
Genome analysis

ODGI: understanding pangenome graphs

Andrea Guarracino 1,†, Simon Heumos 2,3,†, Sven Nahnsen 2,3, Pjotr Prins4 and

Erik Garrison 4,*

1Genomics Research Centre, Human Technopole, Milan 20157, Italy, 2Quantitative Biology Center (QBiC), University of Tübingen,

Tübingen 72076, Germany, 3Biomedical Data Science, Department of Computer Science, University of Tübingen, Tübingen 72076,

Germany and 4Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis,

TN 38163, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Peter Robinson

Received on November 9, 2021; revised on March 18, 2022; editorial decision on April 23, 2022

Abstract

Motivation: Pangenome graphs provide a complete representation of the mutual alignment of collections of
genomes. These models offer the opportunity to study the entire genomic diversity of a population, including struc-
turally complex regions. Nevertheless, analyzing hundreds of gigabase-scale genomes using pangenome graphs is
difficult as it is not well-supported by existing tools. Hence, fast and versatile software is required to ask advanced
questions to such data in an efficient way.

Results: We wrote Optimized Dynamic Genome/Graph Implementation (ODGI), a novel suite of tools that imple-
ments scalable algorithms and has an efficient in-memory representation of DNA pangenome graphs in the form of
variation graphs. ODGI supports pre-built graphs in the Graphical Fragment Assembly format. ODGI includes tools
for detecting complex regions, extracting pangenomic loci, removing artifacts, exploratory analysis, manipulation,
validation and visualization. Its fast parallel execution facilitates routine pangenomic tasks, as well as pipelines that
can quickly answer complex biological questions of gigabase-scale pangenome graphs.

Availability and implementation: ODGI is published as free software under the MIT open source license. Source
code can be downloaded from https://github.com/pangenome/odgi and documentation is available at https://odgi.
readthedocs.io. ODGI can be installed via Bioconda https://bioconda.github.io/recipes/odgi/README.html or GNU
Guix https://github.com/pangenome/odgi/blob/master/guix.scm.

Contact: egarris5@uthsc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A pangenome models the full set of genomic elements in a given spe-
cies or clade (Computational Pan-Genomics Consortium, 2018;
Eizenga et al., 2020b; Tettelin et al., 2008). In contrast to reference-
based approaches which relate samples to a single genome, these
data structures encode the mutual relationships between all the
genomes represented (Ballouz et al., 2019). A class of methods to
represent pangenomes involves sequence graphs (Hein, 1989; Paten
et al., 2017) where homologous regions between genomes are com-
pressed into single representations of all alleles present in the pange-
nome. In sequence graphs, node labels are genomic sequences with
edges connecting those nodes. A bidirected sequence graph can rep-
resent both strands of DNA. On this model, variation graphs add
the concept of paths representing linear DNA sequences as traversals

through the nodes of the graph (Garrison et al., 2018). For example,
a path can be a genome, haplotype, contig or read.

Pangenome graphs can be constructed by multiple sequence
alignment (Grasso and Lee, 2004; Lee et al., 2002) or by transitively
reducing an alignment between sequences to an equivalent, labeled
sequence graph (Garrison, 2019; Kehr et al., 2014). Current meth-
ods to build these graphs are still under active development
(Armstrong et al., 2020; Garrison et al., 2021; Li et al., 2020), but
they have largely settled on a common data model, represented in
the Graphical Fragment Assembly (GFA) format (GFA Working
Group, 2016). This standardization supports the development of a
reference set of tools that operate on the pangenome graph model.

Pangenome graphs let us encode any kind of variation, allowing
the generation of comprehensive data systems that builds the basis
for the analyses of genome evolution. The Human Pangenome

VC The Author(s) 2022. Published by Oxford University Press. 3319

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(13), 2022, 3319–3326

https://doi.org/10.1093/bioinformatics/btac308

Advance Access Publication Date: 13 May 2022

Original Paper

https://orcid.org/0000-0001-9744-131X
https://orcid.org/0000-0003-3326-817X
https://orcid.org/0000-0002-4375-0691
https://orcid.org/0000-0003-3821-631X
https://github.com/pangenome/odgi
https://odgi.readthedocs.io
https://odgi.readthedocs.io
https://bioconda.github.io/recipes/odgi/README.html
https://github.com/pangenome/odgi/blob/master/guix.scm
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/

Reference Consortium (HPRC) and Telomere-to-Telomere (T2T)
consortium (Jarvis et al., 2022; Logsdon et al., 2021; Miga et al.,
2020; Nurk et al., 2021) have recently demonstrated that high-
quality haploid and diploid de novo assemblies can be routinely
generated from third-generation long read sequencing data. We an-
ticipate that de novo assemblies of similar quality will become com-
mon, leading to demand for methods to analyze pangenomes.

Although pangenome graphs are data structures of utility to
researchers (Baaijens et al., 2019; Computational Pan-Genomics
Consortium, 2018; Garrison et al., 2018; Hickey et al., 2020;
Sibbesen et al., 2021), the scientific community still lacks a toolset
capable of operating on gigabase-scale pangenome graphs con-
structed from whole-genome assemblies. Such an effort began with
the VG toolkit (Garrison et al., 2018), but its tools do not efficiently
handle pangenome graphs presenting complex motifs that result
from repetitive sequences. Here, we refocus the effort with the
Optimized Dynamic Genome/Graph Implementation (ODGI) tool-
kit, a compatible, but independent pangenome graph interrogation
and transformation system specifically implemented to handle the
data scales encountered when working with pre-built constructed
pangenomes comprising hundreds of haplotype-resolved genomes.
ODGI offers a set of standard operations on the variation graph
data model (Fig. 1), generalizing ‘genome arithmetic’ concepts, like
those found in BEDTools (Quinlan and Hall, 2010), to work on
pangenome graphs. Furthermore, it provides a variety of tools for
graph visualization, sorting and liftover projections, all critical to
understand and exploit pangenome graphs.

2 Model

A pangenome graph is a sequence model that encodes the mutual
alignment of many genomes (Eizenga et al., 2020b; Garrison, 2019).
In the variation graph, V ¼ ðN;E;PÞ, nodes N ¼ n1 . . . njNj contain
genomic sequences. Each node ni has an identifier i and an implicit
reverse complement ni , and a node strand s corresponds to one of
such orientations. Edges E ¼ e1 . . . ejEj represent ordered pairs of
node strands: ei ¼ ðsa; sbÞ. Paths P ¼ p1 . . . pjPj describe walks over
node strands: pi ¼ s1 . . . sjpi j. When used as a pangenome graph, V
expresses sequences, haplotypes, contigs and annotations as paths.
By containing both the sequences and information about their rela-
tive variations, the variation graph provides a complete and power-
ful foundation for many bioinformatic applications.

3 Implementation

The ODGI toolkit builds on existing approaches to efficiently store
and manipulate pangenome graphs in the form of variation graphs
(Garrison et al., 2018). Similar to other efficient libraries presenting
the HandleGraph model (Eizenga et al., 2020a), the implementation
of ODGI’s tools rests on three key properties which hold for most
pangenome graphs:

1. They are relatively sparse, with low average node degree.

2. They can be sorted so that most edges go between nodes that are

close together in the sort order.

3. Their embedded paths are locally similar to each other.

These properties are used to build efficient dynamic variation
graph data structures (Eizenga et al., 2020a; Siren et al., 2020).
Sparsity (1) allows us to encode edges E using adjacency lists rather
than matrices or hash tables. The local linear structure of the graph
(2) lets us assign node identifiers that increase along the linear com-
ponents of the graph, which supports a compact storage of edges
and path steps as relativistic (usually small) differences rather than
absolute (always large) integer identifiers. Path similarity (3) allows
us to write local compressors that reduce the storage cost of collec-
tions of path steps.

ODGI improves on prior efforts, based on issues that arose dur-
ing our work with high-quality de novo assemblies that cover almost
all parts of the human genome (Logsdon et al., 2021; Nurk et al.,

2021). In particular, we find that it is necessary to support graphs
with regions of very high numbers of path traversals (high depth of
path coverage of some nodes, the so-called node depth). Such motifs
can occur in collapsed structures generated by ambiguous sequence
homology relationships in repeats found in the centromeres and
other segmental duplications. If we cannot process such regions, we
cannot understand them, and our only option is to build graphs that
do not include them. Our goal is to build tools that allow for a wide
range of uses of pangenome graphs, including cases with potentially
high path depth. To seamlessly represent such difficult regions, we
followed an approach implemented in the dynamic version of the
Graph BWT (GBWT) (Siren et al., 2020) and built a node-centric,
dynamic, compressed model of the paths. This design supports
node-local modification and update of the graph, which lets us build
and modify the graph and its paths in parallel.

We store the graph in a vector of node structures, each of which
presents a node-local view of the graph sequence, topology and path
layout (Algorithm 1). Expressed in terms of the variation graph V,
ODGI’s core Node structure includes a decoder that maps the neigh-
bors of each node to a dense range of integers. For a given Nodei

and neighbor Nodej, the decoder itself does not store the id of
Nodej, but rather a compact representation of the relative difference
between the node ids: d ¼ Nodei:id �Nodej:id. This keeps the size
of the encoding small, per common pangenome graph property (2).
We define the edges and path steps traversing the node in terms of
this alphabet of d’s.Each structure contains the sequence of the node
(Nodei:sequence), its edges in both directions (Nodei:edges), and a
vector of path steps that describes the previous and next steps in
paths that walk across the node (Nodei:path steps). For efficiency,
Nodei:sequence is stored as a plain string, while the edges and
path steps are stored using a dynamic succinct integer vector that
requires O(2nw) bits for the edges and O(5nw) bits for the path
steps, where n is the number of steps on the node and w is �log2ðnÞ
(Prezza, 2017).

To allow edit operations in parallel, each node structure includes
a byte-width mutex lock. All changes on the graph can involve at
most two Node structs at a time (both edge and path step represen-
tations are doubly linked). To avoid deadlocks, we acquire the node

Algorithm 1: ODGI’s relativistically packed Node structure

and the Step structure used to represent the paths as doubly

linked lists.

Struct Node contains

id 2 N // an identifier

lock // atomic locking primitive

sequence ¼ ½AjTjGjCjN�þ
// bit-packed vector of edges

edges ¼ ðxi; xjÞ� : ði; jÞ 2 ½1 . . . R�2

// bit-packed vector of id deltas

decoding x1 . . . xR 2 N
R

// bit-packed vector of path steps

path_steps ½Step1 . . . Stepn��
end

Struct Step contains

path_id 2 N // the path’s global id

is_rev 2 ð0; 1Þ // the step orientation

is_start 2 ð0; 1Þ // if first step in path

is_end 2 ð0; 1Þ // if last step in path

prev_d 2 ½1 . . . R� // d-encoded previous node

prev_rank 2 N // step rank on previous node

next_d 2 ½1 . . . R� // d-encoded previous node

next_rank 2 N // step rank on next node

end

3320 A.Guarracino et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data

locks in ascending Node:id order and release them in descending
order. In addition to node-local features of the graph, we must main-
tain some global information. Specifically, we record the start and
end of paths, as well as a name to path id mapping in lock-free hash
tables. The use of lock-free hash tables lets us avoid a global lock
when looking up path or graph metadata, which would quickly be-
come a bottleneck during parallel operations on the graph. By avoid-
ing global locks, we implement many of the operations in ODGI
using maximum parallelism available. This approach is key to en-
able our methods to scale to the largest pangenome graphs that we
can currently build (with hundreds of vertebrate genomes).

4 Overview

ODGI provides a set of interrogative and manipulative operations
on pangenome graphs. We have established these tools to support
our exploration of graphs built from hundreds of large eukaryotic
genomes. ODGI’s tools are practical and able to work with high lev-
els of graph complexity, even with regions where paths present very
high depth nodes (105- to 106-fold depth). ODGI covers common
operations that we have found to be essential when working with
complex pangenome graphs:

• odgi build constructs the ODGI data model from GFA file

(Section 4.1).
• odgi view converts the ODGI data model into GFA file

(Section 4.1).
• odgi viz provides a linear visualization of the graph (Section 5.1).
• odgi draw renders a 2D image of the graph (Section 5.1).
• odgi extract excerpts subsets of the graph based on path ranges

(Supplementary Section S.3).
• odgi explode breaks the graph into connected components

(Supplementary Section S.3).
• odgi squeeze unifies disjoint graphs (Supplementary Section S.3).
• odgi chop breaks long nodes into shorter ones (Supplementary

Section S.3).
• odgi unchop combines unitig nodes (Supplementary Section S.3).
• odgi break removes cycles in the graph (Supplementary Section

S.3).
• odgi prune removes complex regions (Supplementary Section

S.3).
• odgi groom resolves spurious inverting links (Supplementary

Section S.3).
• odgi position lifts coordinates between path and graph positions

(Section 5.2).
• odgi untangle deconvolutes paths relative to a reference (Section

5.2).
• odgi tips finds path end points relative to a reference

(Supplementary Section S.2).
• odgi sort orders the graph nodes (Section 5.3).
• odgi layout establishes a 2D layout (Section 5.3).
• odgi matrix derives the pangenome matrix (Supplementary

Section S.5).
• odgi paths lists and extracts paths in FASTA (Supplementary

Section S.5).
• odgi flatten converts the graph to FASTA and BED

(Supplementary Section S.5).

• odgi pav computes presence–absence variations (Supplementary

Section S.5).
• odgi stats provides numerical properties of the graph (Section

5.4).
• odgi bin generates a summarized view of the graph

(Supplementary Section S.5).
• odgi depth describes node depth over graph and path positions

(Section 5.4).
• odgi degree describes node degree over graph and path positions

(Section 5.4).

Each tool focuses on a small set of related operations. Most read
or write the native ODGI format (‘og’ extension) (Fig. 1) and work
with standard text-based data formats common to bioinformatics.
This supports the implementation of flexible and composable graph
processing pipelines based on graphs (GFA/ODGI) and standard
bioinformatic data types representing positions, genomic ranges
(BED) and pairwise mappings (PAF). We use variation graph paths
to provide a universal coordinate system, representing annotations
and pairwise sequence relationships using the paths as reference and
query sequences. Thus, ODGI provides a set of interfaces that let us
approach these graphs from the perspective of standard reference-
and sequence-based data models. Indeed, by considering all paths in
the graph as potential reference or query sequence, we make graphs
invisible to downstream tools that operate on collections of sequen-
ces or rely on a reference sequence [e.g. SAMtools (Li et al., 2009)],
enabling interoperability. This approach benefits from the informa-
tion in the graph without requiring that we build an entirely new set
of bioinformatic methods to work in this difficult new pangenomic
research context.

4.1 Building the ODGI model
ODGI maintains its own efficient binary format for storing graphs
on disk. We begin by transforming the storage model of the standard
GFAv1 (GFA Working Group, 2016) format (in which nodes, edges
and paths are described independently) into the ODGI node-centric
encoding with odgi build. This construction step can be a significant
bottleneck, in particular as the size of the path set of the graph
increases. The process itself is lossless. A graph in ODGI format rep-
resents everything that is in the input GFAv1 graph, without any
loss of information. ODGI does not natively support GFAv2 or
rGFA. GFAv2 is similar to GFAv1, but includes process-related
annotations of assembly graphs not relevant for pangenome analy-
ses. rGFA embeds a single coordinate hierarchy over the graph that
links all sequences into a single base reference genome. This pos-
itional model depends on a particular graph induction algorithm Li
et al. (2020). In contrast, ODGI implements coordinate translation
dynamically (e.g. odgi position and odgi untangle), allowing use of
any embedded genome as a reference. Its input graphs can represent
any kind of alignment between the genomes. GFAv1 is fully capable
of representing many reference genome coordinate systems simul-
taneously, which supports a reference-agnostic approach that uses
the entire pangenome sequence space as a reference system. In doing
so, our approach has the advantage of maintaining backward com-
patibility with existing tools based on genome sequences.

The ODGI data structure (Algorithm 1) allows algorithms that
build and modify the graph to operate in parallel, without any glo-
bal locks. In odgi build, we initially construct the node vector in a
serial operation that scans across the input GFA file. Then, we seri-
ally add edges in the Node:edges vectors of pairs of nodes. Finally,
we create paths in serial, and extend them in parallel by obtaining

Fig. 1. Overview of the methods provided by ODGI (in black) and their supported input (in blue) and output (in red) data formats (A color version of this figure appears in the

online version of this article.)

ODGI: understanding pangenome graphs 3321

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data

the mutex Node:lock for pairs of nodes and by adding the path step
in their Node:path steps vectors. This parallelism speeds ODGI
model construction by many-fold when testing against graphs made
from assemblies produced by the HPRC (Section 5.5).

To support interchange with other pangenome tools or text-based
processing, odgi view converts a graph in ODGI binary format to
GFAv1. ODGI utilizes the PanSN (Garrison, 2021) specification to
embed sample and haplotype information in the sequence name. This
harmonizes the biosample information present in FASTA, GFA, PAF,
VCF, BED, BEDPE, SAM/BAM and GFF/GTF formats related to the
graph and its embedded genome sequences. By embedding all sequen-
ces into a single hierarchical namespace related to fundamental bio-
logical groupings in the input (e.g. biosample, individual, pooled
group), PanSN allows us to utilize all assemblies in the pangenome as
a combined reference coordinate model.

5 Results

Here, we apply our methods to a series of analyses, highlighting
how ODGI can assist in exploring the biological features of pange-
nome graphs. We follow typical analyses that we have found critical

to interpreting whole genome alignments represented in the vari-
ation graph model.

To simplify our exposition, we will extract small graph regions
that are easy to interpret and describe. We focus on a handful of dif-
ficult loci from the human pangenome, extracting them from a
prototype human pangenome graph built with the Pangenome
Graph Builder pipeline (Garrison et al., 2021). Pangenome graphs
built from hundreds of haplotype-resolved de novo genome assem-
blies are very large, but it is often only necessary to work with only
a small portion of the genomes represented, such as a specific locus
(Fig. 2a) or a smaller region (Fig. 2b–g), or even a single gene
(Fig. 3). This simplifies the downstream analyses and reduces the
resources to work only with the extracted graphs. More on graph
extraction and edit operations can be found at Supplementary
Section S3.

5.1 Visualizing pangenome graphs
Visualization methods help us quickly gain insight into otherwise
opaque biological data. We find visualization essential for under-
standing pangenome graphs. We pursue a novel approach to visual-
ization with odgi draw and odgi viz, two tools that provide scalable

Fig. 2. Visualizing the major histocompatibility complex (MHC) and complement component 4 (C4) pangenome graphs. (a) odgi draw layout of the MHC pangenome graph

extracted from a whole human pangenome graph of 90 haplotypes. The red rectangle highlights the C4 region. (b–e) odgi viz visualizations of the C4 pangenome graph, where

eight paths are displayed: two reference genomes (CHM13 and GRCh38 on the top) and six haplotypes of three diploid individuals. (b) odgi viz default modality: the image

shows a quite linear graph. The links at the bottom indicate the presence of a structural variant (long link) with another structural variant nested inside it (short link on the

left). (c) Color by path position. The top two reference genomes and one haplotypes (HG01952#2) go from left to right, while five haplotypes go in the opposite direction, as

indicated by the black color on their left. (d) odgi viz color by strandness: the red paths indicate the haplotypes that were assembled in reverse with respect to the two reference

genomes. (e) odgi viz color by node depth: using the Spectra color palette with four levels of node depths, white indicates no depth, while gray, red and yellow indicate depth

1, 2 and greater than or equal to 3, respectively. Coloring by node depth, we can see that the two references present two different allele copies of the C4 genes, both of them

including the HERV sequence. The entirely gray paths have one copy of these genes. HG01071#2 presents three copies of the locus (orange), of which one contains the HERV

sequence (gray in the middle of the orange). In HG01952#1, the HERV sequence is absent. (f) Layout of the C4 pangenome graph made with the Bandage tool (Wick

et al., 2015) and annotated by using odgi position. Green nodes indicate the C4 genes (in red). The red rectangle highlights the regions where C4A and C4B genes differ. (g)

Annotated Bandage layout of the C4 region where C4A and C4B genes differ due to single nucleotide variants leading to changes in the encoded protein sequences. Node labels

were annoted by using odgi position. (h) Visualization of odgi untangle output in the C4 pangenome graph: the plots show the copy number status of the sequences in the C4

region with respect to the GRCh38 reference sequence, making clear, for example, that in HG00438#2, the C4A gene is missing (no black lines in the region annotated in red)

(A color version of this figure appears in the online version of this article.)

3322 A.Guarracino et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data

ways of generating raster images showing the high-level structure of
even large pangenome graphs (Fig. 2).

Using odgi extract, we extracted the major histocompatibility
complex (MHC) locus from a 90-haplotype human chromosome 6
pangenome graph from the HPRC. Specifically, the graph contains
the human references GRCh38, CHM13 and the contigs of 44 dip-
loid individuals that encode all possible variations including those in
telomeres and centromeres. The MHC genes are involved in antigen
presentation, inflammation regulation, the complement system and
the innate and adaptive immune responses (Shiina et al., 2009).
MHC genes are highly polymorphic, i.e. there are multiple different
alleles across individuals in a population. Such variability becomes
evident when we apply odgi draw to visualize the graph layout of a
human MHC pangenome graph (Fig. 2a) (of note, odgi layout first
generates the drawn projection, see Section 5.3). The visualization
displays the graph topology in two dimensions (2D), with structural
variation that appears as bubbles in the layout. A 2D rendering can
be costly to compute, but we provide an implementation that scales
linearly with pangenome sequence size, allowing us to apply it to
large pangenome graphs.

The MHC locus includes the complement component 4 (C4) re-
gion, which encodes proteins involved in the complement system. In
Figure 2a, C4 corresponds to the small bubble highlighted by the red
rectangle. As an example use case, we took a closer look at the C4
region of the MHC by extracting it from the full MHC pangenome
graph with odgi extract. Then, we visualized this subgraph by apply-
ing odgi viz, which produces binned, linearized renderings in 1 di-
mension (1D), where the graph is ordered in 1D across the
horizontal axis, with each path represented by a row of the vertical
axis (Fig. 2b–e). For each path, graph nodes are arranged from left
to right, with the colored bars indicating the paths and the nodes
they cross. White spaces indicate where paths do not traverse the
nodes. Directly consecutive nodes are displayed with no white space
between the two. The meaning of the colors depends on how odgi
viz is executed. By default, path colors are derived from the path
names (Fig. 2b), which are displayed on the left of the paths. The
black lines on the bottom indicate the edges connecting the nodes
and, therefore, represent the graph topology (see Supplementary
Section S1 for a more detailed explanation). This visualization is
computed in linear-time and offers a human-interpretable format
suitable for understanding the topology and genome relationships in
the pangenome graph. In humans, the C4 gene exists as two func-
tionally distinct genes, C4A and C4B, which both vary in structure
and copy number (Sekar et al., 2016). In combination with the

observed changes in path self-coverage, which represents copy num-
ber of a given path relative to the graph (Fig. 2e), the longer link at
the bottom of Figure 2b–e indicates that the copy number status of
these genes varies across the haplotypes represented in the pange-
nome. Moreover, the short nested variation on the left of the locus
highlights that C4A and C4B genes segregate in both long and short
genomic forms, distinguished by the presence or absence of a human
endogenous retroviral (HERV) sequence.

Nevertheless, complex, non-linear graph structures are difficult
to interpret in a low number of dimensions. To overcome this limita-
tion, odgi viz supports multiple visualization modalities (Fig. 2c–e),
making it easy to grasp the properties and shape of the graph. For
example, we can color the paths by path position (Fig. 2c), with light
gray indicating where paths begin and dark gray where they end.
This visualization is suitable for understanding graph node order, as
smooth color gradients indicate that the node order respects the lin-
ear paths’ coordinate systems. Pangenome graphs can represent both
strands of the genomic sequences of the DNA. We can display such
information by coloring the paths by orientation, with paths colored
where their sequence is reverse-complemented (red) or in direct
orientation (black) with respect to the sequences of the graph nodes
(Fig. 2d). Furthermore, we can use multiple color palettes to color
the paths by how many times they traverse a node, which can be
referred to as the path’s depth or coverage of the node, the node
depth. This highlights that in the C4 pangenome graph, the haplo-
types present different number of copies of the C4 genes (Fig. 2e).

5.2 Untangling and navigating the pangenome
The key data in a pangenome graph is a representation of the align-
ment (i.e. the homology relationships) between genomic sequences.
Navigating and understanding the graph requires coordinate sys-
tems to link other data to the sequences represented in the graph
model. ODGI’s tools use the embedded sequences to provide a uni-
versal coordinate space that is graph-independent, thereby remain-
ing stable across different graphs built with the same sequences.
Such a universal coordinate system allows us to support several
kinds of ‘lift-over’ of coordinates between different sequences in the
same or different graphs. As a demonstration, we took the C4 pan-
genome graph and added to its nodes gene annotation from
GRCh38 (in GFF format file) using odgi position (Supplementary
Section S2.1). The resulting TSV contains pairs of nodes and colors.
Taking the graph and the TSV into Bandage (Wick et al., 2015), the
actual C4 genes are highlighted (Fig. 2f). Zooming to the nucleotide
level, the annotation shows the single nucleotide differences of the
C4A and the C4B genes (Fig. 2g).

odgi position can also translate graph and path positions be-
tween or within graphs, emitting the liftovers in BED format. For a
precise translation process when conversing a query position to a
reference position in a repeat region, we apply the path jaccard con-
text mapping concept. It could be that the found reference node is
visited several times by the reference. To ensure a precise transla-
tion, we select the reference position whose context (the multiset of
Node:ids reached within a distance of e.g. 10 kbp) has the best jac-
card metric when compared to the query context. For a more
detailed explanation of the path jaccard concept see Supplementary
Section S2.2.

To obtain a more precise overview of the locus in Figure 2b–e,
we applied odgi untangle with GRCh38 as a reference. odgi untan-
gle segments paths into linear segments by breaking these segments
where the paths loop back on themselves. In this way, we obtain in-
formation on the position and copy number status of the sequences
in the collapsed locus, in BEDPE or PAF format. In the representa-
tion in Figure 2h, the orientation of the line indicates if the copy
number is in forward or in reverse orientation compared to
GRCh38. odgi untangle is able to work with any sets of reference
sequences, converting the graph to lift-over maps compatible with
standard software for projecting annotations and alignments from
one genome to another. An explanation of the untangling process is
given in Supplementary Section S2.

Fig. 3. Features of a 90-haplotype human pangenome graph of the exon 1 huntingtin

gene (HTTexon1): (a) excerpt of vital statistics of the HTTexon1 graph displayed by

MultiQC’s ODGI module. (b) Per nucleotide node degree distribution of CHM13 in

the HTTexon1 graph. Around position 200 there is a huge variation in node degree.

(c) Per nucleotide node depth distribution of CHM13 in the HTTexon1 graph. The

alternating depth around position 200 indicates polymorphic variation complement-

ing the above node degree analysis. (d) odgi viz visualization of the 23 largest gene

alleles, CHM13 and GRCh38 of the HTTexon1 graph. (e) vg viz nucleotide-level

visualization of 10 gene alleles, CHM13, GRCH38 of the HTTexon1 graph focus-

ing on the CAG variable repeat region

ODGI: understanding pangenome graphs 3323

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data

5.3 Latent graph structure reveals underlying biology
Pangenome graphs can hide their underlying latent structures, intro-
ducing difficulties in the analysis and interpretation. Among the
causes of this is the correct ordering of the graph nodes in a conveni-
ent number of dimensions. ODGI provides a variety of sorting algo-
rithms to find the best graph node order in 1 or 2 dimensions,
allowing us to understand the sparse structures typically found in
pangenome graphs and the genetic variation they represent. odgi
sort allows the chaining of these sorting algorithms. As many of the
algorithms are affected by the initial node order, this allows us to
generate sorting pipelines that progressively refine the graph
ordering.

We applied several of odgi sort’s 1D algorithms to a 90-haplo-
type human MHC pangenome and a C4 subgraph (Supplementary
Fig. S2). The randomly sorted MHC graph (Supplementary Fig. S2a)
hides its linear graph structure, whereas our novel path-guided (PG)
stochastic gradient descent (SGD) algorithm, PG-SGD, is able to
produce a globally linear ordered graph revealing the C4 region
(Supplementary Fig. S2b). This exploits path information to order
the graph nodes. PG-SGD learns a 1D or 2D organization of the
graph nodes that matches nucleotide distances in graph paths (i.e.
the sequences embedded in the graph). To scale to large graphs, we
learn this projection in parallel via a HOGWILD! approach (Niu
et al., 2011). PG-SGD can be seen as an adaptation of SGD-based
drawing (Zheng et al., 2019) to pangenome graphs. In parallel, each
HOGWILD! thread updates the relative position of pairs of nodes
so that their distance in the layout, or their order, better-matches
their nucleotide distance in the paths running through the graph.
Following standard SGD approaches, the learning rate is reduced as
the algorithm progresses, and execution continues until the adjust-
ments to the model fall below a target threshold �.

A PG-SGD sorting of C4 compresses both sides of the variant
bubble into one dimension, leading to an interrupted pattern of
nodes across the copy-number variable region (Supplementary Fig.
S2c). Subsequently applying a topological sort clarifies the graph’s
latent structure, simplifying interpretation (Supplementary Fig.
S2d). To find the best order of graph nodes in 1D, odgi sort’s mul-
tiple sorting algorithms can be combined into a sorting pipeline to
take advantage of the strength of each (results not shown). ODGI
can project vector (in 1D) and matrix (2D) representations of the
graph relative to these learned coordinate spaces. Based on this pro-
jection, we can trivially sort graph nodes in 1D. Moreover, we sup-
port the same concept in 2D in odgi layout by providing a 2D
implementation of the PG-SGD algorithm (Fig. 2a). A detailed de-
scription of the node ordering process can be found at
Supplementary Section S4. As we have shown above, the node order
is crucial to understand the biological features of a pangenome
graph.

5.4 Graph features highlight variation
Graphs statistics provide alternative ways to gain insight into pange-
nomes complexity revealing the overall structure, size and features
of a graph and its sequences.

As a use case study (Fig. 3), we took a look at the metrics of a
90-haplotype human pangenome graph of the exon 1 huntingtin
gene (HTTexon1). In particular, we obtained the number of nodes,
edges, paths, components, bases, the graph length and the GC con-
tent with odgi stats. The output pangenome statistics in YAML text-
ual file format was given to MultiQC’s (Ewels et al., 2016) newly
added ODGI module. As can be seen in Figure 3a, we observe a very
high GC content of 73.0% in the HTTexon1 graph compared to the
human genomic mean GC content of 40.9% (Piovesan et al., 2019).
This is in accordance with the literature (Neueder et al., 2017).
Despite this discovery, the MultiQC module provides an interactive
way to comparatively explore statistics of an arbitrary number of
graphs.

To investigate in detail which intricate regions in the HTTexon1
graph are responsible for its genetic variation and high GC content,
we took a look at the per nucleotide node degree (Fig. 3b) and node
depth (Fig. 3c) distributions of CHM13 by using odgi depth’s and
odgi degree’s BED output, respectively. The results indicate a highly

polymorphic region around position 200 in the graph. Figure 3d
supports this analysis. Zooming in on this region with vg viz, we can
clearly identify the typical HTTexon1 CAG variable repeat region
(Fig. 3e). Figure 3b–d highlights the variant region around position
200 of CHM13, showing the variable number of glutamine residues
of the different individuals as reported by Nance et al. (1999).

5.5 Performance evaluation
Although many of the operations that ODGI provides are unique,
some are common with the existing VG toolkit. We compare with
these to highlight the practical performance implications of our
graph data structure design. Our results highlight the efficient paral-
lel algorithm implementations enabled by this design.

We compared the efficiency of ODGI (v0.6.3-56-gebc493f
‘Pulizia’) and VG (v1.37.0 ‘Monchio’) for routine pangenome tasks.
In particular, we measured the execution time and memory usage (i)
of transforming a GFAv1 file into a tool’s native format, (ii) the ex-
traction of a subgraph, (iii) the visualization of a pangenome graph
and (iv) the finding of path positions in a pangenome graph. These
graph operations are key when it comes to the understanding of

Fig. 4. Performance on a graph of human chromosome 6 from the HPRC. ODGI

compares favorably to VG across all routine pangenomic tasks. Evaluations across

threads were done using a 64 human haplotype graph. Evaluations across haplo-

types were done using 16 threads. (a) Performance evaluation when translating a

graph into the tools’ respective native formats. (b) Performance evaluation when

extracting the centromeric region from the HPRC graph. (c) Performance evaluation

when visualizing a graph. Both tools were run with only one thread. vg viz:

*A 816 MB SVG was produced which cannot be opened by any program.

**All produced SVGs only contain an XML header, nothing else

3324 A.Guarracino et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data

pangenome graphs. They are also a set of functions implemented
in both toolkits. We ran these operations for a varying number of
threads and haplotypes in the graph for a scaling analysis. We ran
each evaluation configuration 10 times and report the mean of
each run. All evaluations were performed on a VM in the German
Network for Bioinformatics Infrastructure (deNBI) cloud with
28 cores and 256 GB of RAM. The presented results are from a
90-haplotype chromosome 6 human pangenome graph built with
data from the HPRC. Specifically, the graph contains the human
references GRCh38, CHM13 and the contigs of 44 diploid indi-
viduals that encode all possible variations including those in telo-
meres and centromeres. When transforming a GFAv1 file with
VG, the static XG file format was used. The tools involved in the
evaluation process require the XG format.

In general, ODGI makes comparatively better use of multi-
threading and requires much less memory (Fig. 4, Supplementary
Table S4) across all operations. ODGI scales much better than VG
when working with complex regions of the graph. For example,
extracting a difficult centromeric subgraph (Fig. 4b), ODGI is up to
40 times faster and requires 8 times less memory than VG.

Both visualization tools can only make use of a single thread.
For a 1 haplotype, graph vg viz produces a 816MB SVG which can’t
be opened by the standard programs to date. For larger graphs, vg
viz runs through and produces SVGs with only the XML header.
This makes it unusable for large graphs.

We also measured the disk space usage of GFAv1, ODGI’s and
VG’s binary formats (Supplementary Table S5). While VG’s XG
occupies less disk space for smaller graphs, ODGI requires less space
for graphs having 32 haplotypes or more. We hypothesize that this
indicates the lower marginal cost for additional haplotypes when
using ODGI’s id delta encoding scheme.

6 Discussion

Pangenome graphs stand to become a ubiquitous model in genomics
thanks to their capability to represent any genetic variant without
being affected by reference bias (Eizenga et al., 2020b). However,
despite this great potential, their spread is impeded by the lack of
tools capable of managing and analyzing pangenome graphs easily
and efficiently.

By providing a set of standard analysis ‘verbs’ to interact with
pangenome graphs, ODGI enables users to explore and discover im-
portant biological features captured in this flexible, inclusive model.
It provides tools to easily transform, analyze, simplify, validate and
visualize pangenome graphs at large scale. In particular, lifting over
annotations and linearizing nested graph structures place the suite as
the bridge between traditional linear reference genome analysis and
pangenome graphs. With the increased adoption of long read
sequencing we expect pangenomic tools to become increasingly
common in the genomic studies at different taxonomic levels and in
biomedical research. This progression is already afoot, particularly
for targets that involve complex variation, such as cancer (The
Computational Pan-Genomics Consortium, 2016), plant pangenom-
ics (Bayer et al., 2020, 2022; Li et al., 2022; Liu et al., 2020; Qin
et al., 2021) and metagenomics (Zhong et al., 2021). Also, when
studying animals like bovines (Bovine Pan-Genome Consortium,
2022; Leonard et al., 2021; Talenti et al., 2022).

Currently, bacterial pangenomes are best handled by specialized
tools like PPanGGolin (Gautreau et al., 2020), PanGraph (Noll
et al., 2022) or PanX (Ding et al., 2018). The latter one doesn’t build
a graphical representation of a pangenome. But, it already has a
very developed eco-system, which allows a detailed analysis of
bacterial pangenomes using an interactive GUI. Unlike these
approaches, which provide a monolithic, integrated solution to
understanding pangenomes, ODGI is designed as a low-level toolkit
that can work on a generic pangenome graph model frequently used
by other existing methods. We hope that this design renders it useful
to pangenome analysis pipeline authors. Other pangenome analysis
platforms, like PanTools (Sheikhizadeh et al., 2016) provide access
to pangenome analyses at the scales we demonstrate with ODGI,
but use specialized de Bruijn graph models to achieve this. In

contrast ODGI supports the highly generic variation graph model,
which has greater representational power than de Bruijn graphs.

ODGI will facilitate disentangling, describing and analyzing a
much larger set of variation than previously was possible with tools
that depend on short reads and reference genomes. Furthermore,
users can even consider ODGI as a framework, taking advantage of
its algorithms to develop new and more advanced tools that work
on pangenome graphs, thus expanding the type of possible pange-
nomic analyses available to the scientific community.

The performance analysis shows that ODGI outperforms VG
when handling large, complex pangenome graphs. Across the evalu-
ation of key graph operations, ODGI’s memory peak was 10GB.
This makes it perfectly suited to be run interactively on a recent lap-
top. We expect that ODGI will be able to handle the next phase of
the HPRC, a pangenome graph constructed from 300 individuals,
without any problems.

While ODGI does not construct graphs from scratch nor is cap-
able of extending them, it is already the backbone of the Pangenome
Graph Builder pipeline (Garrison et al., 2021). Its static, large-scale
1D and 2D visualizations of the pangenome graphs allow an unpre-
cedented high-level perspective on variation in pangenomes, and
have also been critical in the development of pangenome graph
building methods. However, an interactive solution that combines
the 1D and 2D layout of a graph with annotation and read mapping
information across different zoom levels is still missing. Recent
interactive pangenome graph browsers are reference-centric (Beyer
et al., 2019; Yokoyama et al., 2019), have a limited predefined co-
ordinate system (Durant et al., 2021), or focus primarily on 2D rep-
resentations (Gonnella et al., 2019; Wick et al., 2015). Our graph
sorting and layout algorithms can provide the foundation for future
tools of this type. We plan to focus on using these learned models to
detect structural variation and assembly errors.

ODGI has allowed us to explore context mapping deconvolution
of pangenome graph structures via the path jaccard metric. This
resolves a major conceptual issue that has strongly guided existing
algorithms to construct pangenome graphs. Previously, great efforts
have been made to prevent the ‘collapse’ of non-orthologous sequen-
ces in the graph topology itself (Li et al., 2020). This has been seen
as essential to making these new bioinformatic models interpretable.
While our presentation is primarily qualitative, our work demon-
strates that we can mitigate this issue by exploiting the pangenome
graph not as a static reference, but as a dynamic model of the mutual
alignment of many genomic sequences. Because pangenome graphs
can contain complete genomes, we are able to query them to polar-
ize the information they contain in easily interpretable and reusable
pairwise formats that are widely supported in bioinformatics. ODGI
also projects variation graphs into vector and matrix representations
that allow the direct application of machine learning and statistical
models to the pangenome. We expect that ODGI will provide a ref-
erence interface between pangenomic and genomic approaches for
understanding genome variation.

Acknowledgements

The authors thank members of the HPRC Pangenome Working Group for

their insightful discussion and feedback, and members of the HPRC produc-

tion teams for their development of resources used in our exposition.

Funding

The authors gratefully acknowledge support from National Institutes of

Health/NIDA U01DA047638 (E.G.), National Institutes of Health/NIGMS

R01GM123489 (E.G. and P.P.) and NSF PPoSS Award #2118709 (E.G. and

P.P.). S.H. acknowledges funding from the Central Innovation Programme

(ZIM) for SMEs of the Federal Ministry for Economic Affairs and Energy of

Germany. S.N. acknowledges Germany’s Excellence Strategy (CMFI), EXC-

2124 and (iFIT)—EXC 2180–390900677. This work was supported by the

BMBF-funded de. NBI Cloud within the German Network for Bioinformatics

Infrastructure (de.NBI) [031A537B, 031A533A, 031A538A, 031A533B,

031A535A, 031A537C, 031A534A and 031A532B].

ODGI: understanding pangenome graphs 3325

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac308#supplementary-data

Conflict of Interest: The authors have nothing to declare.

Data availability

Code and links to data resources used to build this manuscript and its figures,

can be found in the paper’s public repository: https://github.com/pangenome/

odgi-paper.

References

Armstrong,J. et al. (2020) Progressive cactus is a multiple-genome aligner for

the thousand-genome era. Nature, 587, 246–251.

Baaijens,J.A. et al. (2019) Full-length de novo viral quasispecies assembly

through variation graph construction. Bioinformatics, 35, 5086–5094.

Ballouz,S. et al. (2019) Is it time to change the reference genome? Genome

Biol., 20, 159.

Bayer,P.E. et al. (2020) Plant pan-genomes are the new reference. Nat. Plants,

6, 914–920.

Bayer,P.E. et al. (2022) Wheat panache – a pangenome graph database repre-

senting presence/absence variation across 16 bread wheat genomes.

bioRxiv. https://doi.org/10.1101/2022.02.23.481560.

Beyer,W. et al. (2019) Sequence tube maps: making graph genomes intuitive to

commuters. Bioinformatics, 35, 5318–5320.

Bovine Pan-Genome Consortium. (2022) Bovine pan-genome consortium.

https://njdbickhart.github.io/ (February 2022, date last accessed).

Computational Pan-Genomics Consortium. (2018) Computational

pan-genomics: status, promises and challenges. Brief. Bioinf., 19, 118–135.

Ding,W. et al. (2018) panX: pan-genome analysis and exploration. Nucleic

Acids Res., 46, e5.

Durant,E. et al. (2021) Panache: a web browser-based viewer for linearized

pangenomes. Bioinformatics, 37, 4556–4558.

Eizenga,J.M. et al. (2020a) Efficient dynamic variation graphs.

Bioinformatics, 36, 5139–5144.

Eizenga,J.M. et al. (2020b) Pangenome graphs. Annu. Rev. Genomics Hum.

Genet., 21, 139–162.

Ewels,P. et al. (2016) MultiQC: summarize analysis results for multiple tools

and samples in a single report. Bioinformatics, 32, 3047–3048.

Garrison,E. (2019) Graphical Pangenomics (Doctoral thesis). https:

//doi.org/10.17863/CAM.41621.

Garrison,E. (2021) Pansn-spec: Pangenome Sequence Naming. https://github.

com/pangenome/PanSN-spec (May 2022, date last accessed).

Garrison,E. et al. (2018) Variation graph toolkit improves read mapping by

representing genetic variation in the reference. Nat. Biotechnol., 36,

875–879.

Garrison,E. et al. (2021) The Pangenome Graph Builder. https://github.com/

pangenome/pggb (May 2022, date last accessed).

Gautreau,G. et al. (2020) PPanGGOLiN: depicting microbial diversity via a

partitioned pangenome graph. PLoS Comput. Biol., 16, e1007732.

GFA Working Group. (2016) Graphical Fragment Assembly (GFA) Format

Specification. https://github.com/GFA-spec/GFA-spec (May 2022, date last

accessed).

Gonnella,G. et al. (2019) GfaViz: flexible and interactive visualization of GFA

sequence graphs. Bioinformatics, 35, 2853–2855.

Grasso,C. and Lee,C. (2004) Combining partial order alignment and progres-

sive multiple sequence alignment increases alignment speed and scalability

to very large alignment problems. Bioinformatics, 20, 1546–1556.

Hein,J. (1989) A new method that simultaneously aligns and reconstructs

ancestral sequences for any number of homologous sequences, when the

phylogeny is given. Mol. Biol. Evol., 6, 649–68.

Hickey,G. et al. (2020) Genotyping structural variants in pangenome graphs

using the vg toolkit. Genome Biol., 21, 35.

Jarvis,E.D. et al. (2022) Automated assembly of high-quality diploid human

reference genomes. bioRxiv. https://doi.org/10.1101/2022.03.06.483034.

Kehr,B. et al. (2014) Genome alignment with graph data structures: a com-

parison. BMC Bioinformatics., 15, 99.

Lee,C. et al. (2002) Multiple sequence alignment using partial order graphs.

Bioinformatics, 18, 452–464.

Leonard,A.S. et al. (2021) Bovine pangenome reveals trait-associated struc-

tural variation from diverse assembly inputs. bioRxiv. https://doi.org/

10.1101/2021.11.02.4466900.

Li,H. et al.; 1000 Genome Project Data Processing Subgroup. (2009) The

sequence alignment/map format and samtools. Bioinformatics, 25,

2078–2079.

Li,H. et al. (2020) The design and construction of reference pangenome graphs

with minigraph. Genome Biol., 21, 265.

Li,H. et al. (2022) Graph-based pan-genome reveals structural and sequence

variations related to agronomic traits and domestication in cucumber. Nat.

Commun., 13, 682.

Liu,Y. et al. (2020) Pan-genome of wild and cultivated soybeans. Cell, 182,

162–176.e13.

Logsdon,G.A. et al. (2021) The structure, function and evolution of a com-

plete human chromosome 8. Nature, 593, 101–107.

Miga,K.H. et al. (2020) Telomere-to-telomere assembly of a complete human

X chromosome. Nature, 585, 79–84.

Nance,M.A. et al. (1999) Analysis of a very large trinucleotide repeat in a pa-

tient with juvenile Huntington’s disease. Neurology, 52, 392–394.

Neueder,A. et al. (2017) The pathogenic exon 1 HTT protein is produced by

incomplete splicing in Huntington’s disease patients. Sci. Rep., 7, 1307.

Niu,F. et al. (2011) Hogwild!: A lock-free approach to parallelizing stochastic

gradient descent. NIPS’11: Proceedings of the 24th International

Conference on Neural Information Processing Systems, 693–701.

Noll,N. et al. (2022). Pangraph: scalable bacterial pan-genome graph con-

struction. bioRxiv.

Nurk,S. et al. (2022) The complete sequence of a human genome. Science,

376, 44–53.

Paten,B. et al. (2017) Genome graphs and the evolution of genome inference.

Genome Res., 27, 665–676.

Piovesan,A. et al. (2019) On the length, weight and GC content of the human

genome. BMC Res. Notes, 12, 106.

Prezza,N. (2017) A framework of dynamic data structures for string process-

ing. Leibniz Internatnal Proceedings in Informatics, 75.

Qin,P. et al. (2021) Pan-genome analysis of 33 genetically diverse rice acces-

sions reveals hidden genomic variations. Cell, 184, 3542–3558.

Quinlan,A.R. and Hall,I.M. (2010) Bedtools: a flexible suite of utilities for

comparing genomic features. Bioinformatics, 26, 841–842.

Sekar,A. et al.; Schizophrenia Working Group of the Psychiatric Genomics

Consortium. (2016) Schizophrenia risk from complex variation of comple-

ment component 4. Nature, 530, 177–183.

Sheikhizadeh,S. et al. (2016) PanTools: representation, storage and explor-

ation of pan-genomic data. Bioinformatics, 32, 487–493.

Shiina,T. et al. (2009) The HLA genomic loci map: expression, interaction, di-

versity and disease. J. Hum. Genet., 54, 15–39.

Sibbesen,J.A. et al. (2021) Haplotype-aware pantranscriptome analyses using

spliced pangenome graphs. bioRxiv. https://doi.org/10.1101/2021.03.26.

437240.

Siren,J. et al. (2020) Haplotype-aware graph indexes. Bioinformatics, 36,

400–407.

Talenti,A. et al. (2022) A cattle graph genome incorporating global breed di-

versity. Nat. Commun., 13, 910.

Tettelin,H. et al. (2008) Comparative genomics: the bacterial pan-genome.

Curr. Opin. Microbiol., 11, 472–477.

The Computational Pan-Genomics Consortium. (2016) Computational

pan-genomics: status, promises and challenges. Brief. Bioinformatics, 19,

bbw089.

Wick,R.R. et al. (2015) Bandage: interactive visualization of de novo genome

assemblies. Bioinformatics, 31, 3350–3352.

Yokoyama,T.T. et al. (2019) MoMI-G: modular multi-scale integrated gen-

ome graph browser. BMC Bioinformatics, 20, 548.

Zheng,J.X. et al. (2019) Graph drawing by stochastic gradient descent. IEEE

Trans. Vis. Comput. Graph., 25, 2738–2748.

Zhong,C. et al. (2021) Integrating pan-genome with metagenome for micro-

bial community profiling. Comput. Struct. Biotechnol. J., 19, 1458–1466.

3326 A.Guarracino et al.

https://github.com/pangenome/odgi-paper
https://github.com/pangenome/odgi-paper
https://njdbickhart.github.io/
https://github.com/pangenome/PanSN-spec
https://github.com/pangenome/PanSN-spec
https://github.com/pangenome/pggb
https://github.com/pangenome/pggb
https://github.com/GFA-spec/GFA-spec
https://doi.org/10.1101/2021.03.26.437240
https://doi.org/10.1101/2021.03.26.437240

