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Development of a novel core genome MLST
scheme for tracing multidrug resistant
Staphylococcus capitis
Zhengan Wang 1,2,3,10, Chao Gu1,2,3,4,10, Lu Sun1,2,3,10, Feng Zhao5,6, Ying Fu2,3,5,6, Lingfang Di2,3,7,

Junxiong Zhang2,3,8, Hemu Zhuang1,2,3, Shengnan Jiang1,2,3, Haiping Wang1,2,3, Feiteng Zhu1,2,3, Yiyi Chen1,2,3,

Mengzhen Chen1,2,3, Xia Ling1,2,3,9, Yan Chen 1,2,3✉ & Yunsong Yu 1,2,3✉

Staphylococcus capitis, which causes bloodstream infections in neonatal intensive care units, is

a common cause of healthcare-associated infections. Thus, a standardized high-resolution

typing method to document the transmission and dissemination of multidrug-resistant S.

capitis isolates is required. We aimed to establish a core genome multilocus sequence typing

(cgMLST) scheme to surveil S. capitis. The cgMLST scheme was defined based on primary

and validation genome sets and tested with outbreaks of linezolid-resistant isolates and a

validation set. Phylogenetic analysis was performed to investigate the population structure

and compare it with the result of cgMLST analysis. The S. capitis population consists of 1

dominant, NRCS-A, and 4 less common clones. In this work, a multidrug-resistant clone (L

clone) with linezolid resistance is identified. With the features of type III SCCmec and multiple

copies of mutations of G2576T and C2104T in the 23S rRNA, the L clone has been spreading

silently across China.
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S taphylococcus capitis, a coagulase-negative Staphylococcus
(CoNS), is one of the most widely distributed opportunistic
pathogens. This organism causes a wide variety of diseases,

including endocarditis, catheter-related bacteremia, prosthetic
joint infections (PJIs), and skin infection1,2. In particular, it is
known to cause nosocomial late-onset sepsis (LOS) in neonatal
intensive care units (NICUs)3,4, which leads to increased rates of
morbidity and mortality5,6. In some areas, S. capitis is the most
frequently detected pathogen in NICUs infants, outranking even
S. epidermidis4.

To date, only a few studies have investigated the population
structure of S. capitis, except for the NRCS-A clone7, which has
emerged as a major pathogen among newborns in NICUs and has
been isolated in more than 17 countries throughout the world8.
The NRCS-A clone was first reported by Rasigade et al. in 20124,
who collected 40 S. capitis isolates from several French NICUs.
SmaI pulsed-field gel electrophoresis (PFGE) typing indicated
that most isolates are clonally related and belong to the same
clone, NRCS-A. Further studies have indicated that multidrug
resistance, especially non-susceptibility to vancomycin, is an
important advantage for epidemical success7 In addition to
neonates in NICUs, this clone also causes healthcare-associated
infections in adults such as PJIs9.

Phylogenetic analysis based on whole-genome sequencing and
PFGE are the most frequently used methods to investigate the
molecular epidemiology of S. capitis. However, PFGE is labor-
intensive, whereas phylogenetic analysis requires expert phylo-
genetic knowledge and specialist hardware. The lack of reliable
and easily applicable typing methods has resulted in an under-
estimation of the significance of S. capitis in the clinical spread of
multidrug-resistant isolates.

With the development of whole-genome sequencing technol-
ogy, the use of core genome multilocus sequence typing
(cgMLST) to subtype and monitor outbreaks of bacteria is
becoming more common. The typing ability of cgMLST has
proven to be reliable for the typing of several pathogenic bacteria
including Staphylococcus aureus10, Staphylococcus epidermidis11,
Streptococcus mutans12, and Klebsiella pneumoniae13. The typing
technology uses genome-wide gene-by-gene alleles from hun-
dreds or thousands of genes conserved in all or most members of
the species, and this confers the technology with a considerably
higher resolution than that of PFGE14,15. Standardization is
another important benefit of cgMLST. The standardized method,
which can be easily performed using commercial software, makes
it possible to compare the results among international labora-
tories. More importantly, cgMLST is a high-resolution, accessible,
and replicable typing method to detect outbreaks and analyze the
relationship between bacterial isolates. Stenmark et al. success-
fully applied cgMLST analysis in a surveillance project of clinical
S. capitis isolates detecting the dissemination of NRCS-A clone
from a Swedish NICU16, but this scheme is not publicly available
and 1063 loci limited the discriminatory power.

The need for a standardized typing method is urgent, considering
the emergence of multidrug-resistant clones, especially clones
resistant to linezolid17–19. Linezolid-resistant S. capitis (LRSC) poses
a serious threat to clinical practice. Linezolid resistance is associated
with two major mechanisms: (1) mutation of the 23S rRNA or
ribosomal proteins L3 and L420; and (2) acquisition of resistance
genes such as the chloramphenicol-florfenicol resistance (cfr)
gene21. The expression of Cfr methyltransferase confers resistance
to linezolid and other ribosome-targeting antibiotics, which is
known as the PhLOPSA resistance phenotype (resistance to oxa-
zolidinones, phenicols, lincosamides, pleuromutilins, and strepto-
gramin A)22.

Here, we aimed to establish a cgMLST scheme for S. capitis.
We developed a process to document the transmission and

dissemination of multidrug-resistant S. capitis isolates, which
involved three major steps. First, we detected the initial core genes
with the primary genome set. Second, we improved the core
genome using a validation genome set. Third, we evaluated the
cgMLST scheme using a test genome set. With the aid of the
newly established cgMLST scheme, we identified a unique
multidrug-resistant clone, the L clone, which is widely distributed
in China.

Results
Establishment of the S. capitis cgMLST scheme. All available
genome assemblies of S. capitis in public genome database were
collected and served as primary genome set. The core genome
analysis of the primary genome set identified 2077 genes as
comprising the core genome. After applying seven exclusion
criteria, 1826 genes were obtained as the basis for the primary
cgMLST scheme. Subsequently, the validation set was typed with
this scheme, and 334 genes having an error rate of greater than
5% were excluded. Most of the error reports were for alleles
containing a frame shift. After discarding the erroneous genes
from the primary cgMLST scheme, we obtained the final cgMLST
scheme, consisting of 1492 genes with a total length of approxi-
mately 1.39 megabases. The genes in the final cgMLST scheme
had an average length of 931.5 bp (standard deviation, 580.8 bp;
range, 90–7170 bp), with mean ± standard deviation GC content
equal to 33.6 ± 3.0%. Overall, 1491 genes were detected in the
reference genome CR01 chromosome, excluding gene
“group_1475”, covering 55.1% of the full genome. The core genes
were evenly distributed across the genome (Supplementary
Fig. 2).

Evaluation and comparison of the S. capitis population struc-
ture using the cgMLST scheme. To evaluate the novel cgMLST
scheme, the validation set containing 250 S. capitis genomes was
used to create a minimum spanning tree with the default settings
in Ridom (Ridom GmbH, Würzburg, Germany) (Fig. 1a). The
cgMLST typing results showed that at least 95% of the target
genes were present in all genomes (100%), with a median
(interquartile range) of 99.87% (99.73–99.93%) of the 1492 target
genes detected per genome. The number of non-typeable genes
averaged to 3.2 ± 4.0 genes per genome (range, 0–24), which
occurred mostly due to the absence of genes or early stop codons
in those genes. The average number of alleles reported for each
cgMLST target gene was 8.1 ± 3.7 (range, 1–30) alleles.

A total of 217 distinct cgMLST allelic profiles were identified
for the 250 genomes (missing data disregarded in the pairwise
comparisons), and only 21 profiles contained multiple genomes.
Most genomes of the validation set (179 isolates) were separated
into 35 related isolated groups. The largest four groups consisted
of 29, 20, 15, and 10 genomes, respectively, and all belonged to
clone NRCS-A.

To compare the typing results of cgMLST with other sequence-
based methods, an SNP-based phylogenetic analysis of the
validation set was performed (Fig. 2). In total, 90,821 variable
sites were identified in the alignment concatemer of the core
genome. The number of distinct genotypes defined by SNPs was
242, which was nearly equivalent to the distinct profiles identified
with cgMLST (n= 217), indicating that cgMLST and core
genome SNP provided comparable resolution in the validation
set.

The SNP phylogenetic tree provided greater discrimination
than the minimum spanning tree. Based on the phylogenetic
analysis, the population can be generally divided into four clusters
based on monophyletic groups. The largest cluster A, represent-
ing the NRCS-A clone, was divided into four sub-clusters: A1, A2,
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A3, and A4. Compared to the result of a previous phylogenetic
analysis7, subgroups A1 and A2 corresponded to proto-outbreaks
1 and 2, whereas A3 and A4 were subdivisions of cluster
outbreak. Other isolates, known as basal clones, could be divided
into three major groups, namely, clusters B, C, and D. Although
clusters B, C, and D were clearly separated by the cgMLST
analysis, the subgroups of the NRCS-A clone were mixed together
in the minimum spanning tree.

Application of cgMLST in LRSC isolates. We applied the
cgMLST scheme to 31 LRSC isolates obtained from two inde-
pendent outbreaks and sporadic cases. All 31 genomes were
typeable and the median (interquartile range) of typeable genes
was 99.93% (99.90–99.97%) (range, 99.3–100%). The 31 genomes
were typed into 29 distinct cgMLST allele profiles, of which
30 genomes were closely related and formed two related groups.
Excluding isolate LZD7, the largest allelic difference among the
isolates was 25. The close genetic relationship among these LRSC
isolates was also supported by the SNP-based phylogenetic ana-
lysis. These results were consistent with the results of the original
publication of the outbreak analysis and indicated that a single S.
capitis clone had spread around China. This was unexpected
considering the tremendous geographical expanse of up to
1810 km and the wide time span, 10 years from 2008 to 2018
(Fig. 1b–d). Overall, we identified the clone having the feature of
linezolid resistance and named it the L clone.

Genetic and clinical characteristics of the L clone. Antimicrobial
resistance gene were unevenly distributed among the clusters. In
the validation set, 89.2% (223/250) of the isolates carried SCCmec,
and clade A1 was type IV, A2 was type II, and most of A3 and A4
were type V. All isolates of L clone, carried SCCmec and con-
sidered as methicillin-resistant S. capitis (MRSC). Furthermore,
the L clone gained more resistance genes than the other clusters,
including genes cfr, erm(A), aph(2’)-Ih, ant(4’)-Ia, ant(9)-Ia, bleO,
and dfrC, which confer resistance to anti-ribosomal drugs, ami-
noglycoside, bleomycin, and sulfamethoxazole/trimethoprim
(SMZ). Notably, all L clone isolates carried the qacA gene, which
mediates resistance to quaternary ammonium compounds
(Fig. 2). Except cfr, no other linezolid-resistance relevant genes,
such as optrA and poxtA, were detected.

The outbreak of LRSC in Sir Run Run Shaw Hospital revealed
the clinical characteristics of the L clone. All nine strains were
isolated from patients with bacteremia (Table 1). All patients
had associations with the intensive care unit (ICU) and had
received antibiotics before the bacteremia episode, except for
patients infected by LZD3, LZD6, and LZD7 (Fig. 3). During
this period in our hospital, the AUD (antibiotics use density)
every month ranged from 0.30 to 1.11 DDDs (defined daily dose
per 100 patient-days) (Fig. 3). Susceptibility tests showed high
levels of linezolid resistance (256 mg L−1), except in LZD6 and
LZD7 (32 mg L−1) (Table 1). Besides resistance to linezolid, all
isolates were methicillin resistant, with the cefoxitin MIC
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(minimum inhibitory concentration) of 128 mg L−1 as listed in
Table 1.

The whole genome sequence indicated that the cfr-carrying
plasmid had clonal specificity. The hybrid assembly of
LZD8 showed that this isolate contained three plasmids:
pLZD8_1, pLZD8_2, and pLZD8_3. The cfr gene was carried
by plasmid pLZD8_2. The result of the BLAST search on the
NCBI GenBank showed that this cfr-carrying plasmid was highly
homologous to plasmids pSR01(S. aureus), pXWZ_1(S. capitis),
pH29-46(S. aureus), pLRSA47(S. aureus), and pSX01(S. xylosus).
A comparison of the plasmids is shown in Supplementary Fig. 3.
The three plasmids were detected among the examined genomes,
and the results indicated that, unlike pLZD8_1, the plasmids
pLZD8_2 and pLZD8_3 had strict clonal specificity, as they were
detected only in clone L (Fig. 2).

The cfr-carrying plasmids from LZD1 and LZD8 were
successfully conjugated to S. aureus 719 (ST5, cfr negative) but
failed to conjugate to S. aureus ATCC29213-rifR. The transcon-
jugants were named LZD1-719 and LZD8-719, both were
identified as S. aureus and cfr positive. The transconjugant
showed resistance to linezolid, and the resistance of chloram-
phenicol, gentamicin and clindamycin were also raised in these
isolates, which can be explained by the gain of cfr gene
(Supplementary Fig. 4). Revealed by linezolid E-test, the MIC of
isolate 719 increased from 0.25 to 6 mg L−1 (LZD1-719) and
8 mg L−1 (LZD8-719).

Besides the presence of cfr, mutations in the 23S rRNA gene
also contributed to linezolid resistance. The mutation of two
linezolid resistance-related sites of 23S rRNA domain V, G2576T
and C2104T, were detected in almost all the isolates with varied
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mutation percentages. All these L clone isolates harbored both
mutations and the percentages of mutated copies ranged
66.7–100% and 50–100%, respectively. On the contrary, isolates
from the other clones had relatively less percentages of mutated
copies, with 0 to 29.4% mutated copies for C2104T and only one
strain had G2576T mutation.

Discussion
As an opportunistic pathogen, S. capitis causes severe bacteremia
and device-related infections in adult ICUs and NICUs. Due to
the lack of appropriate typing methods for S. capitis, little is
known about its population structure. This impedes the
advancement of research on this bacterium. Thus, the introduced
typing method helps to determine the characteristics of
multidrug-resistant S. capitis clones.

Generally, the core genome refers to genes shared among a
certain collection of isolates of the same species. However, the
cgMLST scheme contains a fixed set of genes conserved across the
genome. Therefore, the simple detection of the core genome did
not fit the cgMLST scheme requirements. Therefore, we used a
validation set to modify the primary core genome. In addition, no
standard workflow for establishing the cgMLST scheme has been
generally accepted to date.

Previously, in the process of establishing a novel cgMLST
scheme, owing to the algorithm of the core genome detecting
software, the core genome was detected based on a reference
genome11,16. Subsequently, the genes contained in the reference
genome are filtered against those in numerous other genomes; if a
gene is present in all other isolates, then it was included as a core
gene. However, using this method, one may miss many genes that
should have been included as core genes if they are absent in the
reference genome. Conversely, the higher the number of core
genes, the better the resolution of the scheme.

To detect as many core genes as possible, we applied the
pangenome analysis software “Panaroo”, which is a graph-based
pangenome clustering tool that accounts for many of the sources
of error introduced during the annotation of prokaryotic genome
assemblies. Due to the extra error correction and gene refinding
steps, Panaroo detects more core genes than other software, such
as PanX, Roary, and COGsoft23. Panaroo does not require a
reference genome, avoiding the introduction of reference-bias in
the downstream analysis.

Another important aspect of establishing a new cgMLST
scheme is to include a validation step with an additional genome
set. In the traditional method, only two sets are used. One is used
to detect the core genome, and the other is used to test the
scheme. This strategy overlooks the population structure and
validation step. Here, we engaged three different sets: the primary
set, validation set, and LRSC isolates. We chose assembly files
from NCBI and EMBL-ENA as the primary set to take advantage
of the wide span of time and geographical expanse. The structure
of the primary set was more balanced than that of the validation
set (Supplementary Fig. 5), considering that the NRCS-A clone
comprised most of the validation set. Therefore, in our opinion,
the primary set was suitable for detecting the primary core gen-
ome, and the validation set was suitable to modify the core
genome. With the aid of sufficient genomes and Panaroo, the
novel cgMLST scheme contained 1492 loci, which is considerably
more than that of the cgMLST scheme created by Stenmark and
colleagues16, even filtered with strict criteria. As a result, the novel
cgMLST scheme provides more discriminatory power almost
close to SNP-based phylogenetic analysis.

In the present study, using cgMLST analysis and phylogenetic
analysis, we identified a unique clone, the L clone. Isolates
recovered from various cities, across a span of many years, mayT
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not have a close genetic relationship; thus, the results indicate the
spreading of the clone across hospitals in China. Similar to other
pathogens, Staphylococcus aureus24, Enterococcus faecium25, and
coxsackievirus26, LRSC may spread across cities, for example,
Shanghai and Hangzhou.

The hybrid assembly of LZD8 showed that linezolid resistance
was conferred by the cfr-carrying plasmid pLZD8_2. This plasmid
was found to be clonal specific, only being carried by the L clone.
The structure of this plasmid and the mobile element carrying cfr
have been well described in another study27. This plasmid was
first reported as pLRSA47 identified from six linezolid-resistant
methicillin-resistant S. aureus (MRSA) isolates that belonged to
ST5-II-t311 in the Second Affiliated Hospital of Zhejiang Uni-
versity in 201528. However, early in 2013, an ST5 MRSA strain,
named H29, isolated from the milk of hospitalized cattle in the
United States29 contained the plasmid pH29-46, which was 99%
identical to pLRSA47 and pLZD8_2. Another plasmid, pSX01
(KP890694), was detected in a Staphylococcus xylosus strain
recovered from a pig in Henan, China in 2015. The other two
plasmids, pSR0130 and pXWZ_131 (KP890694), were detected in
MRSA and S. capitis strains, respectively, as reported by our
group. As shown in Supplementary Fig. 3, the comparison of
these plasmids suggested that pLZD8_2 was distributed around
the world from livestock farms to hospitals and caused linezolid
resistance to spread among staphylococci. This was confirmed by
the filter mating experiment from S. capitis to S. aureus in this
study. However, the failure of filter mating experiment using
ATCC29213-rifR strain indicated that this cfr-carrying plasmid
could be host-specific.

Besides the presence of cfr, 23S rRNA mutations also con-
tribute to linezolid resistance. Among the L clones, a few isolates
did not carry the plasmid pLZD8_2 or cfr gene, but showed
linezolid resistance (Supplementary Table 1). Using breseq, we
mapped the genome reads to the 23S rRNA reference sequence
and calculated the mutation proportion of each base. The
mutation detection result indicated that the L clone is char-
acterized by multiple copies of C2576G and C2104T mutations,
in accordance with the findings of a previous study17. Based on
this evidence, we inferred that the L clone might have been
previously exposed to anti-ribosomal drugs such as linezolid or

florfenicol, which are often used in the ICU. However, we do not
have sufficient evidence to trace its origin.

The L clone contained more drug-resistant genes than other
clones; thus, focus on this clone is required. Multiple antibiotic
resistance of bacteria has led to increased morbidity and mor-
tality, as well as increased adverse outcomes32. Resistance to
antibiotics causes the L clone to successfully spread and persist in
different ICUs. In addition, the extra resistance genes and plas-
mids result in a higher fitness cost33 than that of the NRCS-A
clone, which is probably the reason that the L clone is not
predominant.

According to previous epidemiological investigations34, the
linezolid resistance rates of staphylococci were low, indicating
that sporadic linezolid resistant staphylococci infection might not
be a real threat in clinical settings. However, our results showed
that the spread of the L clone was probably underestimated. With
the help of the S. capitis cgMLST scheme, we are able to deter-
mine the actual role of the L clone in spreading multiple drug
resistance. International surveillance projects are needed to detect
the intercontinental spread of LRSC.

In conclusion, we have established a reliable cgMLST scheme
for S. capitis, with a high resolution close to that of an SNP-based
phylogenetic analysis. Using this scheme, we detected a wide-
spread multidrug-resistant clone, and labeled it the L clone.
Further epidemiological investigation is needed, and it is worth
investigating the L clone to stop the further spread of drug
resistance.

Methods
Ethics issues. This study was approved by the ethics committee of Sir Run Run
Shaw Hospital (No. 20210319-33). Informed consent was waived, as the study used
only anonymized clinical data unlinked to patient identifiers, and data produced in
this study was not used for the treatment or management of patients.

Establishment and modification of the S. capitis cgMLST scheme. The work-
flow of scheme development is presented in Supplementary Fig. 1. First, we col-
lected all available genome assemblies of S. capitis in the NCBI GenBank database
and the European Nucleotide Archive of European Molecular Biology Laboratory
(EMBL-ENA) as of June 11, 2021 using SRA Toolkit (https://github.com/ncbi/sra-
tools). A total of 142 genome assemblies, submitted from February 3, 2009 to May
19, 2021, were collected. After performing average nucleotide identity analysis

Fig. 3 Timeline of the clinical cases. Nine clinical isolates were recovered from Sir Run Run Shaw Hospital. The blue rectangle represents the
hospitalization progress, the dark blue rectangle indicates an intensive care unit (ICU) stay, and the light blue indicates a non-ICU stay. The red arrow
indicates the isolation event. The light red line indicates the AUD of linezolid used in our hospital every month. Source data are provided as a Source
Data file.
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(ANI) with pyANI35 (version 0.2.10), assembly quality control with panaroo-qc23,
136 genome assemblies were obtained, and they are listed in Supplementary Data 1;
these assemblies served as the primary genome set.

After annotated using Prokka36, core genome analysis was performed using this
primary genome set to obtain the primary cgMLST scheme. Core genes were
detected with Panaroo23 (version 1.2.8) and filtered based on the following criteria:
(1) discarding all genes that did not contain a start codon at the beginning of the
gene; (2) discarding all genes that contained more than one stop codon or those
that did not have a stop codon at the end of the gene; (3) discarding the genes that
were shorter than 50 bp; (4) discarding the potential paralogs by comparing each
locus against all alleles using the Basic Local Alignment Search Tool (BLAST)37

(version 2.9.0+), with an identity of 0.9; (5) discarding the shorter gene if two
genes were affected by an overlap of >3 bp on the reference chromosome CR01
(accession number LN866849); (6) collecting plasmids of S. capitis with Ridom
SeqSphere+ software version 7.2.338 (Ridom GmbH, Muenster, Germany) (search
date: June 18, 2021) and discarding genes homologous to those genes contained
within plasmids; and (7) filtering genes that were homologous with the
transposon_db in the TransposonPSI database39 (version 1.0.0).

Next, we modified the remaining core genes using a validation genome set. The
validation genome set was collected from an international study of S. capitis7,
consisting of 250 isolates from 22 countries worldwide, collected between 1994 and
2015. The raw reads (Fastq files) of the collection were downloaded from the NCBI
Sequence Read Archive (SRA), with BioProject accession number PRJNA493527.
We reassembled the genomes using Shovill (version 2.0.3, T. Seeman, unpublished,
https://github.com/tseemann/shovill), and typed with the primary cgMLST scheme
to acquire allelic profiles. The genes with error rates greater than 5% were removed
from the primary cgMLST target genes40, resulting in the final version of the
cgMLST scheme.

Evaluation of the cgMLST scheme. To validate the ability of the cgMLST scheme
to cluster related isolates, we imported the genomes of the validation set to create a
minimum spanning tree with the Ridom default setting, disregarding the missing
data in the pairwise comparisons. Isolates with less than 24 allelic differences were
considered to be the related isolated groups41.

Phylogenetic analysis of the validation genome set was performed to assess the
population structure. Based on the core genome aligned sequences, IQ-TREE42

(version 2.0.3) was used to construct a single-nucleotide polymorphism (SNP)-
based phylogenetic tree. The phylogenetic tree was visualized and labeled using the
iTOL43 Web service.

Application of cgMLST to LRSC typing. To evaluate the applicability of the S.
capitis cgMLST scheme for outbreak analysis, we reanalyzed the published genomic
data of S. capitis isolates from an outbreak in Shanghai17 and another independent
outbreak in Sir Run Run Shaw Hospital in Hangzhou as well as two sporadic cases,
one in Harbin and one in Hangzhou. All genomes included are listed in Supple-
mentary Table 1.

Nine LRSC isolates recovered from Sir Run Run Shaw Hospital from May 2016
to April 2017 were included in this study. Antibiotic susceptibility testing (AST) of
common drugs were performed using agar or broth dilution methods according the
recommendations of Clinical and Laboratory Standards Institute (CLSI)44. The
genomes of those isolates were sequenced using a HiSeq X Ten platform (Illumina,
San Diego, CA) with 2 × 150 bp paired-end reads. The isolate LZD8 was randomly
selected and sequenced using nanopore sequencing. The complete genome of LZD8
was constructed using hybrid assembly of short and long read sequences using
Unicycler45 (version 0.4.8). The quality of the fastq files was examined using
FastQC46 (version 0.11.9) and MultiQC47 (version 1.10.1). Assembly and
annotation were performed using Shovill and Prokka36 (version 1.14.6). The
clinical information of these nine isolates was collected. To evaluate the antibiotic
pressure, the consumption of linezolid in our hospital was assessed using AUD
(defined daily dose per 100 patient-days).

Genomic typing and resistance analysis. SCCmec typing was performed on all S.
capitis genomes using SCCmecFinder on the CGE website (https://cge.cbs.dtu.dk/
services/SCCmecFinder/). Resistance genes were detected using ABRicate (version
1.0.0, https://github.com/tseemann/abricate). The existence of plasmids was detected
in assembly files using BLAST. The mutation of 23S rRNA domain V in the isolates
having an acquirable fastq sequence file was detected using breseq48 (version 2.0.3).
All detected features were labeled using a heatmap or with color stripes around the
phylogenetic tree.

Filter mating experiments. Filter mating experiments were performed to investi-
gate whether the cfr carrying plasmid is conjugative. Using a clinical isolate S. aureus
719 (ST5, cfr negative) and ATCC29213-rifR as recipients and S. capitis LZD1 and
LZD8 as donors with selection on nutrient agar plates containing 4mg L−1 linezolid
and 12.5mg L−1 tetracycline or plates containing 4mg L−1 linezolid and 50mg L−1

rifampin according to the reference with adjustment in antibiotic concentrations49,50.
The transconjugants were identified using MALDI-TOF and PCR of cfr gene
with primers (cfr-fw: TGAAGTATAAAGCAGGTTGGGAGTCA; cfr-rv:

ACCATATAATTGACCACAAGCAGC)51. Thereafter, antibiotic susceptibility test
(K-B test and E-test) was performed to assess the change in drug resistance.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The genomes that included in the primary genome set were collected from public
databases and those accession numbers were listed in Supplementary Data 1. The
validation set was retrieved with BioProject accession number PRJNA4935277. As for the
linezolid-resistant strains isolated in Sir Run Run Shaw Hospital, the assembly files can
be downloaded using the BioProject number PRJNA748212, and the complete genome of
LZD8 can be downloaded with the GenBank accession number SAMN23101375. The
genome of isolate XWZ can be downloaded with the accession number SAMN23101376.
All data obtained or analyzed in this study underlying the figures in this manuscript are
available in Supplementary Data 1 or in the Source Data file. Source data are provided
with this paper Source data are provided with this paper.

Code availability
Computer code is available from GitHub under https://github.com/gooday92/cgMLST_
s_capitis.
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