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Our study aimed to explore the effect of cellular senescence and to find potential
therapeutic strategies for gastric cancer. Cellular senescence-related genes were
acquired from the CellAge database, while gastric cancer data were obtained from
GEO and TCGA databases. SMARCA4 had the highest mutation frequency (6%), and
it was linked to higher overall survival (OS) and progression-free survival (PFS). The gastric
cancer data in TCGA database served as a training set to construct a prognostic risk score
signature, and GEO data were used as a testing set to validate the accuracy of the
signature. Patients with the low-risk score group had a longer survival time, while the high-
risk score group is the opposite. Patients with low-risk scores had higher immune
infiltration and active immune-related pathways. The results of drug sensitivity analysis
and the TIDE algorithm showed that the low-risk score group was more susceptible to
chemotherapy and immunotherapy. Most patients with mutation genes had a lower risk
score than the wild type. Therefore, the risk score signature with cellular senescence-
related genes can predict gastric cancer prognosis and identify gastric cancer patients
who are sensitive to chemotherapy and immunotherapy.
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INTRODUCTION

Nowadays, cancer is the primary cause of threat to human health (Bray et al., 2021). It ranked fifth in
incidence and fourth in mortality worldwide, while the number of GC diagnosed in 2020 was more
than 1 million and the number of deaths was more than 700,000 (Sung et al., 2021). There are various
treatments for GC, such as surgery, radiotherapy, targeted therapy, and immunotherapy (Joshi and
Badgwell, 2021). Currently, early-stage GC is mainly treated by surgical resection (Eusebi et al.,
2020). It was found that early-stage GC treated by surgery has a 5-year survival probability above
60%, but late-stage GC is only between 18% and 50% (Sexton et al., 2020). Moreover, the appearance
of resistance to chemotherapy drugs has greatly reduced the effectiveness of chemotherapy (Zhang
et al., 2022). Therefore, a new therapeutic strategy is urgently needed to improve this situation.

Cellular senescence is an irreversible way of cell proliferation cessation. It not only stops the cell
division cycle but also activates the senescence-associated secretory phenotype (SASP), which affects
the cellular metabolism (Birch and Gil, 2020). Cellular senescence is a Jekyll and Hyde phenomenon,
that is, both beneficial in inhibiting the division of DNA-damaged cells to form tumors and
deleterious due to the promotion of cancer cell invasion and distant metastasis, especially in cells with
stronger SASP (Coppé et al., 2008; Demirci et al., 2021; Yasuda et al., 2021). Studying the effect of
cellular senescence in GC could help develop a new approach to cancer therapy (Zhou et al., 2022).
Therefore, the study of cellular senescence in GC is crucial.
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Machine-learning-derived signatures are useful in predicting
cancer prognosis and guiding immunotherapy (Liu Z et al., 2021;
Liu et al., 2022a; Liu et al., 2022b). In the study, we constructed a
cellular senescence prognostic risk score signature by analyzing
the role of cellular senescence in GC. The signature can
independently predict GC patients’ prognosis and effectively
differentiate patients who are more sensitive to chemotherapy
and immunotherapy. The findings of this study may provide new
strategies for exploring the therapy of GC.

METHODS

Acquisition of Gastric Cancer Samples and
Cellular Senescence-Related Genes
The process diagram is shown in Supplementary Figure S1. We
acquired transcriptome data, clinical information, and mutation
information of GC from TCGA databases. The gene symbol ID
was translated to gene name in transcriptome data. Tumormutation
load (TMB) was calculated. TMB refers to how many bases per
million bases are mutated. The platform file (GPL6947) and probe
matrix file (GSE84437) were extracted from GEO. The
correspondence between the probe matrix and gene names was
found according to the platform file annotation information. The
probematrix was converted to a genematrix to obtain the expression
of each gene. Cellular senescence-related genes were downloaded
from CellAge. A total of 279 cellular senescence-related genes were
included in this study (Supplementary Table S1).

Identification of Prognostic Differential
Genes
Differential analysis was conducted by the “limma” package to select
differentially expressed genes (DEGs) in normal samples and tumor

samples. DEGs were visualized by drawing heat maps and volcano
maps. Next, we also extracted the expression of DEGs. Expression
data and survival data were merged. Prognostic-associated genes
were identified based on univariate Cox analysis. The waterfall plot
of prognostic genes was plotted by the “maftools” package to obtain
the mutation frequency of each gene.

Constructing and Validating a Prognostic
Signature
TCGA data were used as a training set to construct the prognostic
model, and GEO data served as a testing set to validate the model
accuracy. Formula: riskscore = ∑i1(CoefipExpGenei). “Coef,”
regression coefficient; “ExpGene,” gene expression. The risk
score was acquired for each sample based on the model
formula. Training and testing sets were separated into two
groups of high and low risk according to the median risk
score. Principal component analysis (PCA) was performed to
demonstrate the accuracy of distinguishing the two groups based
on the signature. The survival difference in the two groups was
compared by Kaplan–Meier analysis. The predictive accuracy of
the signature was evaluated by plotting ROC curves using the
“survivalROC” package. The signature was explored as an
independent prognostic factor by univariate and multivariate
Cox analyses. The “ggpubr” package was employed to
investigate the differences in risk scores among clinical
features. Immunotyping analysis was conducted to explore
whether risk scores were different among different immunotypes.

Development of a Nomogram
By using “regplot” and “rms” packages, nomogram and
calibration curves were developed. Total points were obtained
based on summing the scores of the clinical characteristics in the
nomogram to predict patients’ survival. We also used the

FIGURE 1 | Cellular senescence-related differential genes between tumor samples and normal samples. (A) Heat map. (B) Volcano plot. Green, downregulated;
red, upregulated.
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“timeROC” package to draw ROC curves to compare the accuracy
of the nomogram and clinical characteristics in predicting
survival. Then, we confirmed whether the nomogram could be
used as an independent predictor of prognosis based on
univariate and multivariate Cox analyses. C-index curves were
constructed using the “survcomp” package.

Exploring the Association Between Risk
Scores and Immunotherapy
Immune cell infiltration analysis was undertaken to acquire the
immune cell content of each sample (Supplementary Table S2).
“reshape2” and “ggpubr” packages were performed to observe
immune cell differences and immune-related functional

FIGURE 2 | Developing a prognostic signature. (A) Forest plot. The 24 cellular senescence-related genes associated with GC prognosis. (B) Waterfall plot.
Mutation frequency of 24 cellular senescence-associated genes. A total of 98 sample mutations have occurred in 433 gastric cancer samples. (C) Mutation co-
occurrence and exclusion analysis. Green, co-occurrence; purple, exclusion. (D) LASSO regression coefficients. (E) Identified genes were used to construct a signature.
(F) PCA diagram. The high- and low-risk groups were distinguished by cellular senescence-associated genes. Groups marked in blue represent low-risk patients,
and groups marked in red represent high-risk patients. (G) PCA plot. The risk score signature genes distinguished high- and low-risk groups of patients with high
accuracy.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9095463

Dai et al. Cellular Senescence, Gastric Cancer, Prognosis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


differences between different risk groups. The “GSVA” package
was applied to explore the functional or pathway differences
between different risk groups. We acquired the reference gene set
“c2.cp.kegg.v7.1.symbols” from the Molecular Signature
Database (https://www.gsea-msigdb.org/gsea/msigdb). The
samples were categorized into mutation and wild type based
on the gene mutation status. The difference in risk scores between
mutation and wild type was observed by plotting box plots with
the “ggpubr” package. Drug sensitivity analysis was conducted by
the pRRophetic package (https://www.cancerrxgene.org/) to
investigate IC50 (the half-maximal inhibitory concentration)
differences between high- and low-risk groups. We also used
the TIDE (http://tide.dfci.harvard.edu/) algorithm to predict the
response of different risk groups to immunotherapy.

Enrichment Analysis of Differentially
Expressed Genes
The expression differences of cellular senescence-related genes in
tumor and normal samples were further analyzed by the “limma”
package. We also conducted GO and KEGG enrichment analyses
for DEGs with the “clusterProfiler” package.

Construction of the Protein–Protein
Interaction Network
A PPI network (interaction score >0.70) was constructed using
the STRING database (https://string-db.org/). PPI network data
were further processed using Cytoscape software (https://
cytoscape.org/). The plugin cytoHubba was applied to explore
the hub genes of DEGs. “limma” and “beeswarm” packages were
used to investigate the differentially expressed hub genes in
normal and tumor tissues. The samples were categorized into
high- and low-expression groups based on the median expression
values of the hub genes. Survival differences between the two
groups were investigated by Kaplan–Meier analysis. Finally, we
also explored the differences in the gene expression in immune
infiltration and different clinical features.

Statistical Analysis
R 4.1.2 and Strawberry-Perl-5.32.1.1 were employed in this
study. p-values less than 0.05 were regarded as statistically
significant. Survival differences between different groups were
investigated by performing a Kaplan–Meier analysis. The
independent predictors of GC were identified by univariate
and multivariate Cox analyses. The accuracy of the signature
and nomogram in predicting survival was explored by ROC
analysis.

RESULTS

Identification of Cellular
Senescence-Related Differential Genes
In TCGA data, we identified 135 differential genes by comparing
the difference in the expression of cellular senescence-related

genes in tumor and normal tissue samples (FDR <0.05 and logFC
= 0.585). The heat map (Figure 1A) and volcano map
(Figure 1B) visualized the aforementioned results. There were
32 genes significantly hyper-expressed and 103 genes significantly
down-expressed in the tumor tissue samples.

Construction of a Prognostic Signature
The 24 cellular senescence DEGs associated with GC prognosis were
identified through univariate Cox analysis, such as SMARCA4
(Figure 2A). Figure 2B shows the somatic mutations of 24 genes
with a mutation frequency of 22.63% (98 out of 433 GC samples
showed mutations in cellular senescence-related genes). Of these,
SMARCA4 had the highest mutation frequency (6%), while GNG11
and IGFBP6 were not mutated (0%). We also found a significant
difference between the high- and low-expression of SMARCA4, and
patients with high expression of SMARCA4 were associated with
higher overall survival (OS) and progression-free survival (PFS)
(Supplementary Figure S2). Interestingly, there was a mutation co-
occurrence relationship between SMARCA4 and ZFP36, ITGB4 and
TYK2, ITGB4 and NOTCH3, NOTCH3 and PDIK1L, NOTCH3
and TFAP4, TFAP4 and MAPKAPK5, TFAP4 and TYK2, EZH2
and SLC16A7, IGFBP1 and NOX4, and HSPB2 and MAPKAPK5
(Figure 2C). Next, we further identified 24 cellular senescence DEGs
associated with gastric cancer prognosis by using the least absolute
shrinkage and selection operator (LASSO) Cox regression analysis.
A total of 11 genes (AGT, CHEK1, GNG11, IGFBP1, MAPKAPK5,
NOX4, SERPINE1, TFDP1, TYK2, USP1, and ZFP36) were
identified (Figures 2D,E). Meanwhile, we developed a prognostic
risk score signature based on the 11 genes mentioned earlier in the
training set (Supplementary Table S3). Formula: risk score =
(0.0617318899456387) × AGT + (−0.004416679732613) ×
CHEK1 + (0.00146582976956934) × GNG11 +
(0.027549739978882) × IGFBP1 + (−0.0823743685561005) ×
MAPKAPK5 + (0.0337754127670565) × NOX4 +
(0.184215619451523) × SERPINE1 + (−0.00197579186740112) ×
TFDP1+ (−0.303214268137102) × TYK2 + (−0.0314400326211636)
× USP1 + (0.0400501256934474) × ZFP36 (Supplementary Table
S3). We found that the signature could accurately distinguish low-
risk and high-risk samples in GC by PCA (Figures 2F,G).

Validation of Signature Genes in the HPA
Database
To investigate the protein expression of the signature genes in normal
and gastric cancer tissues, we downloaded immunohistochemical
images of gastric cancer tissues and normal tissues from the Human
Protein Atlas database (https://www.proteinatlas.org/). We found
that MAPKAPK5 and USP1 proteins were highly expressed in
gastric cancer tissues, while the ZFP36 protein was lowly
expressed in tumor tissues (Supplementary Figure S3).

Predicting Survival With the Risk Score
Signature
Through survival curves, we observed longer overall survival
(OS) and progression-free survival (PFS) in the low-risk
subgroup of the training set (Figures 3A,C). The
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aforementioned results were confirmed in the testing set
(Figure 3B). The results of univariate and multivariate Cox
analyses indicated that the risk score signature could be used as
an independent prognostic factor for gastric cancer patients
independently of other clinical characteristics (Figures 3D,E).
The signature was very accurate in predicting survival in
patients with gastric cancer, with an area under the ROC
curve (AUC) of more than 0.60 for predicting 1-, 3-, and 5-
year survival (Figure 3F). We found the largest area under the
ROC curve for the risk score (AUC = 0.744), which indicated

that the signature predicted survival better than other clinical
characteristics (Figure 3G). We further investigated whether
there were differences in risk scores across clinical
characteristics (age, gender, grade, stage, and TNM stage).
We found an increased risk for patients after the T1 stage
and no significant change in risk for patients after the T2
stage (Figure 3H). In contrast, there were no significant
differences in risk scores for other clinical characteristics
(Supplementary Figure S4). Interestingly, we also found no
difference in risk scores for immune subtypes (Figure 3I).

FIGURE 3 | Risk score signature predicted prognosis for gastric cancer patients. (A)Overall survival (OS) curves of the high- and low-risk groups in the training set.
(B)Overall survival (OS) curves of the high- and low-risk groups in the testing set. (C) Progression-free survival (PFS) curves of the high- and low-risk groups in the training
set. (D) Univariate Cox analysis. (E)Multivariate Cox analysis. (F) Area under the ROC curve (AUC) for the risk score signature that predicted 1-year, 3-year, and 5-year
overall survival. (G) ROC curves. The area under the ROC curve (AUC) for the risk score was the highest at 0.744. (H) Box plot of the difference in risk score for
patients with different T-stages. (I) Box line plot of the difference in the risk score for patients with different immune subtypes.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9095465

Dai et al. Cellular Senescence, Gastric Cancer, Prognosis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Development of a Nomogram
We drew a nomogram to predict patients’ survival (Figure 4A).
When patients’ total point was 437, the predicted survival rate at
1-year was more than 0.858, the predicted survival rate at 3-year
was more than 0.617, and the predicted survival rate at 5-year was
more than 0.501. We found that the actual survival rate and
predicted survival rate were almost in agreement by observing the
calibration curve (Figure 4B). It validated the high accuracy of
the nomogram in predicting the survival rate of gastric cancer

patients. In addition, we also found the largest area under the
ROC curve for the nomogram (AUC = 0.740) (Figure 4C). It
implied that the nomogram predicted patients’ survival better
than other clinical characteristics. The nomogram was confirmed
to be an indicator of independent prognosis by the results of
univariate and multivariate Cox analyses (Figures 4D,E). We
randomly selected four prognostic signature articles of gastric
cancer in the latest 3 years from the PubMed website (https://
pubmed.ncbi.nlm.nih.gov/), including Dai’s signature (ITGAV,

FIGURE 4 | Constructed a nomogram for predicting survival. (A) Nomogram. (B) Calibration curves. The y-axis is the actual survival rate, and the x-axis is the
predicted survival rate. (C) Area under the ROC curve (AUC) of the nomogram. (D) Univariate Cox analysis. (E) Multivariate Cox analysis.
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DAB2, SERPINE1, MATN3, and PLOD2), Liu’s signature
(NOX4, NOX5, GLS2, MYB, TGFBR1, NF2, AIFM2, ZFP36,
SLC1A4 TXNIP, CXCL2, HAMP, and SP1), Meng’s signature
(CGB5, IGFBP1, OLFML2B, RAI14, SERPINE1, IQSEC2, and
MPND), and Yin’s signature (GPX3, ABCA1, NNMT, NOS3,
SLCO4A1, ADH4, DHRS7, and TAP1) (Meng et al., 2020; Liu SJ
et al., 2021; Dai et al., 2021; Yin et al., 2021). To highlight the
advantages of the cellular senescence signature, we compared
these five signatures, and the results are visualized in
Supplementary Figure S5. We found that the cellular

senescence signature was the best predictor of prognosis in
gastric cancer patients, with a C-index of 0.642.

Risk Score Guide Clinical Treatment
Due to the increase in tumor resistance to chemotherapeutic
drugs, most patients with gastric cancer currently have poor
chemotherapy outcomes. We explored whether risk scores
could play a role in chemotherapy. In our study, the risk
score was significantly and positively correlated with half-
maximal inhibitory concentration (IC50), and the low-risk

FIGURE 5 | Risk score-guided chemotherapy. (A) Box plot of IC50 differential analysis for high- and low-risk score groups. (B) Scatter plot of correlation between
risk score and IC50. (C) Heat map of the differential analysis of GSVA enrichment between high- and low-risk groups.
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score group had a lower IC50 value and was more sensitive to 5-
FU (Figures 5A,B). By performing GSVA, most of the
senescence pathways were found to be more active in the
low-risk score group (Figure 5C). The high-risk score group
had higher macrophage M2 infiltration, and the low-risk score
group had higher B-cell memory and T-cell follicular helper
infiltration (Figure 6A). In addition, immune function analysis
showed that type_II_IFN_response and parainflammation were
more active in the high-risk group, and MHC_class_I was more
active in the low-risk group (Figure 6B). It suggested that the
low-risk group might be more suitable for immunotherapy. It
was confirmed by the TIDE algorithm that patients in the low-
risk score group are more suitable for immunotherapy
(Figure 6C). The risk score signature constructed using

cellular senescence-related genes is a potential biomarker for
assessing the clinical response to immunotherapy in gastric
cancer patients. We also identified the top 10 mutated genes
(TTN, TP53, MUC16, ARID1A, LRP1B, SYNE1, FLG, FAT4,
CSMD3, and PCLO), SMARCA4, and ZFP36 in TCGA data
(Supplementary Table S4). The samples were classified into
mutation and wild types according to the mutation status of the
genes. Among them, the mutation type of the six genes (TTN,
ARID1A, LRP1B, FLG, FAT4, and PCLO) had lower risk scores
(Figure 6D). We also found no difference in risk scores between
mutation and wild type of SMARCA4 and ZFP36
(Supplementary Figure S6), so we speculated that co-
mutation of SMARCA4 and ZFP36 does not affect the
prognosis of gastric cancer.

FIGURE 6 | Risk score-guided immunotherapy. (A) Box plot of the differential analysis of immune infiltration between the two risk score groups. (B) Box plot of the
differential analysis of immune function between two risk score groups. (C) Violin plot of the response to immunotherapy between the two risk fraction groups calculated
by the IDE algorithm. (D) Box plot of the differential analysis of the risk score between wild type and mutant type for the top 10 mutated genes in TCGA data.
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Differential Gene Enrichment Analysis
We identified 186 differential genes in two risk groups. GO and
KEGG enrichment analyses were performed on the differential
genes, and the enrichment results were visualized in bubble plots.
We found that extracellular matrix organization, extracellular
structure organization, and external encapsulating structure
organization were significantly enriched in the GO bubble
map (Figure 7A), while cytokine–cytokine receptor
interaction, protein digestion and absorption, transcriptional

misregulation in cancer, and proteoglycans in cancer were
significantly enriched in the KEGG bubble plots (Figure 7B).

Identification of 10 Hub Genes
The expression profiles of DEGs in two risk score groups were
evaluated using the STRING database. PPI networks were
constructed (Supplementary Figure S7). By using Cytoscape
software, PPI network data were processed and displayed. The
interactions of DEGs are shown in Figure 8A. A total of 10 hub

FIGURE 7 | Differential gene enrichment analysis. (A) GO enrichment analysis bubble map. (B) Bubble plot of KEGG enrichment analysis.

FIGURE 8 | Protein–protein interaction (PPI) network. (A) Cytoscape-treated PPI network. Red, highly expressed DEGs in the high-risk score group; green, highly
expressed DEGs in the low-risk score group. (B) CytoHubba identified the top 10 hub genes.
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genes (FN1, IL6, CXCL8, THBS1, APOA1, FGG, MMP1, AFP,
MMP2, and MMP3) of DEGs were identified using Cytoscape
plugin cytoHubba and the extent method (Figure 8B). A total of
six upregulated genes (FN1, APOA1, CXCL8, MMP1, MMP3,
and THBS1) in tumor tissue were identified by the differential
analysis of 10 hub genes (Supplementary Figure S8). By further
analysis, five hub genes (FN1, APOA1, CXCL8, MMP1, and
THBS1) with survival differences were identified
(Supplementary Figure S9). Patients with low-expression
levels had a better prognosis. We also analyzed the differences
in the expression levels of genes in different clinical
characteristics. FN1 was significantly more expressed in
patients after stage T1 and unchanged in patients after stage
T2. The expression levels of FN1 and THBS1 were higher in G3
patients than those in G2 patients (Supplementary Figures S10,
14). The expression levels of APOA1 were higher in G2 patients
than those in G3 and in N2 than those in N0 (Supplementary
Figure S11). The expression level of CXCL8 was significantly
higher in patients over 65 years of age and after stage III
(Supplementary Figure S12). The expression level of MMP1
was significantly higher in patients over 65 years of age and in
stage IV than that in stage I (Supplementary Figure S13). Finally,
we also performed the differential analysis of immune cell
infiltration (Supplementary Figure S15). The FN1, APOA1,
CXCL8, MMP1, and THBS1 low-expression groups all had
higher immune cell infiltration and might be suitable for
immunotherapy.

DISCUSSION

Cellular senescence is the result of irreversible cessation of cell
division (Gorgoulis et al., 2019). Studies have shown that it can
occur in the context of oncogene activation and is involved in tumor
suppression (Di Micco et al., 2021). The latest studies have shown
that senescent cancer cells have not only antitumor activity but also
pro-tumor activity. Cellular senescence can play an essential role in
immune surveillance to ensure that senescent cancer cells are
eliminated (Prasanna et al., 2021). Nowadays, cellular senescence
is emerging as a potentially novel anticancer strategy (Ramu et al.,
2021). It could help guide effective anticancer therapy strategies by
exploring the cellular senescence patterns of GC.

The main purpose of this study was to discuss the effect of
cellular senescence on the prognosis and treatment of GC. We
constructed a prognostic risk score signature for cellular
senescence-related genes using TCGA data. Patients with low-
risk scores had longer survival times, while the opposite was true
for patients with high-risk scores. The same results were found in
the GEO data. It indicated that the prognostic risk score signature
could forecast the GC patients’ prognosis. We also observed that
the prognostic risk score signature could be an independent
prognostic factor for GC by further Cox analysis. In addition, a
nomogram was constructed for predicting gastric cancer patients’
survival. The calibration curve confirmed the predictive accuracy of
the nomogram. Encouragingly, the area under the ROC curve
(AUC) of the nomogram was significantly higher than other
clinical features, especially in traditional TNM stages. It showed

that the nomogram has higher accuracy in predicting 1-year, 3-
year, and 5-year survival rates of gastric cancer patients than
clinical TNM stages. Moreover, the cellular senescence signature
had the highest C-index and predicted the best prognosis among
other prognosis-related signatures of gastric cancer.

Although chemotherapeutic agents are helpful in the therapy
of GC, many GC patients appear resistant to chemotherapy,
resulting in poorer chemotherapy outcomes (Wei et al., 2020).
Therefore, it is increasingly essential to identify GC patients who
are sensitive to chemotherapeutic drugs. According to these
reasons, we investigated the differences in clinical response to
chemotherapeutic drugs in two risk groups. In our research, GC
patients with low-risk scores were more susceptible to 5-FU. It
suggested that using the risk score could identify gastric cancer
patients who are more suitable for chemotherapy. With the
development of technology, more and more therapeutic
approaches are available for GC (Hsu and Raufi, 2021).
Immunotherapy is an emerging cancer treatment that activates
the body’s immune system to clear tumor cells (Kawazoe et al.,
2021). The identification of patients with gastric cancer suitable
for immunotherapy is particularly critical in the clinical
environment. We observed higher immune infiltration levels
in the low-risk score group, including B-cell memory and
T-cell follicular helpers, and the high-risk score group had
higher infiltration levels of macrophage M2 (tumor-promoting
cells) (Xia et al., 2020; Overacre-Delgoffe et al., 2021). The results
of immune function analysis also showed that high-risk score
patients had active immune-related functions
“type_II_IFN_response” and “parainflammation,” whereas
“MHC_class_I” was more active in the low-risk score group.
Previous studies have shown that “type_II_IFN_response” is
considered an anticancer immune-related function (Liu M
et al., 2020). Interestingly, our findings showed the opposite
that “type_II_IFN_response” might promote the development
of gastric cancer. The immune-related function
“parainflammation” is thought to promote tumor progression,
which is consistent with our findings (Aran et al., 2016). The
immune-related function “MHC_class_I,” which mainly plays a
role in the immunosurveillance of cancer, inhibits the immune
escape of tumors and is considered a potential target for cancer
immunotherapy (Cornel et al., 2020; Dersh et al., 2021). We
speculated that patients with low-risk scores may be suitable for
immunotherapy. Next, we demonstrated that low-risk score
patients had a low immune escape potential and were more
sensitive to immunotherapy using the TIDE algorithm. In
conclusion, the prognostic risk score signature with cellular
senescence genes not only predicts prognosis but also
identifies patients with chemotherapy- and immunotherapy-
sensitive gastric cancer. We also analyzed the top 10 mutated
genes in the TCGA data. The mutation types of TTN, ARID1A,
LRP1B, FLG, FAT4, and PCLO had lower risk scores than the
wild type. This meant that patients with mutation types might
have a better prognosis and be more suitable for chemotherapy
and immunotherapy. We also identified a particular gene
SMARCA4. It has the highest mutation frequency (6%), and it
is linked to higher overall survival (OS) and progression-free
survival (PFS). There was a co-mutation relationship between
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SMARCA4 and ZFP36. But we found no difference between
mutation and wild type in SMARCA4 and ZFP36, so we
speculated that co-mutation of SMARCA4 and ZFP36 does
not affect the prognosis of gastric cancer.

Because of the significant differences between the two risk groups,
it is essential to study the differential genes in depth.We identified 10
hub genes (FN1, IL6, CXCL8, THBS1, APOA1, FGG, MMP1, AFP,
MMP2, and MMP3) by constructing a PPI network. FN1, APOA1,
CXCL8, MMP1, MMP3, and THBS1 were significantly upregulated
in the tumor samples. This result was confirmed in the HPA
database. We observed that FN1, APOA1, CXCL8, MMP1, and
THBS1 were correlated with GC prognosis, with higher expression
levels associated with a worse prognosis. This is consistent with
previously published research studies (Li et al., 2019; Chen X et al.,
2020; Chen YJ et al., 2020; Liu X et al., 2020; Zhang et al., 2021). We
also found higher immune infiltration (plasma cells and T cells) in
the low-expression group of FN1, APOA1, CXCL8, MMP1, and
THBS1, while macrophages M2 and resting T cells showed higher
infiltration in the high expression group. It suggested that patients in
the low-expression group of FN1, APOA1, CXCL8, MMP1, and
THBS1 might be more suitable for immunotherapy.

In summary, the cellular senescence risk score prognostic
signature could be used to assess the prognosis of GC patients
and guide clinical treatment. Our study not only provided a new
predictive signature for the prognosis of GC but also offered
guidance for the future therapy of gastric cancer.
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