of people in Indonesia. However, simple
neural networks such as artificial neural networks have reduced capabilities to predict
higher accuracy due to limited processing of factors. Utilizing a lot of factors would
consider more complex calculations. To which, deep learning neural network would be
beneficial since it considers more hidden layers for further processing and calculation of
output [26]. However, the disadvantage of which is the optimization process to determine
the best activation function, optimizer, and the number of nodes since artificial neural
networks are classified as a black box.

Compared to the traditional statistical analysis and multivariate tools such as Struc-
tural Equation Modeling, machine learning algorithm has been said to have several advan-
tages that suffice the limitations of Structural Equation Modeling. Fan et al. [20] explained
how the traditional Structural Equation Modeling has limitations due to the indirect ef-
fect the framework has considered. This reduces the level of significance, and may even
bring non-significant results due to the connections among dependent and independent
variables. In addition, Woody [21] explained how the mediating effects brought by partial
and full mediation cause different significant and insignificant results. Therefore, Struc-
tural Equation Modeling could not relatively predict the most significant factor affecting
human behavior. As suggested by several studies, machine learning algorithms such as
random forest classifier and deep learning neural network could be utilized to predict
highly significant factors affecting human behavior [23–28]. Thus, this study opted to
highlight how machine learning algorithms such as deep learning neural network and
random forest classifier could be utilized to evaluate human behavior, specifically factors
affecting perceived usability of a technology with integrated frameworks of Protection
Motivation Theory and Technology Acceptance Theory.

2.2. Theoretical Framework

Presented in Figure 1 is the theoretical framework considered in this study. The inte-
gration of Protection Motivation Theory and the Technology Acceptance Model following
factors such as understanding COVID-19 (U), perceived severity (PS), perceived vulnerabil-
ity (PV), perceived ease of use (PEU), perceived usefulness (PU), attitude towards using (A),
intention to use (IU), and actual system use (AU) were considered to measure perceived
usability (PUS). The basic Technology Acceptance Model factors were considered such as
PEU, PU, A, IU, and IU. Protection Motivation Theory is a framework used to measure the
threat and coping appraisal influencing the behavioral intention of an individual, dealing
with health-related topics [13]. Under Protection Motivation Theory, only those under
the threat appraisal factors were considered such as U, PV, and PS. Since “Thai Chana”
is utilized for the mitigation of threats brought by the COVID-19 pandemic, the coping
appraisal was not included in the framework of this study.

Factors under Protection Motivation Theory when dealing with threats consider
different factors such as U, PV, and PS [13–15]. Li et al. [29] explained how the perception
in choosing and using a mobile application for COVID-19 tracing is caused by people’s
risk perception, readiness to use the system, and socialization. With knowledge regarding
health-related negative effects, people would often look for ways to mitigate them [14].
Understanding of COVID-19 in this study considers the perception of what the virus
is, how it is transmitted, affects, and health protocols. On the other hand, PV is how
susceptible the individual is to contract the virus. PS is the perception of how critical
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the effect of contracting COVID-19 is. Martins et al. [30] explained that knowing the
positive effect of mitigation through the use of technology would to an increase in perceived
usability. Mingxing et al. [31] also highlighted that when the perception of risks is increased,
there is also an increase in the perceived usability of a technology such as contact tracing
applications. Thus, it was hypothesized that:

Hypothesis 1 (H1). U has the most significant effect on PUS.

Hypothesis 2 (H2). PS has the most significant effect on PUS.

Hypothesis 3 (H3). PV has the most significant effect on PUS.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 5 of 24 
 

 

“Thai Chana” is utilized for the mitigation of threats brought by the COVID-19 pandemic, 
the coping appraisal was not included in the framework of this study. 

 
Figure 1. Theoretical Framework. 

Factors under Protection Motivation Theory when dealing with threats consider dif-
ferent factors such as U, PV, and PS [13–15]. Li et al. [29] explained how the perception in 
choosing and using a mobile application for COVID-19 tracing is caused by people’s risk 
perception, readiness to use the system, and socialization. With knowledge regarding 
health-related negative effects, people would often look for ways to mitigate them [14]. 
Understanding of COVID-19 in this study considers the perception of what the virus is, 
how it is transmitted, affects, and health protocols. On the other hand, PV is how suscep-
tible the individual is to contract the virus. PS is the perception of how critical the effect 
of contracting COVID-19 is. Martins et al. [30] explained that knowing the positive effect 
of mitigation through the use of technology would to an increase in perceived usability. 
Mingxing et al. [31] also highlighted that when the perception of risks is increased, there 
is also an increase in the perceived usability of a technology such as contact tracing appli-
cations. Thus, it was hypothesized that: 

Hypothesis 1 (H1). U has the most significant effect on PUS. 

Figure 1. Theoretical Framework.

PEU is the perception that using a system or technology is free of effort [32]. In
addition, PU is defined as the beneficial effect of the technology in the daily activities of an
individual [33]. Zheng and Li [34] presented how both PEU and PU are significant latent
variables in the acceptance and utility of an application. Mohammadi [32] added that PEU
is an influential latent variable that leads to the behavioral intention in using an application.
This indicates that if the application is useful and easy to use, then people would have
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a positive perception of its usability. Especially in health-related applications, Walrave
et al. [35] presented how the benefits of an application such as contact tracing would lead to
a significant effect on the perceived usability. Therefore, the following were hypothesized:

Hypothesis 4 (H4). PEU has the most significant effect on PUS.

Hypothesis 5 (H5). PU has the most significant effect on PUS.

Attitude, as one of the latent factors in the Technology Acceptance Model, indicates
the positive or negative behavior the individual establishes upon using the technology.
Parasuraman and Colby [36] explained how the contact tracing application is a new technol-
ogy, thus the people’s acceptance and perception of usability may be affected due to their
attitude in adaptation. Moreover, Li et al. [29] showed how there are negative perceptions
in contact tracing adoption due to a pessimistic attitude in using a system. However, the
study of Ong et al. [37] explained that when health is at stake, people would consider
utilizing technologies, which will lead to a positive perception of how highly usable a
technology is. Thus, it was hypothesized that:

Hypothesis 6 (H6). A has the most significant effect on PUS.

IU in this study pertains to the purpose of using an application, while AU is the
definite utility of an application [38]. Dehghani et al. [39] studied enabling technologies,
their benefits towards health-related concerns, and the goods the technology may provide.
Their study showed how both IU and AU affect the perceived usability among individuals
when dealing with health-related applications. Following the study of Pal and Vanijja [33],
the actual system has been seen to have a significant effect preceded by usability. In
addition, Ong et al. [37] explained how people who have high IU would lead to AU due to
their perception of usability and usefulness. Moreover, to measure the usability, this study
adapted the questions under the System Usability Scale. System usability scale is said to be
the widely utilized tool with standardized questions in assessing perceived usability [40].
To which, the following were hypothesized:

Hypothesis 7 (H7). IU has the most significant effect on PUS.

Hypothesis 8 (H8). AU has the most significant effect on PUS.

3. Methodology
3.1. Questionnaire

Presented in Table 1 are the constructs considered in this study. Different kinds
of literature were considered for the adaptation of the different items utilized. Under
Understanding of COVID-19 (U), there were 6 items, perceived vulnerability (PV) and
perceived ease of use (PEU) has 5, perceived severity (PS) and perceived usefulness (PU)
has 7, attitude towards using (A) and intention to use (IU) has 5, actual system use (AU)
has 6, and perceived usability (PUS) has 10. The data were available from answering a
5-point Likert Scale.
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Table 1. Construct and measurement items.

Construct Items Measures Supporting References

Understanding of
COVID-19

U1 I do understand the transmission of COVID-19 Prasetyo et al. [41]

U2 I do understand the incubation period of COVID-19 Li and Lin [42]

U3 I do understand the general symptom of COVID-19 Munzert et al. [43]

U4 I do understand the protocol if I have the symptoms
that might lead to COVID-19

U5 I do understand which hospital can treat
COVID-19 patients

U6 I do understand when I can get the vaccine for
COVID-19 from Thai Government

Perceived Vulnerability

PV1 I think I am vulnerable to COVID-19 Prasetyo et al. [41]

PV2 I think my area is very vulnerable to COVID-19 Kowalski and Black [44]

PV3 I think there is a chance that my family will be infected
by COVID-19

PV4 I think my friends/colleague is vulnerable
to COVID-19 Ong et al. [14]

PV5 I think Thailand is more vulnerable than
ASEAN countries

Perceived Severity

PS1 I find COVID-19 is a serious disease Prasetyo et al. [41]

PS2 I find COVID-19 can lead to sudden death

PS3 I find COVID-19 is more severe than other diseases Kowalski and Black [44]

PS4 I find COVID-19 can affect my mental health Ong et al. [37]

PS5 I think it’s very expensive to pay the medical expenses
for COVID-19 Lewis [40]

PS6 I think the COVID-19 outbreak will continue until the
middle of 2021 Walrave et al. [35]

PS7 I think COVID-19 in Thailand is more severe than
ASEAN countries

Perceived Ease of Use

PEU1 I think Thai Chana can provide information related to
COVID-19 that I want Prasetyo et al. [41]

PEU2 Information provided by Thai Chana is very clear
and understandable Kurniasih et al. [45]

PEU3 I can use Thai Chana successfully every time

PEU4 I believe the information provided by Thai Chana
is correct Camacho-Rivera et al. [46]

PEU5 It would be easy for me to become skillful at using
Thai Chana

Perceived Usefulness

PU1 Using Thai Chana would protect me from COVID-19 Prasetyo et al. [43]

PU2 Using Thai Chana can enhance my health Kurniasih et al. [45]

PU3 The COVID-19 spread map can enhance my
awareness and preparedness Camacho-Rivera et al. [46]

PU4 Safety guidelines in Thai Chana is useful

PU5 Announcement in Thai Chana is useful Gumasing et al. [47]

PU6 Hotline number in Thai Chana is responsive

PU7 Using Thai Chana can safe my community
from COVID-19
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Table 1. Cont.

Construct Items Measures Supporting References

Attitude towards using

A1 Thai Chana is beneficial for me Prasetyo et al. [41]

A2 Thai Chana makes me feel safe from COVID-19 Kurniasih et al. [45]

A3 Thai Chana can reduce my stress due to COVID-19 Velicia-Martín et al. [7]

A4 Thai Chana gives the community a sense of security

A5 I feel I have to use Thai Chana for the sake of
my health

Intention to Use

IU1 I will be willing to use Thai Chana in the future Prasetyo et al. [41]

IU2 I will continue to use Thai Chana in the future Kurniasih et al. [45]

IU3 I will promote Thai Chana to other people in the future Chuenyindee et al. [48]

IU4 I will follow the announcement by the government in
Thai Chana

IU5 I will follow the health protocol in Thai Chana

Actual System Use

AU1 I intend to install Thai Chana on my device Prasetyo et al. [41]

AU2 Most people in my community are using Thai Chana

AU3 I feel insecure if I don’t use Thai Chana Pal and Vanijja [33]

AU4 I often read announcement in Thai Chana

AU5 I follow the safety guidelines provided by Thai Chana

AU6 I feel satisfied with Thai Chana

Perceived Usability

PUS1 I think I would use this system frequently Prasetyo et al. [41]

PUS2 I think Thai Chana is unnecessarily complex Orfanou et. al. [49]

PUS3 I think Thai Chana is easy to use German et al. [50]

PUS4 I think I can operate Thai Chana by myself without the
technical support Pal and Vanijja [33]

PUS5 I find that various functions in Thai Chana are
well integrated Kuo and Zulvia [51]

PUS6 I think Thai Chana system is consistent

PUS7 I would imagine many people in Thailand will use
Thai Chana

PUS8 I think it is comfortable using Thai Chana

PUS9 I feel confident using Thai Chana

PUS10 I do not need to learn many things before using
Thai Chana

Prior to the full distribution of the questionnaire, a pilot test was conducted among
150 responses. The responses collected underwent validation using Chronbach’s alpha
test. The result presented a value of 0.836, indicating that the questionnaire is valid for full
distribution [52,53].

3.2. Participants

Through convenience sampling, a total of 800 respondents voluntarily answered the
survey for the perceived usability of the “Thai Chana” COVID-19 tracing application.
Utilizing an online survey, the questionnaire was distributed through different social
media platforms due to the strict COVID-19 lockdown implemented. Before responses
were collected, a question regarding their utility of the Thai Chana application was asked.
Only those who utilized the Thai Chana mobile application were considered since other
respondents (250) answered they utilized the paper documents. Thus, 800 valid data were
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considered. From the collected data, a total of 37,600 datasets were considered (respondents
and their responses) to run the deep learning neural network and random forest classifier.

3.3. Machine Learning Algorithm

Presented in Figure 2 is the methodological flowchart utilized in this study. Data
acquisition was carried out through an online survey. Data pre-processing is considered
a correlation analysis to determine significant indicators for each latent variable. It was
seen that 47 total constructs were collected from the study. Following the study of Kuo
and Zulvia [54], those with values less than 0.20 correlation coefficient and p-value greater
than 0.05 were removed due to insignificance. After which, data aggregation of the 8 latent
variables were considered as input parameters for the machine learning algorithm. A
min_max scalar normalization technique was utilized for the algorithm [54]. Running
the random forest classifier and deep learning neural network, parameter optimization
was conducted. Following the study of Chen et al. [22], parameters for criterion, splitter,
training and testing ratio, and depth were considered in this study. For the neural network
section, the activation functions, optimizer, number of nodes, number of epochs, and
number of hidden layers were optimized [55–59]. The following sections provide a detailed
explanation for each algorithm.

Following the parameter optimization is the testing for accuracy using cross validation
techniques. Following several studies [56–59], a 60% threshold was set for the accepted
accuracy rate of the classification model. After the creation of the final classification model,
validation was conducted to test the created models. After which, interpretation was
conducted. As support for the utility of machine learning algorithms, no computational
complexity was seen. Liu et al. [60] explained how the utilization of complex machine
learning algorithms would reduce computation time, complexity, and would have higher
accuracy. This study considered Python 3.8 to run all algorithms with SKLEARN and
Tensorflow packages. Justus et al. [61] explored the computational complexity of using
highly utilized resources and showed that an increase in computation time would be
reduced with the current up-to-date technology. From the packages utilized, the main
cost of computational complexity would vary from the features used, input data, model
complexity, and feature extraction [62,63]. Moreover, the more complex the model is, the
more training time [63]. From this study, it was seen that one combination of random forest
classifier spent only 0.146 s while deep learning neural network considered 0.480 s. This
presents little to no computational complexity with the utilization of the ACER NITRO 5
with core i5 processor, 8 GB RAM, 1 TB Hard disk, Nvidia GeForce GTX 1050 Graphics,
running on a Windows 10 system.

3.4. Random Forest Classifier

The purpose of using the random forest classifier is to create a classification model that
considers different features coming from the constructs which represents the unobserved
variables utilized in this study. Following the study of Gao et al. [64], the random forest
classifier creates a tree model that considers features that are unified, predicts multi-class
dimensions, and presents only significant factors for the classification. The advantage of
this algorithm is to present only those significant factors and generate a higher accuracy
rate compared to other simple classification models [22]. With the aim to predict and
classify factors affecting perceived usability of a new technology among users, random
forest classifier may be used to create a classification model for extension and application of
predicting influential factors with the integrated theories of Technology Acceptance Model
and Protection Motivation Theory.
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For the utilization of random forest classifier, data preprocessing was completed
by inspecting missing data. The SPSS 25 indicated no missing data. Following this, data
cleaning considering correlation analysis was performed. This study considered a threshold
for the correlation value of greater than 0.20 with a p-value less than 0.05. From a total of
47 constructs, 34 were considered significant. To which, the data were aggregated to focus
on the different factors that influence the usability of Thai Chana application. The factors of
U, PV, PS, PEU, PU, A, IU, and AU served as the input nodes for the deep learning neural
network. Moreover, PUS served as the output during training.

Data normalization was done and the random forest classifier was utilized considering
different parameters such as the criterion (gini and entropy), splitter (best or random),
training and testing ratio (60:40, 70:30, 80:20, 90:10), and tree depth (4, 5, 6, 7). Utilizing
SKLEARN Packages in Python 4.5, 100 runs of each combination were considered for a total
of 6400 optimization runs. It was seen that gini, best, and a 5-tree depth utilizing an 80:20
training ratio presented the highest average accuracy of 92% with 0.00 standard deviation.

3.5. Deep Learning Neural Network

Deep learning neural network is known to be ‘the best model’ for predicting factors
or recognizing patterns due to its ability to assess and calculate several perceptions [65].
Daube et al. [65] stated how this algorithm resonates with the human-level performance in
terms of real-world classification. Luceri et al. [66] added how deep learning neural network
could best predict human behavior, social interaction, subjective thoughts, and feeling.
Utilizing deep learning neural network in this study would support the result presented
from random forest classifier. Since random forest classifier only predicts significant factors,
using deep learning neural network could predict and classify the most impactful factors
affecting perceived usability of technology in using the Thai Chana COVID-19 contact
tracing mobile application.

Deep learning neural network preprocessing considered data cleaning using correla-
tion analysis, similar to the set conditions with random forest classifier. After data normal-
ization, different activation functions for the hidden layer (sigmoid, tanh, and swish) and
output layer (sigmoid and softmax), together with the optimizer (Adam, SDG, RMSProp)
was considered. Moreover, the number of nodes was also included for the 80:20 training
and testing ratio. To which, a total of 6300 runs were conducted for the feed-forward deep
learning neural network process; 10 runs per combination with 150 epochs [56]. This was
conducted to determine the best parameters for the deep learning neural network model.

4. Results
4.1. Participants

The collected data comprised 51.88% male, 45.62% female, and 2.50% others. The
majority of which were within 15–24 years old (77.87%), 10.50% were within 25–34 years old,
and the rest were 35 years old and above with salaries/allowances less than 15,000 Thailand
Bhat (THB) ($454) (41.25%) and 43.12% within THB 15,000–30,000 (USD 454–USD 909.85).
Following the suggestion of Ong et al. [14], younger generations are the ones that are most
active online, thus justifying that the majority of the respondents are within this age group.
In Thailand, most of the younger generation considers using technology easy compared
to the older generation that utilizes the document form, since they do not have mobile
phones [57]. Lastly, 60.50% were enrolled in insurance and the rest were not. Presented in
Table 2 is the summary of the descriptive statistics of the demographics.

In addition, the descriptive statistics of the responses are presented in Table 3. The
mean and standard deviation of each indicator is presented.
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Table 2. Demographic Profile of Respondents (n = 800).

Characteristics Category N %

Gender
Male 365 45.62

Female 415 51.88
Other 20 2.50

Age

15–24 623 77.87
25–34 84 10.50
35–44 34 4.250
45–54 31 3.870
55–64 27 3.380

More than 64 1 0.130

Monthly Salary/Allowance

THB < 15,000 330 41.25
THB 15,000–30,000 345 43.12
THB 30,000–45,000 65 8.130
THB 45,000–60,000 30 3.750
THB 60,000–75,000 12 1.500

THB > 75,000 18 2.250

Enrolled in a health insurance?
Yes 484 60.50
No 316 39.50

Table 3. Descriptive Statistics of the Indicators.

Construct Items Mean Standard Deviation

Understanding of COVID-19

U1 4.4213 0.70493
U2 4.2950 0.81934
U3 4.4150 0.70774
U4 4.4875 0.68588
U5 4.0800 0.97969
U6 3.6688 1.22919

Perceived Vulnerability

PV1 3.1050 1.38162
PV2 3.3688 1.26284
PV3 2.9500 1.44486
PV4 3.2600 1.34058
PV5 3.7988 1.10670

Perceived Severity

PS1 4.3825 0.84385
PS2 4.0563 1.03413
PS3 4.1263 0.93215
PS4 4.2138 0.94957
PS5 4.3475 0.88046
PS6 4.4350 0.76910
PS7 3.8688 1.09568

Perceived Ease of Use

PEU1 3.8750 1.18475
PEU2 3.9000 1.08350
PEU3 3.8750 1.18897
PEU4 3.9050 1.07467
PEU5 3.9788 1.09421

Perceived Usefulness

PU1 3.7150 1.28680
PU2 3.6850 1.26798
PU3 3.8913 1.13403
PU4 3.9050 1.13140
PU5 3.9100 1.16559
PU6 3.8013 1.17621
PU7 3.7950 1.22161
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Table 3. Cont.

Construct Items Mean Standard Deviation

Attitude Towards Using

A1 3.9125 1.19546
A2 3.7375 1.22289
A3 3.6963 1.23628
A4 3.8063 1.17065
A5 3.8100 1.17713

Intention to Use

IU1 3.9525 1.14319
IU2 3.8600 1.15089
IU3 3.8250 1.16450
IU4 3.7688 1.24286
IU5 3.8500 1.18396

Actual System Use

AU1 3.8000 1.29019
AU2 3.7025 1.28883
AU3 3.6650 1.30572
AU4 3.5500 1.35824
AU5 3.6850 1.25708
AU6 3.7225 1.21237

Perceived Usability

PUS1 3.8050 1.20781
PUS2 3.6000 1.19866
PUS3 3.8975 1.05872
PUS4 3.8625 1.07006
PUS5 3.8163 1.08234
PUS6 3.8413 1.11696
PUS7 3.7475 1.14363
PUS8 3.8600 1.08599
PUS9 3.8313 1.17239

PUS10 3.8900 1.04368

4.2. Machine Learning Algorithm

Figure 3 presents the optimum decision tree considering random forest classifier. It
could be seen that at 5-tree depth, gini as the criterion, and best as splitter, the random forest
classifier produced the highest average accuracy at 80:20 training and testing ratio. With
92% average accuracy from testing and 0.00 standard deviation, this tree was considered for
the interpretation of results. The result for random forest classifier was set to very low, low,
neutral, high, and very high usability following the 5-point Likert Scale from the survey. To
which, these correspond to strongly disagree (1) to strongly agree (5).
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The result indicates that PV (X1) will present as the parent node which will lead to
perceived usability. The parent will then consider U (X0) if true, which will consider both
PV and U, leading to very high PUS. If U will not be satisfied, it will consider PS (X2) and
PEU (X3) which will lead to high PUS. Thus, it could be deduced that if people understand
COVID-19 and see the vulnerability, Thais would consider Thai Chana very usable. On
the other hand, if people know the severity and there is an ease in using the application,
then Thais would agree that Thai Chana is usable. Therefore, these factors would lead
to the perception of usability of Thai Chana as a COVID-19 contact tracing application.
However, the most significant factor could not be indicated since the tree only indicates
the path leading to the classification of significant factors. To verify the significance level
of the factors, neural network may be applied to show the score of importance among the
different significant factors. Abiodun et al. [56] explained how applications of artificial
neural network such as deep learning would help in predicting the most significant factor
affecting cognitive computing.

Presented in Table 4 is the summarized result for the initial optimization of deep
learning neural network. With a 60% threshold for the average accuracy [55–59] of the deep
learning neural network, only U, PS, and PV were considered to be significant within the
threshold set.

Table 4. Summary of Initial Deep Learning Neural Network.

Latent Nodes Activation
(H–Layer)

Activation
(O–Layer) Optimizer Average

Training StDev Average
Testing StDev

U 30 swish sigmoid adam 32.29 2.063 91.63 3.662
PS 40 swish sigmoid adam 24.70 1.663 86.32 2.843
PV 30 swish sigmoid adam 13.10 5.032 83.62 4.633

PEU 50 swish softmax SGD 33.85 1.630 68.75 5.563
PU 50 swish softmax adam 31.11 2.368 36.25 4.478
A 40 swish softmax adam 24.21 3.654 48.75 5.001
IU 40 swish softmax RMSProp 27.66 1.635 40.23 2.658
AU 30 tanh softmax SGD 25.72 2.156 42.24 3.665

The results obtained from the initial optimization undergo Analysis of Variance
(ANOVA) to determine the significant differences among the different factors (U, PS, and
PV). The factor causing the significant difference is considered for the final optimization
to determine the average accuracy for predicting factors affecting perceived usability of
Thai Chana COVID-19 tracing application. U is seen to be the most significant factor with
no overfitting.

The final optimization is conducted with parameters of swish for the hidden layer
activation function (30 nodes and 10 nodes) and softmax for the output layer. With adam
as the optimizer, the deep learning neural network was run with 200 epochs, 50 times each,
for both 70:30 and 80:20 training and testing ratios [59]. The results indicate the highest
average accuracy of 97.32% with 1.632 standard deviations for U with an 80:20 training
testing ratio. Figure 4 presents the training and validation loss of the final optimization.
Based on the result, no overfitting is present [59,64]. Walczak and Cerpa [58] considered
this result as relatively high for acceptability with human behavior studies.

Figure 5 represents the final deep learning neural network utilized in this study. Based
on the figure, the input layer considered 8 nodes (factors) with 30 and 10 nodes for the
hidden layers. The activation function of swish and sigmoid with adam as optimizer
produced the highest average testing accuracy of 97.32%. It could be deduced that U
is the most significant factor affecting the perceived usability of Thai Chana COVID-19
tracing application.
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COVID-19 Tracing Application.

The score of importance is presented in Table 5. Based on the results, U had the
highest score of importance (100%), followed by PS (87.5%), PV (77.2%), then PEU (66.0%).
Other factors were considered significant but presented a significantly lower score of
importance (>60%).

To verify the findings, Pearson’s correlation analysis was conducted, utilizing SPSS
V26. Table 6 presents the result from the correlation analysis and presented that U, PS,
PV, and PEU were highly correlated with PUS. All of the correlation coefficients presented
significant values (p-value < 0.05).



Int. J. Environ. Res. Public Health 2022, 19, 6111 16 of 24

Table 5. Score of Importance.

Latent Importance Score (%)

U 0.213 100
PS 0.186 87.5
PV 0.164 77.2

PEU 0.140 66.0
PU 0.116 54.5
A 0.055 25.7
IU 0.059 27.7
AU 0.067 31.4

Table 6. Pearson’s R Correlation.

Latent U PV PS PEU PU A IU AU

PV 0.392
PS 0.370 0.414

PEU 0.398 0.267 0.282
PU 0.348 0.243 0.315 0.866
A 0.392 0.223 0.274 0.809 0.890
IU 0.207 0.181 0.223 0.780 0.828 0.881
AU 0.144 0.246 0.273 0.787 0.831 0.873 0.898
PUS 0.779 0.715 0.739 0.716 0.715 0.244 0.217 0.308

5. Discussion

This study utilized deep learning neural network and random forest classifier for
predicting factors influencing the perceived usability of Thai Chana COVID-19 tracing
application. Factors such as understanding COVID-19 (U), perceived severity (PS), per-
ceived vulnerability (PV), perceived ease of use (PEU), perceived usefulness (PU), attitude
towards using (A), intention to use (IU), and actual system use (AU) were considered to
measure perceived usability (PUS). Based on the result, a 97.32% average accuracy from
deep learning neural network was seen and a 92% average accuracy with a 0.00 standard
deviation from random forest classifier. Deep learning neural network showed that U had
the highest significant effect, followed by PS, PV, and PEU. Consistent with the result from
random forest classifier, U and PV led to very high PUS while PS and PEU led to high PUS.

Understanding COVID-19 was seen to be the most significant factor affecting PUS for
both deep learning neural network and random forest classifier. The indicators included
Thais’ understanding of the COVID-19 virus, its incubation period, symptoms, protocols,
when to get the vaccine, and which hospital to go to. The comparison of Asian counties
was considered by Wang et al. [67]. Their study showed that Thais have an 89.8% positive
belief regarding the knowledge about COVID-19 and that they know its effect when they
are in contact. Caldwell et al. [68] explained how the knowledge with the minimum health
standard could help in the reduction of COVID-19 transmission. In addition, Ning et al. [69]
explained how the success of healthcare professionals regarding interventions would have
a positive effect when people know, accept, and understand the disease. Relating to this
study, the more people would understand and know about the COVID-19 virus, the more
likely they will have the intention to prevent any contraction.

Second, PS was seen to be significant towards PUS among Thais. The indicators
included Thais finding of the seriousness of the disease, affects people’s mental health,
prolong the outbreak, and that Thailand is more severe than other ASEAN countries. In
relation to the study of Fragkaki et al. [70], when people have a higher perception of severity
and high government satisfaction, the more likely they will exhibit behavior change. Based
on the results, PS was seen to be the second-highest significant factor. Thus, it could be
instigated that Thais a have higher perception of severity, leading to the significant factor
affecting the PUS of contact tracing application for reduction of exposure. Mant et al. [71]
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explained that when people have high PS, they would change their behaviors to mitigate
COVID-19 transmission. For this study, people will have high PUS when they have high
PS of the COVID-19 virus. As a support, this result is also consistent with the findings from
Trkman et al. [72].

Third, PV was seen to be a significant factor affecting PUS. The indicators included
Thais’ belief in their vulnerability to COVID-19 personally (self, friends, and family),
location, and that their country is more vulnerable compared to other ASEAN countries.
With that, people have high levels of PUS for the Thai Chana COVID-19 tracing application
since they know it will help mitigate the contraction of COVID-19. Boyraz et al. [73]
explained that PV positively affects people’s worries, traumatic experiences, and stress. To
which, the more vulnerable the perception is, the higher the will to mitigate contraction.
This is in line with the results from De Coninck et al. [74] from Belgium. They explained
how greater health measures were seen in protecting the population when there is a greater
belief in PV. Similar to the results of Ong et al. [37], when people understand the risk,
they would highly consider the PV. This would lead to the mitigation in reducing any
health-related risks.

Lastly, PEU had a significant effect on PUS among Thai. They believe that Thai Chana
as an application can provide clear and understandable information related to COVID-19,
successful usage of the application every time, and that the application is easy to use.
When utilizing an application, the PEU is usually considered a significant factor [15].
Prasetyo et al. [15] explained how PEU can affect the intention to use a certain application.
PEU was also seen to be one of the most significant factors affecting the acceptance and
usage of technology [75,76].

Interestingly, PU and A were not considered significant factors affecting PUS. Guillon
and Kergall [77] explained how the attitude of a person directly correlates with their belief
towards the advantage of quarantine. In addition, Guillon and Kergall [77] explained how
trust in the government and health consequences would lead to a high willingness to utilize
contact tracing applications. In relation to this study, as long as there is high PS and PV,
people will continue to utilize the Thai Chana contact tracing application despite the PU
and A. Thus, the advantage of mitigation could be said to revolve around the risk and
severity of contracting the virus rather than PU and A. This also supports why IU and AU
were not significant. The reason why contact tracing applications are utilized is because of
the advantages when it comes to health-related concerns [78,79]. The reason for mitigation
upon utilizing the contact tracing application among Thais is for reduction of COVID-19
virus contraction, reduce exposure, and safety in general.

Overall, it could be deduced that when people understand COVID-19, as well as
its severity and vulnerability, it would affect their perception of the usability of the Thai
Chana COVID-19 tracing application. It could be generalized that when there is risk and
health-related concerns, people would understand the benefit of utilizing contact tracing
applications. Moreover, as long as there is perceived ease of use, then people would
continuously utilize the application. Therefore, this should be considered to promote the
utilization of contact tracing applications, not only in Thailand, but may also be applicable
to other contact tracing applications worldwide.

5.1. Theoretical Implication

The utilization of the machine learning algorithm for human behavior was seen to have
different advantages. Machine learning algorithms, such as the artificial neural network,
is a type of artificial intelligence that mimics how the body sends a signal to the brain
through different neurons that create an output [79]. Deep learning neural network is a
type of neural network that has two or more hidden layers that can process the information
further and produce higher accuracy [54]. Moreover, Vasilev et al. [80] deep learning
neural network has a higher power when it comes to calculation. Ais has been utilized
during the COVID-19 pandemic to help in screening, tracking, and predicting future
events [80,81]. In addition, Jamshidnezhad et al. [82] utilized a machine learning algorithm
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for the transmission rate for COVID-19 outbreaks in Iran. Thus, it could be inferred that
utilizing machine learning algorithms, such as the deep learning neural network or random
forest classifier, may contribute to help mitigating and reducing contraction during the
COVID-19 pandemic.

With the utilization of deep learning neural network, it was seen that there was a
high accuracy of 97.32% in predicting perceived usability on contract tracing applications.
Thus, it could be deduced that the accuracy of prediction is highly reliable. In addition, the
92% accuracy of the srandom forest classifier having consistent results with deep learning
neural network further justified the findings. Juarez-Orozco et al. [83] and Chen et al. [22]
explained how random forest classifier can be a powerful predictive machine learning algo-
rithm tool for human behavior with higher accuracy since it determines the optimum tree
among other decision trees produced. Combining both the result for neural network and
random forest classifier would therefore be beneficial in predicting human behavior [22].

5.2. Practical Implication

It was seen from the validation that the results presented well-grounded output in
using machine learning algorithms to assess and predict factors affecting human behavior,
specifically perceived usability of a technology. Academically, the methodology may be
applied and extended in related fields of studies, such as assessing behavior and predicting
factors applying machine learning algorithms for classification. It could be deduced that
integrating multivariate tools with machine learning algorithms or solely using a machine
learning algorithm may be utilized to holistically measure and predict human behavior.
Recognizing patterns may be evaluated with the consideration of constructs, and measure
items to assess unobserved variables.

Applying the findings of this study, the government may consider implying the
severity and vulnerability of COVID-19 in Thailand, comparing it to other countries, and
help people understand the COVID-19 virus [84]. This would promote how advantageous
Thai Chana as a contact tracing application is. In addition, the usability of Thai Chana
was seen to be easy among Thais. This means that there may be only a few changes
needed to be made to promote usage. Based on the findings, it could be seen that the
highlight on severity and vulnerability may be capitalized on to enhance the perception
of usability, increase motivation, and enhance the Thai Chana COVID-19 contact tracing
mobile application’s applicability every day. People already understand the implication,
side-effects when infected, negative effects, and health complications when infected with
the virus. Thus, there is only a need for highlighting the vulnerability and severity in
promoting the mobile application. Moreover, the government may enhance motivation by
indicating the benefits, both community-wise and health-wise. In addition, the government
may also promote the utilization of Thai Chana by campaigning and addressing the public’s
concerns. The findings of the study from Munzert et al. [43] showed that people questioned
the effectiveness of different contact tracing applications when they are not promoted
properly. Therefore, the need to highlight the use, its intention, and application would help
people in using the Thai Chana COVID-19 contact tracing mobile application.

5.3. Limitations

This study may have attained a high accuracy rate for both machine learning algo-
rithms, however, there are still limitations. First, this study was conducted only in Thailand
and focused on the main contact tracing application, Thai Chana. Other contact tracing
applications were not considered. Future researchers may consider other contact tracing
applications and compare them to determine the significant factors to generalize the find-
ings. In this way, the contact tracing application may be generalized to enable promotion
and usage [82]. Second, this study only considered two machine learning algorithms, deep
learning neural network and random forest classifier. Other machine learning algorithm
tools may be considered and compared to promote the utility of other algorithms applica-
ble [65]. Classification tools such as support vector machine, and optimization techniques
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such as particle swarm optimization may be applied. In addition, the location was not
considered. The urban and rural areas may have different results depending on their un-
derstanding of COVID-19 [85–87], perceived severity, and perceived vulnerability towards
utilizing the Thai Chana contact tracing application. Thus, clustering may also be applied
to enhance the findings of the study, such as KMeans algorithm or Fuzzy CMeans. Lastly,
the majority of the age group considered in this study was between 15 and 24 years old only.
Due to the COVID-19 lockdown implemented, an online questionnaire was only utilized.
As explained by Ong et al. [14], most of the generation utilizing social media platforms are
at a younger age. Thus, it is recommended to consider in-person data collection to consider
broader and wider age groups. Moreover, findings may be different based on the effect
of the virus, perception, and even health-related disease outcomes among the different
age groups. Moreover, interviews may be conducted to consider the qualitative measures
applicable in measuring perception, knowledge, understanding, and usability errors. A
qualitative–quantitative approach may then be utilized to highlight and generalize the per-
ceived usability of Thai Chana as a COVID-19 contact tracing mobile application. This may
produce results that may be utilized for workshops, and even create possible techniques
that are applicable to other studies.

6. Conclusions

The progress in mitigating the COVID-19 contraction has been slow. Due to new
variants and the mutation of the COVID-19 virus, the vaccination program was not able to
keep up with the progression. To which, countries implemented contact tracing applica-
tions to help reduce exposure to the COVID-19 virus [88–91]. However, there is a lack of
study regarding the different applications available. Specifically, the Thai Chana COVID-19
contact tracing application has been underexplored. Thus, this study aimed to predict
factors affecting the perceived usability of Thai Chana in Thailand integrating Protection
Motivation Theory, Technology Acceptance Model, and System Usability Scale using deep
learning neural network and random forest classifier. Specifically, factors such as under-
standing COVID-19 (U), perceived severity (PS), perceived vulnerability (PV), perceived
ease of use (PEU), perceived usefulness (PU), attitude towards using (A), intention to use
(IU), actual system use (AU), and perceived usability (PUS) were considered in this study.

With the 800 voluntary Thais participants in the survey, a total of 37,600 datasets were
considered. Applying the deep learning neural network, the results produced an average
accuracy of 97.32% and 92%, with 0.00 standard deviation for random forest classifier.
From the results, U was seen to be the most significant factor, followed by PV, which leads
to high PUS. Moreover, PS and PEU were considered significant with high PUS among
Thais in using the Thai Chana contact tracing application. When people understand the
COVID-19 virus, their perception of severity, and perceived vulnerability would lead to a
high perception of contact tracing usability. This means, in order to promote the utilization,
the government should instill awareness of the severity and vulnerability among people of
the COVID-19 virus. This will also help people to understand how the virus can affect them,
leading to the continuous usage of Thai Chana. With that, the government may capitalize
on the finding of this study to promote motivation for continuous usage of the mobile
application. When people see how the mobile application may help promote positive
health-related behaviors and highlight the effect of reduced vulnerability and severity, an
increase in motivation for the utility would be applied. As explained by Siddiqui et al. [5],
people who are knowledgeable will practice promoting mitigation and intention to reduce
the negative effects of COVID-19. In addition, Chuenyindee et al. [13] explained how
implementing the utilization of technology does not necessarily promote positive usage.
Thus, with the proposed suggestions, people will be highly motivated to use the system.

The consideration of the machine learning algorithm may be highlighted in this study.
With high accuracy rates, it was validated that the machine learning algorithms may be
utilized for assessing and predicting factors affecting human behavior, not just in assessing
technology usability. The disadvantage was the time it took to finish the optimization
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process for the different parameters to enhance the accuracy of the models considered. In
addition, the advantage is the model and parameter setting that was considered, which
could be utilized for other studies considering human behavior. In addition, despite
several factors considered, the high-quality machine learning algorithms were able to
assess the study effectively. Thus, machine learning algorithms could be used to assess
perceived usability of technology and other related studies such as natural disasters and
even education [90].

The framework and findings of this study may be considered by other countries for
their independent contact tracing application. It was seen that when the citizen understood
the impact of the virus, how it could affect the health of the people negatively, and how
the contact tracing mobile application would help in mitigating the negative side-effects,
then people would be more likely to consider and utilize a system to reduce it. It could be
deduced that the integrated framework holistically measured health-related technology,
its application, and usability among user. Moreover, this may be considered to promote
the utilization of contact tracing applications, not only in Thailand [91], but may also be
applicable to other contact tracing applications worldwide. Lastly, future researchers may
consider the method and framework utilized in this study for the evaluation of applications
and systems worldwide.
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