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Background: Breast cancer (BC) is a prevalent female cancer, which has high morbidity
and mortality. However, the pathogenesis of BC has not been fully elucidated. Studies
have shown that TGF-b1 plays an important role in regulating the balance between
autophagy and apoptosis of tumor. We aim to clarify the specificmechanism of autophagy
and apoptosis in breast cancer maintaining the tumor microenvironment.

Methods: The clinical characteristics of 850 BC patients were retrieved from the TCGA
database. Differentially expressed autophagy-related genes (DEARGs) between tumor
and normal tissues were obtained by the Wilcox test. Through Cox proportional hazard
regression analysis, the prognostic risk model was constructed and verified by the ROC
curve. We used MDC staining, colony formation assay, CCK-8, flow cytometric analysis to
confirm the importance of TGF-b1 on the autophagy and apoptosis of breast cancer cells.
Furthermore, western blot was performed to determine the relative expression of protein.
The Kaplan-Meier Plotter database was utilized to identify the prognostic value of TP63.

Results: We successfully constructed a prognostic risk model of breast cancer and
screened out an autophagy-related prognostic gene -TP63. We predicted that TGF-b1
and TP63 have a binding site in the JASPAR database as expected. Additionally, TGF-b1
promoted autophagy and inhibited apoptosis of breast cancer cells by inhibiting the
expression of TP63.

Conclusion: Our study demonstrated that the molecular mechanism of TGF-b/TP63
signaling in regulating autophagy and apoptosis of breast cancer and provided a potential
prognostic marker in breast cancer.
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INTRODUCTION

Breast cancer (BC) is a common female cancer worldwide. In
2019, there were approximately 268,600 new cases of invasive
breast cancer among American women, of which 41,760 women
will die from the disease (1). For women, breast cancer alone
accounting for 30% of female cancers (2). Breast cancer is also the
most ordinary cancer among Chinese women during the last two
decades. For instance, breast cancer cases in China accounted for
12.2% of newly diagnosed breast cancers worldwide and 9.6% of
global breast cancer deaths, respectively (3). The common causes
of breast cancer death are invasion, metastasis, and recurrence
(4, 5). However, the mechanism of breast cancer occurrence
and development is still unclear after years of research and
extensive progress.

Autophagy can achieve cell renewal by degrading
macromolecules in cells, which is conducive to maintaining the
stability of the cell’s internal environment and improving cell
viability (6, 7). In most cases, autophagy is considered to inhibit
the occurrence of early tumors and promote the development of
formed tumors (8). Apoptosis is a physiological form of
programmed cell death that removes damaged cells orderly
and effectively, which affects the occurrence and development
of tumors. Studies have supposed that autophagy and apoptosis
are related to the occurrence and development of breast cancer
(9–11) and that autophagy and apoptosis play an important
regulatory role in the tumor microenvironment (12–14). One of
the hallmarks of cancer is that the disorder of apoptosis
mechanism (15). The cytoprotective function of autophagy is
achieved through negative regulation of apoptosis in many cases,
and the apoptotic signal plays a role in inhibiting autophagy in
turn (16). Thereby, it is worth exploring the molecular
mechanism about the occurrence and development of breast
cancer through regulating autophagy and apoptosis.

Transforming growth factor-b (transforming growth factor-
b, TGF-b) as a key factor modulates the transformation of
endothelial cells (17), which plays a dual role in promoting
and inhibiting the occurrence of tumors. In the early stages of
carcinogenesis, TGF-b inhibits tumorigenesis mainly by
inhibiting cell growth. However, when the growth inhibitory
effect of TGF-b is broken by tumor cells, TGF-b will promote the
progression and metastasis of advanced tumors. TGF-b1 takes
part in various cellular processes such as cell growth,
differentiation, and immunity, which is necessary for regulating
the tumor microenvironment (18). Studies have shown that
TGF-b can induce or inhibit autophagy (19–21) and apoptosis
(22) to affect the occurrence and development of tumor cells.
TGF-b1, TGF-b2, and TGF-b3 are three subtypes of mammals,
among which TGF-b1 shows the strongest activity. This article
explores the role of TGF-b1 in the occurrence and development
of breast cancer.

As a transcription factor, TP63 has a conservative basic
domain structure, which belongs to the p53 transcription
factor family. Compared with p53 and p73, TP63 has different
functions, although they have high amino acid similarity (23).
TP63 is located on chromosome 3q27-29 and consisted of 15
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exons distributed over 220 kilobases. Due to two different
promoters (P1 and P2), two types of proteins are produced:
TAp63 and DNp63. TAp63 contains the N-terminal
transactivation (TA) domain, and DNp63 is the N-terminal
truncated isoform without the TA domain (24). Studies have
found that TP63 is a downstream effector of the TGF-b pathway
and plays an important role in primary breast cancer (25).

Based on bioinformatics analysis, this study first constructed
a prognostic risk model successfully and screened the prognostic
gene TP63 as one of the autophagy-related genes (ARGs) in
breast cancer. We explored the interaction and effects between
TGF-b1 and TP63 in breast cancer on autophagy and apoptosis.
Clarifying the importance of TGF-b1 and TP63 in breast cancer
cells may provide a theoretical basis and a new idea for breast
cancer treatment in the future.
MATERIALS AND METHODS

Data Collection
Corresponding clinical data and mRNA expression profiles of
breast cancer patients are obtained from the TCGA database
(https://portal.gdc.cancer.gov/). A total of 232 autophagy-related
genes were extracted from the human autophagy database
(HADb, http://autophagy.lu/Clusters/index.html).

Analysis of ARGs
Wilcox test was used to obtain differentially expressed
autophagy-related genes (DEARGs) between tumor and
normal tissues. ARGs with at least two-fold change in
expression level and the P value of less than 0.05 were
screened out. These ARGs were deemed to be differentially
expressed autophagy-related genes. Gene function enrichment
analysis of DEARGs was used Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis, p and q
values less than 0.05 will be considered statistically significant.

Construction of Prognostic Model Related
to ARGs
After integrating the expression value of each specific gene,
multivariate Cox regression analysis was used to weight the
regression coefficients to successfully construct a risk score
formula for each patient. Based on the risk score formula,
breast cancer patients can be divided into low-risk groups and
high-risk groups, and the cutoff point is the median risk score.
The Kaplan-Meier method was used to assess the survival
difference between the two groups. Eventually, ROC curve
verified the accuracy of the prediction model. Data was divided
into two groups based on clinicopathological characteristics such
as age, tumor stage, tumor size, and lymph node metastasis. Age
was divided into two groups for those age greater than or equal to
65 and less than 65 years old. The group of Stage was divided into
Stage I & II and Stage III &IV. Tumor size for T1-2 belongs to
one group, and T3-4 are another group. The group of lymph
node status were divided into two groups: N0 and N1-3.
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Cells and Reagents
MDA-MB-231 and MCF-7 cells were obtained from the cell
bank of Taizhou University in June 2020, and were preserved in
the laboratory of Taizhou University. MDA-MB-231 and MCF-7
cells were cultivated in DMEM and MEM medium (Gibco, CA,
USA) with 10% fetal bovine serum (Gibco, CA, USA), and placed
at 37°C with 5% CO2. All cells used in this study were tested for
absence of mycoplasma contamination and the authenticity of
the cells was determined by short tandem repeat analysis through
PCR following the instructions of ATCC in July 2020.

MDC Staining
MDA-MB-231 and MCF-7 cells were grown in 24-well plates and
cultivated at 37°C with 5% CO2. TGF-b1 intervention treatment
was performed for 24h before staining (Solarbio, Beijing, China).
After washing 3 times, the cells were incubated in the dark at room
temperature for 45 min. Under a fluorescent microscope, the cells
were immediately observed and photographed.

Colony Formation Assay
MDA-MB-231 andMCF7 cells (1000 cells/well) were seeded into
6-well plates and cultivated in DMEM and MEM medium
treated with TGF-b1 for 10 days. The cells were fixed with 4%
polymethanol for 20 minutes and stained with 0.1% crystal violet
(Solarbio, Beijing, China) at room temperature. Count and image
cell colonies instantly.

CCK-8 Assay
MDA-MB-231 and MCF-7 cells were cultivated in 96-well plates
and under the conditions of 37°C and 5% CO2. On the second
day, different concentrations of TGF-b1 protein (5, 10ng/ml)
were added for intervention. Finally, the cell counting kit
(Solarbio, Beijing, China) was used to measure the absorbance
of OD450 at different times (24, 48 and 72h). CCK-8 (10mL) was
added to each well and we should pay attention to operate in the
dark during the whole process. After incubating at 37°C for 2 h,
the absorbance at 450 nm was detected with a microplate reader.

Annexin V-FITC/PI Flow
Cytometric Analysis
The apoptotic cells were counted with Annexin V-FITC
apoptosis detection kit (Solarbio, Beijing, China). After TGF-
b1 treatment for 24 hours, cells were collected with 0.25% trypsin
without EDTA and washed twice with pre-cooled PBS. Then, the
cells were resuspended in 500mL of 1x binding buffer and
transferred to a sterile flow cytometer glass tube. The cell
suspension was incubated with 5mL Annexin V-FITC and
propidium iodide (PI) solution for 15 min in dark conditions
at room temperature. The cell apoptosis rates were detected by a
flow cytometer (Beckman Coulter Inc, CA, USA) within 1 h.

Western Blot
The total protein was extracted with RIPA lysis buffer (Solarbio,
Beijing, China) containing protease inhibitors and phosphatase
inhibitors. Then, the total protein was quantified with the BCA
protein analysis kit (Solarbio, Beijing, China). The protein was
separated by sodium dodecyl sulphate polyacrylamide gel
Frontiers in Oncology | www.frontiersin.org 3
electrophoresis (SDS-PAGE) and then transferred to PVDF
membrane. Block the membrane in TBST buffer with 5% milk
for 90 minutes, and incubate at 4°C overnight with anti-TP63
(Santa cruz, dilution 1:200), anti-P62/SQSTM1 (Abnova,
dilution 1:1000), anti-Beclin1 (ABclonal, dilution 1:1000), anti-
Bax (BOSTER, dilution 1:1000), anti-Bcl-2 (ABclonal, dilution
1:1000) and anti-GAPDH (ABclonal, dilution 1:40000) primary
antibodies. Next, the secondary antibody (EarthOx, dilution
1:40000) labeled with horseradish peroxidase (HRP) was used
for 2 hours at room temperature. A chemiluminescence imaging
system (Amersham Imager 680, GE, USA) was used to detect the
band intensity. The results were normalized to GAPDH, and
Image J (National Institute of Mental Health, Bethesda, USA)
was applied for band density analysis.

Statistical Analysis
Use SPSS26.0 and R3.6.3 software for statistical analysis. The log-
rank test was used for comparison. Established a Cox
proportional hazards model by Multivariate analysis. Kaplan-
Meier Plotter was used to draw survival curves. Student’s t-test
and one-way ANOVA were used to analyze the statistical
differences between the two groups and multiple groups,
respectively. The experiment was repeated at least three times.
P<0.05 was considered statistically significant.
RESULTS

Screening of DEARGs
The detailed workflow for the construction of the prognostic risk
model was presented in Figure S1. There are 1085 cases of
clinical data were collected from the TCGA database (https://
portal.gdc.cancer.gov/). Finally, a total of 850 cases of primary
breast cancer with follow-up time of more than 1 month and a
complete gene expression profile were included for follow-up
analysis. We extracted the expression value of 232 ARGs.
According to the criteria of p<0.05 and log2(fold change)>1,
we lastly obtained 17 up-regulated DEARGs and 13 down-
regulated DEARGs (Figures 1A, B). The box plot showed the
expression patterns of 30 DEARGs between tumor and normal
tissues (Figure 1C).

Functional Enrichment of DEARGs
The functional enrichment analysis of 30 differentially expressed
ARGs provides a biological understanding of these genes. It can
be seen from GO and KEGG analysis that DEARGs are mainly
involved in autophagy, apoptosis signaling pathway, ERBB2
signaling pathway, etc. (Figures 1D–F).

Construction and Verification of the BC
Prognostic Risk Model
In order to analyze the role of ARGs in the prognosis of breast
cancer, we first screened the ARGs that are significantly related to
the prognosis of breast cancer. Using univariate Cox regression
analysis, a total of 4 autophagy-related genes (EIF4EBP1, IFNG,
NRG1, TP63) were significantly correlated with overall survival
(OS) of breast cancer (Table 1). Multivariate Cox regression analysis
April 2022 | Volume 12 | Article 865067
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showed that a total of 3 genes (EIF4EBP1, IFNG, TP63) were
significantly related to the prognosis (Table 2). The results showed
the distribution of ARGs signals in the TCGA data set (Figure 2A),
the risk score of different groups of patients (Figure 2B), and the
heatmap of the included ARGs expression profile (Figure 2C). The
K-M survival curve revealed the different survival time between the
Frontiers in Oncology | www.frontiersin.org 4
high-risk group and the low-risk group, verifying the performance
of the prognostic model in predicting OS in BC patients. We
observed that the survival time of the low-risk group was
significantly higher than the high-risk group (Figure 2D), and
there was a significant difference between the two groups(P<0.05).
After adjusting the clinicopathological characteristics such as age,
A

D

B

E F

C

FIGURE 1 | The heatmap (A) and volcano map (B) showed 30 differentially expressed autophagy-related genes in breast cancer tissues. Red represented high
expression level, green represented low expression level, and black represented no significant difference. (C)The box plot showed the expression patterns of 30
differentially expressed ARGs. Red dots indicated tumor tissues, and green dots indicated normal tissues. (D) GO analysis showed the biological processes, cellular
components, and molecular functions involved in ARGs; the green, pink, and blue bubbles represented biological processes, cellular components, and molecular
functions, respectively. (E, F) The potential enrichment pathways of ARGs in breast cancer were obtained by KEGG analysis.
TABLE 1 | Univariate cox regression analysis identified 4 ARGs related to the BC risks.

Genes HR 95% CI p value

EIF4EBP1 1.224 1.051-1.426 0.009
IFNG 0.601 0.386-0.934 0.024
NRG1 0.642 0.418-0.985 0.042
TP63 0.795 0.658-0.959 0.017
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FIGURE 2 | (A) The distribution of prognostic indicators in different groups of breast cancer patients. (B) The distribution of risk score in different groups of breast
cancer patients. (C) Heatmap of the expression profile of DEARGs. (D) Survival curves of breast cancer patients in the high and low risk groups. The forest plots
showed univariate Cox regression analysis (E) and multivariate Cox regression analysis (F) in breast cancer. (G) The survival-dependent receiver operating
characteristic (ROC) curve confirmed the prognostic significance of risk score based on ARGs.
TABLE 2 | Multivariate cox regression analysis identified 3 ARGs that are independent factors for BC risks.

Genes Co-efficient HR 95% CI p value

EIF4EBP1 0.191 1.211 1.039-1.412 0.015
IFNG 0.565 0.568 0.367-0.880 0.011
TP63 0.197 0.821 0.680-0.992 0.041
Frontiers in Oncology | www.frontiersin
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tumor stage, tumor size, and lymph node metastasis, univariate
analysis (HR=2.293, 95%CI, 1.597~3.393; P<0.001; Figure 2E) and
multivariate analysis (HR= 1.913, 95% CI, 1.295~2.826; P=0.001;
Figure 2F) indicated that the risk value is an independent
prognostic indicator for breast cancer patients. The AUC value
for 5 years of risk score is 0.708, which is significantly higher than
tumor stage (0.685), metastasis status (0.568), and lymph node
status (0.621), which indicated that the prognostic risk index based
on ARGs had certain potential in survival prediction (Figure 2G).

Clinical Correlation Analysis of TP63
The clinical significance of TP63 in breast cancer was evaluated
by analyzing the correlation between the expression of TP63 and
clinical parameters. These parameters demonstrated that TP63
was significantly related to patient’s age (Figure 3A), lymph node
metastasis (Figure 3B), TNM stage (Figure 3C), and tumor
size (Figure 3D).

TGF-b1 Promoted Autophagy in Breast
Cancer by Targeting TP63
As shown in Figure 4A, the JASPAR database (http://jaspar.
genereg.net/) predicted that TP63 was located as a transcription
Frontiers in Oncology | www.frontiersin.org 6
factor on the TGF-b1 promoter sequence, and there was a
potential binding site between them. In order to illuminate the
correlation between TGF-b1 and TP63, we detected the
expression level of TP63 in breast cancer cells with TGF-b1
induced. We clearly observed that TGF-b1 inhibits TP63 in
breast cancer cells (Figure 4B).

MDC staining was performed on MDA-MB-231 and MCF-7
cells to directly observe the autophagosomes. The results
confirmed that TGF-b1 is related to the degree of autophagy.
We can find that the two kinds of cells treated with TGF-b1 (5ng/
ml, 10ng/ml) showed stronger fluorescent spots (Figure 4C) by
MDC staining, that is, highly autophagy is activated in treated
cells. Moreover, TGF-b1 inhibited P62 and TP63 protein levels
in MDA-MB-231 (Figure 4D) and MCF-7 cells (Figure 4E), and
increased Beclin1 protein levels. It is obvious that TGF-b1
enhanced the autophagy level in breast cancer cells by
inhibiting TP63.

TGF-b1 Inhibited Apoptosis in Breast
Cancer by Targeting TP63
In order to further explore the relationship between TGF-b1 and
the ability of proliferation in breast cancer cells, TGF-b1 protein (5,
A B

C D

FIGURE 3 | The expression of TP63 between different clinical features of breast cancer. The P values of (A) age, (B) lymph node metastasis, (C) TNM stage and
(D) tumor size between the two groups were all less than 0.05.
April 2022 | Volume 12 | Article 865067
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10ng/ml) was acted on MDA-MB-231 and MCF-7 cells
respectively. Compared with the control group, we observed that
the number of cell colonies with TGF-b1 treatment was much
smaller (Figure 5A). The cell proliferation abilities after 24, 48, 72h
Frontiers in Oncology | www.frontiersin.org 7
induced by TGF-b1 were tested by the CCK-8 method. As shown
in Figure 5, TGF-b1 inhibited the proliferation of MDA-MB-231
(Figure 5B) and MCF-7 (Figure 5C) cells in a concentration and
time-dependent manner.
A

C

D

E

B

FIGURE 4 | (A) Predicted the TGF-b1 target TP63 potentially by using JASPAR database (http://jaspar.genereg.net/) and verified the TGF-b1 is negatively correlated
with TP63 (B). MDC staining was used to analyze autophagy (C). When MDA-MB-231 cells and MCF-7 cells were induced by TGF-b1 for 24 hours, MDC staining
was performed in the dark and observed under a fluorescence microscope immediately. Fluorescence intensity was quantified by ImageJ and shown as mean ± SD.
The expression level of the autophagy-related proteins and TP63 in MDA-MB-231 cells (D) and MCF-7 cells (E) with TGF-b1 induced. GAPDH was used as an
internal control. Quantitative analysis of TP63, Beclin1, and P62 are expressed as the mean ± SD (*p < 0.05, **p < 0.01).
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http://jaspar.genereg.net/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. TGF-b1 Affects Autophagy and Apoptosis
A

B

D

E

F

G

C

FIGURE 5 | (A) Proliferation ability of MDA-MB-231 and MCF-7 induced by TGF-b1 by plate cloning experiment. The effect of TGF-b1 on the proliferation of MDA-
MB-231 cells (B) and MCF-7 (C) cells were analyzed by CCK-8 (*p < 0.05, **p < 0.01). Analysis of the effect of TGF-b1 on the apoptosis of MDA-MB-231 cells
(D) and MCF-7 (E) cells by Annexin V-FITC/PI stain flow cytometry (*p < 0.05, **p < 0.01). The expression level of the apoptosis and TP63 proteins in MDR-MB-231
cells (F) and MCF-7 (G) cells with TGF-b1 induced. GAPDH was used as an internal control. Quantitative analysis of TP63, Bcl-2 and Bax are expressed as the
mean ± SD. *, **p < 0.01 vs. control group.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. TGF-b1 Affects Autophagy and Apoptosis
The Annexin V-FITC/PI flow cytometric analysis was used to
detect the apoptosis rates of MDA-MB-231 andMCF-7 cells with
TGF-b1 treatment. The apoptotic rates of MDA-MB-231 cells
(Figure 5D) with TGF-b1 treated in each group were (12.93 ±
0.18) %, (6.54 ± 0.66) %, (4.31 ± 0.28) %, and the apoptosis rates
of MCF-7 cells (Figure 5E) with TGF-b1 treated in each group
were (16.8 ± 1.23) %, (9.72 ± 0.42) %, (7.35 ± 0.94) %,
respectively. From the results, we can find that the apoptosis
rates of MDA-MB-231 and MCF-7 cells were inhibited by TGF-
b1 (p<0.05). In terms of WB results, the expression level of TP63
and Bax were decreased, while the expression level of Bcl-2
gradually was increased with the increasing of TGF-b1
(Figures 5F, G). The results supposed that TGF-b1 can inhibit
the ability of cell apoptosis by inhibiting TP63.
Prognostic Value of TP63 in Breast Cancer
Based on the Kaplan-Meier Plotter database (http://www.kmplot.
com/analysis/), the prognostic potential of TP63 in breast cancer
was explored. A total of 397 untreated breast cancer (BC) patients
were included in the analysis. The results showed that the
expression level of TP63 in breast cancer was positively
correlated with the overall survival (OS) of patients [HR=0.41
(0.23-0.72), p=0.0013] (Figure 6). According to the different
clinicopathological characteristics in the Kaplan-Meier Plotter
database, the relationship between TP63 and the prognosis in
breast cancer was explored. As shown in Table 3, it can be seen
that TP63 is related to ER, HER2, subtype, Grade stage, and
TP53 status in breast cancer patients, and the difference is
statistically significant.
Frontiers in Oncology | www.frontiersin.org 9
DISCUSSION

Although the treatment for breast cancer has made great
progress in cancer research, it is still a major health problem
that plagues all mankind. In China and even all over the world,
breast cancer is a common cancer among women and its
morbidity and mortality are increasing gradually (26–29).
Recently, it has been reported that autophagy is related to
breast cancer invasion and metastasis (30), and even drug
resistance (31, 32). Interestingly, there are numerous studies
have found that autophagy can be considered as a new target for
breast cancer treatment, but more in-depth researchs are still
needed to clarify the specific mechanism of autophagy in the
development of breast cancer. Breast cancer is a kind of highly
heterogeneous type of cancer with high invasion and metastasis
ability. The current standard systemic therapies (hormonal,
cytotoxicity, and HER2 targeted therapy) are not suitable for
every patient (33). Therefore, it is very necessary to find new
targets for the treatment of breast cancer. The 5exploration of
ARGs may provide a more adequate theoretical basis for breast
cancer prognosis prediction and treatment.

From the current study, we firstly screened out prognostic-
related ARGs based on the clinical information of 1085 breast
cancer in the TCGA data by bioinformatics analysis. Using
multivariate Cox regression analysis, we confirmed three ARGs
(EIF4EBP1, IFNG, and TP63). These ARGs have shown a strong
ability in the prognosis of breast cancer or other malignant
tumors. EIF4EBP1 is a direct target of mTOR and a key effector
of protein synthesis. Loss of EIF4EBP1 is associated with poor
overall survival in patients with head and neck squamous cell
carcinomas (HNSCC) (34). Also, EIF4EBP1 frequently increased
in breast cancer, which is considered to be an indicator of poor
prognosis and resistance to endocrine therapy (35). SK
Ganapathi et al. reported that the expression level of IFNG in
peripheral blood mononuclear cells (PBMCs) of patients with
recurrent colorectal cancer (CRC) was significantly lower (36). It
is reported that TP63 can predict the progression and survival of
bladder cancer, kidney cancer, low-grade glioma, and skin cancer
(37, 38). We successfully constructed a breast cancer prognostic
risk model based on ARGs which can effectively evaluate the
prognosis of breast cancer patients.

Based on the literature (39–41) and the clinical correlation
analysis, we eventually screened out an autophagy-related gene-
TP63. Adorno M et al. have reported that TGF-b1 promoted the
invasion and metastasis of breast cancer by inhibiting the
expression of TP63 (42). It has been reported that TGF-b may
play an important role in the progression of breast cancer
through DNp63 or inducing/inhibiting autophagy, and TGF-b-
regulated miRNA network is crucial for regulating the expression
of DNp63 in breast cancer progression (25, 43, 44). In addition,
we predicted a binding site between TGF-b1 and TP63 by
JASPAR database. WB results verified that TGF-b1 can inhibit
the expression of TP63, and there were negatively correlated
between TGF-b1 and TP63. This result was consistent with the
previous research. The balance between autophagy and apoptosis
is closely related to the tumor microenvironment (45–47).
However, studies in regulating autophagy and apoptosis in
FIGURE 6 | Kaplan-Meier analysis was used to determine the prognostic
role of TP63 in breast cancer. The prognostic potential of TP63 expression in
breast cancer (p < 0.05).
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breast cancer about TGF-b1 and TP63 have not been reported in
word. Therefore, the effects of TGF-b1 and TP63 on autophagy
and apoptosis in breast cancer cells were explored in this study.

Chen Liang et al. demonstrated that TGF-b1 induced
autophagic flux in pancreatic ductal adenocarcinoma (PDAC)
(48). TGF-b1 activated cancer-associated fibroblasts to promote
breast cancer invasion, metastasis, and epithelial-mesenchymal
transition by autophagy (49). These studies showed that TGF-b1
can promote autophagy in the development of cancer. In our
research, the autophagy level was determined by MDC staining
and WB, which showed that the autophagy level of breast cancer
cells was affected by TGF-b1 and was increased when TGF-b1
induced. We found that the autophagy levels of MDA-MB-231
and MCF-7 cells treated with TGF-b1 were improved, and there
was a concentration-dependent relation between TGF-b1 and
autophagy levels. Furthermore, WB results proved that the
expression of TP63 was decreased with TGF-b1 induced. The
above results proved that TGF-b1 can target TP63 to promote
autophagy in breast cancer cells.

Autophagy and apoptosis are inseparable (50, 51). Therefore,
TGF−b1 can also regulate tumor progression by affecting apoptosis.
A study has suggested that TGF-b1 can influence cervical cancer cell
proliferation and apoptosis and TGF-b is a potential target for
cervical cancer therapeutics (52). TGF−b1 treatment protects tumor
cells from various apoptotic stresses, including 5−fluorouracil,
etoposide, and g−irradiation in human colon cancer (53). TGF-b1
even plays an important role in the apoptosis of breast cancer (54).
From the colony formation experiment, the number of cell clones in
the experimental group treated with TGF-b1 was less than that in
the control group. According to CCK-8 results, TGF-b1 had no
effect on the proliferation ability of breast cancer cells until 48h.
There was a time-dependent and concentration-dependent relation
Frontiers in Oncology | www.frontiersin.org 10
between TGF-b1 and the proliferation ability of breast cancer cells.
In addition, we used flow cytometry to detect the apoptosis rates of
MDA-MB-231 and MCF-7 cells after TGF-b1 treatment. The
results of Annexin V-FITC/PI flow cytometric analysis showed
that TGF-b1 inhibited the apoptosis level of MDA-MB-231 and
MCF-7 cells. Similarly, TGF-b1 was determined to inhibit apoptosis
of breast cancer cells by targeting TP63 from the WB results. In the
future, we need to further explore about how autophagy and
apoptosis regulating the tumor microenvironment via the TGF-
b1/TP63 signaling pathway in breast cancer.

A large number of studies have reported that TP63 can be
used as a prognostic factor for cancers such as salivary gland
adenoid cystic carcinoma, anaplastic large cell lymphoma, and
squamous cell carcinoma (55–58). The following analysis
demonstrated that TP63 as an autophagy-related gene is a
low-risk factor for the prognosis of breast cancer, that is, the
lower the expression of TP63, the worse the prognosis of breast
cancer. One point in our result is that TP63 was related to
advanced Clinicopathological indicators from bioinformatics
analysis. Possibly due to two different promoters of TP63 (P1
and P2), and two types of proteins are produced: TAp63 and
DNp63. TP63 has two subtypes, but which one responsible for
breast cancer is not specified. And also, breast cancer has many
subtypes. In the bioinformatics analysis, it is not clearly that
which subtype plays the important role in the database. In
future studies, we will focus on this doubt. We explored that
the prognostic value of TP63 in breast cancer by the Kaplan-
Meier Plotter database. Therefore, TP63, as an important
prognostic gene, may be expected to become a potential
prognostic biomarker.

In summary, our study constructed a prognostic model
related to autophagy in breast cancer, and TP63 was screened
TABLE 3 | Correlation between TP63 expression and different clinical pathological factors by Kaplan-Meier plotter.

Clinicopathological characters OS (Overall Survival)

N HR p value

Total 397 0.41(0.23-0.72) 0.0013
ER
positive 259 0.25(0.1-0.58) 0.00049
negative 96 0.54(0.22-1.34) 0.18

unknown 42 – –

HER2
Positive 57 2.03(0.66-6.2) 0.21
negative 340 0.44(0.26-0.75) 0.0021

Intrinsic subtype
basal 58 0.44(0.13-1.53) 0.18
luminal A 225 0.36(0.16-0.8) 0.0095
luminal B 95 0.26(0.07-0.88) 0.02
HER2+ 19 – –

Grade
1 95 0.32(0.08-1.25) 0.085
2 176 0.33(0.17-0.66) 0.00091
3 121 1.83(0.91-3.65) 0.084

unknown 5 – –

TP53 status
mutated 29 0.25(0.05-1.29) 0.073
wild type 111 0.2(0.06-0.65) 0.003
unknown 257 – –
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out as a key factor in the prognostic model. TGF-b1 can promote
autophagy and inhibit apoptosis on MDA-MB-231 and MCF-7
breast cancer cells by targeting TP63 to affect the occurrence
and development of breast cancer. This may provide a new
theoretical basis to the research on the mechanism of occurrence
and development in breast cancer, as well as the value of
prognostic prediction.
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