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Abstract

Human respiratory syncytial virus (RSV) is an enveloped RNA virus that is the most impor-

tant viral cause of acute pediatric lower respiratory tract illness worldwide, and lacks a vac-

cine or effective antiviral drug. The involvement of host factors in the RSV replicative cycle

remains poorly characterized. A genome-wide siRNA screen in human lung epithelial A549

cells identified actin-related protein 2 (ARP2) as a host factor involved in RSV infection.

ARP2 knockdown did not reduce RSV entry, and did not markedly reduce gene expression

during the first 24 hr of infection, but decreased viral gene expression thereafter, an effect

that appeared to be due to inhibition of viral spread to neighboring cells. Consistent with

reduced spread, there was a 10-fold reduction in the release of infectious progeny virions in

ARP2-depleted cells at 72 hr post-infection. In addition, we found that RSV infection induced

filopodia formation and increased cell motility in A549 cells and that this phenotype was

ARP2 dependent. Filopodia appeared to shuttle RSV to nearby uninfected cells, facilitating

virus spread. Expression of the RSV F protein alone from a plasmid or heterologous viral

vector in A549 cells induced filopodia, indicating a new role for the RSV F protein, driving

filopodia induction and virus spread. Thus, this study identified roles for ARP2 and filopodia

in RSV-induced cell motility, RSV production, and RSV cell-to-cell spread.

Author Summary

RSV is the most common viral cause of severe acute pediatric lower respiratory tract ill-

ness, including pneumonia and bronchiolitis, in young children worldwide. In a genome-
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wide siRNA screen in human lung epithelial A549 cells infected with RSV expressing

green fluorescent protein (RSV-GFP), we identified ARP2 as a cellular factor with a role

in the RSV replicative cycle. ARP2 is part of the actin-related protein 2/3 (ARP2/3) com-

plex, which contributes to cell shape and motility through its role in actin polymerization.

ARP2 depletion reduced the production and spread of RSV in human lung epithelial cell

cultures, with the most noticeable effects at late time points after RSV infection. RSV

infection induced the formation of slender actin-rich cell protrusions, called filopodia and

increased cell motility. Filopodia formation and cell motility were inhibited by ARP2

knockdown. The filopodia appeared to shuttle RSV to neighboring cells, facilitating virus

spread. Thus, RSV uses two previously unrecognized ARP2 dependent features to facili-

tate viral spread, namely cell motility and filopodia formation.

Introduction

RSV is the most important viral cause of severe acute pediatric lower respiratory tract illness

worldwide, and also causes substantial morbidity and mortality in the elderly as well as in indi-

viduals with severe immunosuppression or cardiopulmonary disease. Despite its recognized

importance, and despite decades of research, there is no licensed vaccine or specific antiviral

therapy.

RSV is an enveloped virus of the family Pneumoviridae [1], and contains a single-stranded

non-segmented negative-sense RNA genome (approximately 15.2 kb) with 10 genes encoding

11 proteins, including the nucleoprotein N, phosphoprotein P, matrix protein M, RNA depen-

dent RNA polymerase L, transcription factor and second matrix protein M2-1, polymerase fac-

tor M2-2 that is expressed from a second open reading frame (ORF) in the M2 mRNA, fusion

glycoprotein F, attachment glycoprotein G, small hydrophobic surface protein SH, and non-

structural accessory proteins NS1 and NS2 [2]. RSV infection starts with cellular receptor

binding mediated by G and F [3]. The chemokine receptor CX3CR1 has recently been identi-

fied as a receptor molecule for the RSV G protein on respiratory epithelial cells [4]. Entry of

RSV is not completely defined and may involve cell surface fusion as well as macropinocytosis

followed by fusion [5], mediated by the F protein. RSV transcription and replication occur in

the cytoplasm, probably in large, dense cytoplasmic inclusion bodies. Progeny virions bud

from the plasma membrane [2,6]. In the natural human host, RSV infects respiratory epithelial

cells [7].

We recently performed a genome-wide siRNA screen of more than 20,000 genes in human

airway epithelial A549 cells infected with RSV-GFP to identify genes that affected viral expres-

sion of GFP and therefore may affect the RSV replicative cycle. This survey, which is still in

progress and will be published separately, provided presumptive evidence that knockdown of

the ACTR2 gene, which encodes ARP2, resulted in a reduction of viral GFP expression, sug-

gesting that the ARP2 protein promotes RSV infection (For simplicity, we will refer to the

ACTR2 gene and mRNA by the same name as used for the protein, ARP2).

ARP2 is part of the ARP2/3 complex, which plays a central role in actin polymerization [8].

Actin is a major component of the cytoskeleton, and actin rearrangement affects a multitude

of intra- and intercellular processes including cell shape, structure, and motility [9]. Actin is

present in globular monomeric (G-actin) and polymeric filamentous (F-actin) forms. F-actin

can form polymeric structures resulting in cell membrane extensions, such as lamellipodia

(sheet-like extensions), filopodia and microvilli (finger-like protrusions), and dot-like podo-

somes [10]. Cellular actins also appear to be involved in RSV gene expression, replication and
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morphogenesis [11–13], but the mechanim is poorly understood, and the role of ARPs has not

been studied. In the present study, we show that ARP2 knockdown reduced viral gene expres-

sion and protein production, viral yield, and cell-to-cell spread in A549 cells. These effects

were most prominent at later times of infection, affecting viral spread rather than early events

in RSV infection. We found that the RSV infection induces the formation of filopodia on the

cell surface, which are distinct from structures representing filamentous RSV particles. Filopo-

dia appear to shuttle RSV particles to neighboring cells, a previously unknown mechanism for

RSV spread. We also found that RSV infection increases cell motility, likely contributing to

cell-to-cell spread. Our results show that ARP2 contributes to RSV cell-to-cell spread in

human lung epithelial cells.

Results

The effects of ARP2 knockdown were not evident early in infection

To investigate the effects of ARP2 knockdown on RSV infection, A549 cells were transfected

with an ARP2-specific siRNA (siARP2) or a negative control siRNA (siControl). At 48 hr post-

transfection, the cells were infected with RSV-GFP (that expresses GFP from an additional

gene [14]) at a multiplicity of infection (MOI) of 1.0 plaque forming unit (PFU)/cell. The cul-

tures were evaluated for ARP2 and viral gene expression at 0, 24, 48, and 72 hr post-infection

(hpi) (Figs 1–3). To put this timing into context, in a growth cycle for RSV in A549 cells

(which is shown later), the production of progeny virus was first detected at approximately 12

hpi, increased substantially by 24–48 hpi, and was maintained or slowly increased through

approximately 72 hpi.

The effectiveness of siARP2-mediated knockdown on ARP2 protein expression was evalu-

ated by Western blot analysis (Fig 1A). A substantial reduction in ARP2 protein accumulation

was observed 48 hr following siARP2 transfection, the time of RSV infection, and remained

stable for the duration of the 72 hr infection. Quantitative (q) RT-PCR confirmed that knock-

down of ARP2 mRNA was highly efficient and stable over the same time course (Fig 1B). In

the absence of siARP2, there was no significant difference in the expression of ARP2 mRNA or

protein in RSV-GFP infected versus uninfected cells, indicating that expression was unaffected

by RSV infection (Fig 1A and 1B). Importantly, ARP2 knockdown was achieved without

compromising cell viability, as determined by alamarBlue viability assay (Fig 1C).

As a first step to investigate the effects of ARP2 knockdown on RSV infection, we used

qRT-PCR to quantify the accumulation of the complete set of mRNAs encoded by RSV-GFP

in A549 cells transfected with siARP2 or siControl (Fig 2). The input MOI in this experiment

was 1 PFU/cell (calculated by titration on Vero cells). Since the susceptibility of A549 cells is

slightly lower than that of Vero cells, the majority (about 2/3) of A549 cells was not infected by

the initial inoculum and could support subsequent rounds of replication. Each of the RSV

ORFs was quantified, including M2-1 and M2-2 that are expressed on a single mRNA (Fig 2).

This showed that, for the first 24 hr following infection, the accumulation of each virally-

encoded mRNA was similar in ARP2-knockdown and control cells, except for the RSV F and

L mRNA levels which were slightly but significantly reduced in siARP2 depleted cells; unex-

pectedly, the NS1 and NS2 mRNA levels were slightly but significantly lower in siControl

treated cells than in siARP2 cells. However, between 24 and 48 hpi, there was a much smaller

increase in the accumulation of viral mRNAs in the ARP2-knockdown cells than in the control

cells. By 48 hpi, NS1, NS2, P, SH, M2 and L mRNA levels were significantly lower in siARP2-

knockdown cells; the difference in P mRNA levels as well as M2 mRNA levels measured using

the M2-1 ORF specific assay were significant only at 48 hr, and the differences in GFP and F

mRNA levels reached significance by 72 hpi. N, M, G mRNA levels also were lower in siARP2
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Fig 1. ARP2 knockdown in human respiratory epithelial A549 cells. (A) Knockdown of ARP2 protein

expression. Replicate monolayers of A549 cells were transfected with siARP2, siControl, or no siRNA, as

indicated. At 48 hr post-transfection, one set of monolayers was harvested. The others were infected with

RSV-GFP (MOI = 1) or mock-infected, and harvested at 24, 48, and 72 hpi, as indicated. The cells were

processed for Western blotting. ARP2 protein was detected using a primary rabbit mAb and an anti-rabbit IgG

IRDye800 secondary Ab. Alpha-tubulin, as a loading control, was detected with a primary mouse mAb and an

anti-mouse IgG IRDye680 secondary Ab. Bound antibodies were visualized by infrared fluorescence. One

representative of four independent experiments is shown. (B) Knockdown of ARP2 mRNA expression.

A549 cells were transfected with siARP2, siControl, or no siRNA, as indicated. Sets of monolayers were

harvested 24 and 48 hr post-transfection. The remaining monolayers were infected with RSV-GFP (MOI = 1)

or mock-infected, and harvested at 24, 48, and 72 hpi, as indicated. Total cell-associated ARP2 mRNA was

quantified by real-time PCR using a TaqMan assay for ARP2. 18S ribosomal RNA was used as an

endogenous control for normalization of each reaction, and the values of ARP2 expression are shown as fold-

change relative to the no-siRNA control 24 hr post-transfection. Each sample was tested in quadruplicate by
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transfected A549 cells at late time points after infection, but the differences to siControl trans-

fected cells were not statistically significant.

Western blot analysis showed that the accumulation of viral proteins was also reduced,

shown here for P and F (Fig 3A). For a more sensitive analysis of protein expression over time,

the kinetics of infection and viral protein expression in siARP2-transfected cells were further

investigated by flow cytometry using expression of GFP, F, and M2-1 as markers for infection.

Data from a representative experiment are shown in Fig 3B. At 24 hpi, we found little differ-

ence in the percentage of RSV-infected A549 cells in ARP2-knockdown versus control cul-

tures. In contrast, at 48 hpi, the number of GFP-, M2-1-, or F-expressing cells had

substantially increased in the control cultures, while only a small increase was observed in the

siARP2-treated cultures. A similar pattern for the percentage of infected cells was observed

when the results were averaged from two (M2-1) or three (GFP and F) independent experi-

ments (Fig 3C). In addition, Fig 3C shows that the average mean fluorescence intensity (MFI)

for each of these proteins was similar between siControl- and siARP2-transfected cells at both

24 and 48 hpi. These results show that ARP2 knockdown did not reduce RSV protein expres-

sion in individual infected cells; rather, ARP2 knockdown reduced the spread of RSV infection

at late time points after infection.

To exclude a possible role of ARP2 in RSV entry, A549 cells were studied at earlier time

points after infection (Fig 4). Flow cytometry showed that, at 16 hpi, the proportion of GFP-

expressing cells in cultures infected at an MOI of 1 or 3 was similar in siARP2- and siControl-

treated cells (Fig 4A). To exclude possible artifacts due to transfection, a stable ARP2-knock-

down A549 cell line (ARP2/KD-A549 cells) was generated using a lentiviral vector system

expressing three small hairpin RNAs to ARP2, and RSV-GFP infection was analyzed at 6 or 12

hpi by flow cytometry using GFP expression as a marker for infection. We found that the pro-

portion of infected (ARP2/KD-A549 cells) did not differ from that in untransduced A549 cells,

even at higher MOIs (e.g. MOI = 5) (Fig 4B). These results suggested that ARP2 does not have

a role at early stages in RSV infection.

Next, we evaluated a possible role for ARP2 in RSV entry using the compound CK-666,

which is an inhibitor of ARP2/3 complex-driven actin nucleation that acts by stabilizing the

ARP2/3 complex in an inactive conformation [15] (Fig 4C and 4D). For comparison, we also

evaluated EIPA (5-ethylisopropyl amiloride), which is a potent inhibitor of macropinosome

formation and has been demonstrated to inhibit RSV entry [5], and thus is a positive control

for the inhibition of entry. A preliminary dose-ranging experiment was performed in which

A549 cells were incubated for 1 hr with various concentrations of EIPA, followed by 30 min

further incubation with 1 mg/ml dextran fluorescein, which is a marker for uptake by macro-

pinosomes [16]). Dextran uptake was quantified by flow cytometry. This identified 100 μM

EIPA as the optimal concentration, reducing dextran uptake by 75%, whereas 100 μM of CK-

666 (the known effective concentration [17,18]) or DMSO solvent had no substantial effect on

dextran uptake (Fig 4C). Live/Dead cell staining indicated a lack of cytotoxicity on A549 cells

at this concentration. Therefore, A549 cells were incubated with 100 μM EIPA, 100 μM CK-

666, or DMSO (solvent-only) for 1 hr, followed by RSV-GFP infection (MOI = 5) for 6 or 12

hr, followed by analysis of GFP expression by flow cytometry (Fig 4D). The EIPA treatment

reduced the number of infected cells by about 60% at 6 hpi or 50% at 12 hpi, whereas CK-666

TaqMan assay and the averages are presented. (C) ARP2 knockdown did not reduce cell viability. A549

cells were transfected with siARP2, siControl or no siRNA for 48 hr. Cell viability was compared using

alamarBlue and expressed relative to the no-siRNA control. Data from three independent experiments, each

done in triplicate were combined for analysis. Error bars show standard deviation (SD).

doi:10.1371/journal.ppat.1006062.g001
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Fig 2. ARP2 knockdown reduced RSV mRNAs late after infection. A549 cells were transfected with

siARP2 (open red squares) or siControl (open blue circles) for 48 hr followed by infection with RSV-GFP

(MOI = 1) for 72 hr. Total mRNA for the eleven RSV ORFs and GFP was quantified at 6, 12, 24, 48 and 72 hpi

by qRT- PCR using customized ORF-specific TaqMan assays. Beta-actin was used as an endogenous

control against which each mRNA value was normalized, and the fold change of each RSV mRNA was

quantified relative to the siControl-transfected samples at 6 hpi. One representative of two independent

experiments is shown. Each experiment was performed in three biological replicates and qRT-PCR for each

sample was done in quadruplet. Statistical significance analysis was done using a one-tailed unpaired t-test

with the assumption of equal variance. *, p<0.05; **, p<0.01, ***, p<0.001. Error bars: standard error of

mean.

doi:10.1371/journal.ppat.1006062.g002
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Fig 3. ARP2 knockdown reduced RSV protein expression and the number of infected cells late after

RSV infection. (A) Western blot analysis. RSV F1 protein (48 kDa) and P protein (33 kDa) were detected

by Western blot analysis performed on cell lysates from the experiment described in Fig 2. RSV F was

detected using a primary mouse mAb and an IRDye 800CW conjugated goat anti-mouse secondary Ab;

GAPDH as a loading control was detected using a rabbit pAb and an IRDye 680RD conjugated goat anti-

rabbit IgG (H+L) Ab. The same membrane was reprobed for RSV P using a primary mouse mAb and an

IRDye 680RD conjugated goat anti-mouse Ab. (B, C) Percentage and mean fluorescence intensity (MFI)

of infected cells measured by multicolor flow cytometry. A549 cells were transfected with siARP2 or

siControl for 48 hr followed by infection with RSV-GFP (MOI = 1) or mock-infection. Cells were harvested 24

or 48 hpi, stained with Live/Dead dye, fixed, permeabilized and immunostained with mAbs specific to the F

and M2-1 proteins as described in Materials and Methods. Single live cells that were positive for GFP, F, and

ARP2 and Filopodia Promote RSV Spread
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and the DMSO control had little effect (Fig 4D). These results confirm that ARP2 does not

detectably affect RSV entry or gene expression in A549 cells during the first 6–16 hpi.

ARP2 knockdown reduced the production of progeny RSV particles, but

did not reduce the ability of RSV to form syncytia

We also investigated the production of infectious virus in response to ARP2 knockdown by

siARP2, which was done as part of the experiments described in Figs 1A, 2 and 3A. In one set

of cultures, we harvested the cell culture medium alone without disturbing the cells to measure

released virus over a 72 hr period. This showed that ARP2 knockdown resulted in a ~10-fold

reduction in the production of free infectious virus in the supernatant (Fig 5A). In a second set

of cultures, the infected cells were scraped into the medium and the suspension was vortexed

and clarified in order to quantify total virus production (i.e., cell-associated and cell-free

released virus, Fig 5B). The titer of infectious progeny RSV was reduced in the ARP2-knock-

down cultures compared to the control cells, but this difference was smaller for total RSV (Fig

5B) than for released RSV (Fig 5A). We then evaluated the effect of ARP2 knockdown on RSV

production in another human airway epithelial cell line, Calu-3 cells [19]. Similar to the results

in A549 cells, we found that ARP2 knockdown did not reduce cell viability, and knockdown

was stable up to 120 hr post siRNA-transfection (S1 Fig). In the ARP2 depleted Calu-3 cells,

production of free infectious virus was reduced at late time points after infection, and the pro-

duction of total infectious progeny was reduced by about 10 fold at 72 hpi, a greater reduction

than that observed in A549 cells (S1 Fig).

In an additional experiment, we included human parainfluenza virus type 3 (HPIV3)

expressing GFP (HPIV3-GFP) for comparison (S2A Fig). Replicate cultures of A549 cells were

transfected with siARP2 or siControl, infected with RSV-GFP or HPIV3-GFP, and harvested

at 24, 48, and 72 hpi. Quantification of free infectious progeny virus in the supernatant showed

that the production of released RSV-GFP was reduced by ~10-fold in siARP2-transfected cells

compared to siControl-transfected cells, consistent with the results in Fig 5A. In contrast,

there was little or no reduction in the release of HPIV3-GFP in siARP2 treated cells, indicating

that the effect was specific to RSV.

To evaluate the effects of ARP2 knockdown on RSV-induced syncytium formation, the

RSV-GFP-infected cell monolayers from the experiment described immediately above (har-

vested at 24, 48, and 72 hpi) were fixed, permeabilized, and stained with the nuclear fluorescent

stain diamidino-2-phenylindole (DAPI) and with rhodamine phalloidin to visualize the actin

cytoskeleton. The total coverslip was scanned by fluorescence microscopy, and at least 5000

cells per treatment were analyzed in each of two independent experiments to quantify the

number of nuclei that were present in GFP-positive syncytia (syncytia were defined as

containing� 3 nuclei) compared to the total number of nuclei in all RSV-infected cells

(whether in syncytia or not). We detected a significant reduction in the overall number of

RSV-GFP infected cells in siARP2-knockdown cells (consistent with the results in Fig 3B), but,

when corrected for the lower rate of infected cells present in the evaluated fields, syncytium

M2-1 were quantified at 24 and 48 hpi, with the gating shown by the horizontal bars. (B) Histograms for GFP-,

F-, and M2-1-expressing cells at 24 or 48 hpi. Gates for GFP-, F-, and M2-1-positive cells are shown, and the

percentage of positive cells is indicated in the top right corner of each individual histogram. (C) Mean

percentage of GFP-, F-, or M2-1-positive cells at 24 and 48 hpi from several experiments. The corresponding

mean fluorescence intensities (MFI) of the gated populations are indicated below each bar. Data for GFP- and

F-expressing cells are from three independent experiments and data of M2-1-expressing cells are derived

from two independent experiments. Error bars: standard error of mean. *, p<0.05; **, p<0.01, NS, not

significant; two-tailed t-test.

doi:10.1371/journal.ppat.1006062.g003
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Fig 4. ARP2 knockdown did not reduce RSV entry. (A) GFP expression by RSV-GFP at 16 hpi was

unaffected by ARP2 knockdown. A549 cells were transfected with siARP2 or siControl for 48 hr followed by

infection with RSV-GFP (MOI = 1, left, or MOI = 3, right). At 16 hpi, cells were harvested, stained with Live/

Dead dye and, fixed, and the number of single live GFP-expressing cells was quantified by flow cytometry.

Untreated cells (no transfection, no infection) were processed in parallel and are shown in grey. The

percentage of positive cells is indicated at the top of each histogram (B) GFP expression by RSV-GFP was

unaffected at 6 and 12 hpi in an A549 cell line with constitutive ARP2-knockdown. ARP2/KD-A549 cells

(i.e., A549 cells with constitutive ARP2 knockdown) and untransduced cells were infected with RSV-GFP

(MOI = 5) for 6 and 12 hr. Cells were harvested, stained with Live/dead dye, then fixed, and GFP expression

was used to quantify the percentage of live single infected cells by flow cytometry. (C) The

macropinocytosis inhibitor EIPA reduced dextran uptake in A549 cells. A549 cells were treated with

100 μM EIPA, 100 μM CK-666, or DMSO (solvent control) for 1 hr, followed by incubation with dextran

fluorescein (1mg/ml, as a marker for uptake by macropinocytosis) for 30 min. Cells were harvested, stained

with Live/Dead dye, and fixed. The MFI of single live dextran fluorescein-treated cells was quantified by flow

cytometry and expressed as the percent of DMSO control sample used as a reference. (D) The

macropinocytosis inhibitor EIPA, but not the ARP2/3 complex-driven actin nucleation inhibitor CK-

666, blocks RSV entry. A549 cells were treated with 100 μM EIPA, 100 μM CK-666, or DMSO (solvent

control) for 1 hr followed by infection with RSV-GFP (MOI = 5) for 6 hr or 12 hr. Cells were harvested, stained

with Live/Dead dye, and fixed. The number of single live infected cells was quantified by flow cytometry based

on GFP expression. At least 100,000 single live cells were acquired per sample. B, C and D show combined

data from two independent experiments. Error bar: SD.

doi:10.1371/journal.ppat.1006062.g004
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formation was not reduced in siARP2 treated cells (S2B Fig). Thus, ARP2 does not seem to

have a role in RSV fusion and syncytia formation.

Effects of ARP2 knockdown on RSV budding and morphology

We investigated the effects of ARP2 knockdown on RSV particle morphology using transmis-

sion electron microscopy (TEM) (Fig 6A). ARP2-transfected- or siControl-transfected A549

cells were mock-infected or infected with RSV at an MOI of 1, and were fixed at 24 hpi. Over-

all, areas with accumulations of particles were substantially less frequent on ARP2-knockdown

infected cells, and therefore we scanned for areas with accumulations of budding particles and

made photomicrographs of these areas to compare virion morphology. In Fig 6A, panels 2 and

3 (siControl-knockdown infected cells) and 5 and 6 (siARP2-knockdown infected cells) show

representative examples of cell-associated virions (indicated by arrows). This comparison indi-

cated that, while the abundance of particles was reduced in infected cells treated with siARP2,

in those areas where virions were evident there were no apparent changes in virion morphol-

ogy between infected cells treated with siARP2 versus siControl.

Next, we examined cell surface morphology and virion budding by immune scanning elec-

tron microscopy (immuno-SEM) (Fig 6B and 6C). A549 cells were transfected with siARP2 or

siControl, and infected with RSV at an MOI of 5 or mock-infected. At 24 hpi, the cells were

fixed and subjected to immunostaining with a primary mouse monoclonal antibody (mAb)

against the F protein and a secondary anti-mouse-IgG polyclonal antibody (pAb) conjugated

with gold particles (15 nm), and analyzed by SEM. As shown in Fig 6B, panels 2 and 2a, the

surface of the siControl-transfected RSV-infected cells contained areas with large numbers of

long filamentous structures (asterisks) that were organized in parallel arrays that appeared to

be lying flat on the infected cell surface. These structures were not evident on the surface of

siControl-transfected mock-infected cells (Fig 6B, panel 1). Furthermore, these structures

stained with F-specific immunogold (Fig 6B, panel 2a, arrows), whereas images of siControl-

Fig 5. ARP2 knockdown reduced production of infectious RSV. From the time course experiment

described in Figs 1A, 2 and 3A, replicate wells of A549 cells were transfected with siARP2 or siControl,

incubated for 48 hr, and infected with RSV-GFP (MOI = 1), and samples were harvested at the indicated time,

and viral titers were quantified by plaque assay visualized by immunostaining [61]. (A) Virus titers were

measured in clarified tissue culture medium harvested from infected cell culture without disturbing the cell

monolayer (released virus); and (B) virus titers were measured in clarified tissue culture medium from infected

cell cultures in which the cells had been scraped into the medium and vortexed to release cell-associated

virus (cell-associated virus plus released virus). A and B show combined data from two independent

experiments, each performed in triplicate. Error bar: standard error of mean.

doi:10.1371/journal.ppat.1006062.g005
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Fig 6. ARP2 knockdown reduced RSV budding with no apparent change in virus morphology. (A)

TEM. A549 cells were transfected with siARP2 (bottom panels) or siControl (top panels) for 48 hr followed by

mock infection (left panels) or infection with RSV-GFP (MOI = 1, panels 2, 3, 5, 6) for 24 hr (the expression of

GFP is incidental to this particular experiment). Cells were fixed with glutaraldehyde. The cell surface was

evaluated. Virus filaments are indicated with arrows. Nominal magnifications are 6000x, 12000x, 15000x,

6000x, 12000x, and 25000x for panels 1, 2, 3, 4, 5 and 6, respectively. The arrows indicate examples of

presumptive RSV virions. (B) Immuno-SEM. A549 cells were transfected with siARP2 (bottom panels) or

siControl (top panels) for 48 hr followed by mock infection (panels 1, 3) or infection with RSV-GFP (MOI = 5,

panels 2 and 4; areas marked are enlarged in 2a and 4a) for 24 hr (the expression of GFP is incidental to this

particular experiment). Cells were fixed with glutaraldehyde. RSV F protein was labeled with an anti RSV F

mAb, followed by goat anti-mouse secondary Ab conjugated to 15 nm gold beads. Examples of cell-

associated virus filaments are indicated with asterisks, and examples of particles that appeared to be lifted off

the surface in a disordered array are indicated with arrowheads. Examples of F-specific immunogold particles

on filaments are indicated with arrows, and an example of a small surface protuberance that stained heavily

with F-specific immunogold is indicated with a red arrow. (C) Lower-magnification images from the same
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transfected mock-infected cells examined in parallel exhibited a lack of staining. The dimen-

sions of these filamentous structures were approximately 100 nm in diameter and 2–10 μm in

length, which is consistent with values reported for RSV virions [20]. Thus, these appeared to

be filamentous progeny virus particles.

The surface of the siARP2-transfected RSV-infected cells showed a reduced number of pre-

sumptive viral filaments, suggesting that ARP2 knockdown reduced RSV budding (Fig 6B,

panels 4 and 4a). Some of these particles appeared to lie on the cell surface (Fig 6B, panels 4

and 4a, asterisks), comparable to what was observed in siControl-transfected RSV-infected

cells, whereas a number of particles appeared to be lifted off the surface in a disordered array

(indicated by arrowheads). In addition, the surface of siARP2-transfected infected cells con-

tained occasional small surface protuberances that stained heavily with F-specific immunogold

and might represent aberrant, incomplete budding of particles containing F protein (Fig 6B,

panel 4a, red arrow). Thus, while TEM suggested that ARP2 knockdown did not visibly alter

the morphology of the RSV particle, immuno-SEM suggested that ARP2 knockdown resulted

in virus filaments that were somewhat disorganized at the cell surface, as well as in smaller pro-

tuberances that stained well for F protein.

Lower-magnification images of this same experiment revealed another difference between

mock-infected and RSV-infected cells. Specifically, siControl-transfected RSV-infected cells

were observed to contain prominent surface protrusions (Figs 6C and S3, panel 2, cyan

arrows) that were largely absent and reduced in length in siControl-transfected mock-infected

cells (Figs 6C and S3, panel 1). These protrusions also were largely absent in siARP2-trans-

fected RSV-infected cells (Figs 6C and S3, panel 4). The size and nature of these protrusions

identified them presumptively as lamellipodia and filopodia, which are cytoplasmic extensions

involved in cell motility, sensing, and cell-to-cell interactions [21]. Lamellipodia typically are

broad flat cytoplasmic protrusions containing an internal branched actin network, and filopo-

dia are slender cytoplasmic protrusions that extend beyond the leading edge of lamellipodia

and contain linear actin filaments (F-actin), reviewed in [22]. The filopodia are investigated

further below.

RSV infection induced filopodia, which also involved ARP2

We further visualized the effects of RSV infection and ARP2 knockdown on virus and cell

morphology using immunofluorescence confocal microscopy. A549 cells were transfected

with siARP2 or siControl for 48 hr, mock-infected or infected with RSV-wild type (RSV-WT)

for 24 hr (MOI = 1), fixed, permeabilized, immunostained for RSV F (green) and beta-tubulin

(cyan), and stained with rhodamine phalloidin (red) to detect F-actin as a marker for filopodia

and with the nuclear stain DAPI (blue). All four colors are shown in the images in Fig 7A, and

images that individually show the green, cyan, and red channels are shown in S4 Fig. In siCon-

trol-transfected RSV-infected cultures (Fig 7A, third row of panels), RSV-infected cells were

found to contain long surface projections that were intensely stained with rhodamine phalloi-

din (red), indicative of F-actin content. In addition, these surface projections were deficient in

tubulin (cyan) (S4 Fig, third row of panels, arrows). The morphology of these surface filaments,

and the presence of actin and relative absence of tubulin, was consistent with filopodia,

whereas lamellipodia contain abundant tubulin. Filopodia were not prominent in the mock-

infected siControl- or siARP2-transfected cells (Fig 7A, top first and second rows of panels),

consistent with the previous observations with immuno-SEM, suggesting that they were

experiment as part B and cellular extensions (presumptively lamellipodia or filopodia) are shown in cyan

arrows. The white arrow and arrowhead are as in part B.

doi:10.1371/journal.ppat.1006062.g006
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Fig 7. RSV infection induced the formation of filopodia, and ARP2 knockdown reduced the number of long RSV-induced filopodia. (A)

RSV-induced filopodia. A549 cells were transfected with siARP2 or siControl for 48 hr followed by mock infection or infection with RSV-WT

(MOI = 1) for 24 hr. Cells were fixed, permeabilized, and immunostained for RSV F (green) and beta-tubulin (cyan, here a pseudocolor) by

incubating with mouse mAb for F protein and rabbit mAb for beta-tubulin followed by the secondary antibodies ant-mouse AlexaFluor488 and anti-

rabbit AlexaFluor647 respectively. The cells were further stained with rhodamine phalloidin (red) to detect F-actin and with the nuclear stain DAPI

ARP2 and Filopodia Promote RSV Spread
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induced by RSV infection. Moreover, consistent with findings in the immuno-SEM images

described above, extensive filamentous extracellular virions were observed in the RSV-infected

siControl-transfected cultures (Fig 7A, asterisks indicate free extracellular virions and arrow-

heads indicate examples of filopodia-associated virions).

The filopodia were reduced in number and length in siARP2-transfected RSV-infected cells

(Fig 7A, bottom row; Fig 7B), consistent with the previous observation by immuno-SEM. The

abundance of extracellular virions also was markedly reduced. Some variability in the extent of

filopodia reduction was observed for the siARP2-transfected RSV-infected cells even within

the same wells: in some cells, the cell surface appeared to be completely devoid of filopodia,

while in other cells filopodia were present but were reduced in number and were much

shorter. One possibility is that this reflects cell-to-cell differences in the efficiency of ARP2

siRNA transfection and knockdown.

We quantified the number and length of filopodia in the siARP2- and siControl-transfected

mock-infected or infected cells by automated scanning using confocal microscopy. We

counted all filopodia from, on average, 100 cells per treatment per experiment, and the length

of each filopodium was measured from the cell surface to the tip of the filopodium. The num-

ber and length of filopodia from two independent experiments are summarized in Fig 7B. In

the siControl-transfected infected cells, the filopodial length (measured only on the infected

cells in the culture, confirmed by RSV-F-staining) was observed to be up to 100 μm, and the

longer filopodia were observed in greater numbers in the lower-density cultures, suggesting

that length increased with increasing space between cells. In contrast, in siARP2-transfected

RSV-infected cells, the number of longer filopodia (measured only on the infected cells, identi-

fied by F-actin staining) was greatly reduced (Fig 7B). Compared to RSV-infected cells, fewer

filopodia were present on mock-infected siControl and siARP2 cells, and filopodia were less

than 20 μm in length. In mock-infected ARP2-knockdown cells, filopodia were furthest

reduced in numbers and length. These results confirm that (i) RSV infection is associated with

the formation of long filopodia, and (ii) that, filopodia formation involves ARP2.

To confirm these findings and to exclude off-target effects of ARP2 knockdown, we also

characterized the role of Wiskott-Aldrich Syndrome protein (WASP), specifically the homolog

N-WASP, which has been known to bind directly ARP2/3 complex and stimulate actin poly-

merization [23]. N-WASP depletion by siRNA caused only a modest reduction in the viability

of A549 cells, and was stable over at least 120 hr post-siRNA transfection, and it reduced RSV

production in A549 cells (S5 Fig). Importantly, RSV-induced filopodia in A549 cells were

reduced or abolished by N-WASP depletion (S6 Fig), confirming that depletion of another fac-

tor involved in filopodia formation has a similar effect to that of ARP2 depletion.

Role for filopodia and ARP2 in RSV spread

We also examined RSV infection of ARP2/KD-A549 cells versus untransduced A549 cells

using stimulated emission depletion (STED) microscopy, which provides higher resolution

(Fig 8A and 8B). A549 cells or ARP2/KD-A549 cells (i.e., stable ARP2 knockdown cells) were

(blue). The images show all four colors (versions that individually show green, cyan, and red are shown in S4 Fig). In the enlargement, examples

of filopodia (red) are indicated with arrows, examples of what appear to be released filamentous RSV particles (green) are indicated with

asterisks, and examples of filopodia-associated RSV filaments are indicated with arrowheads. (B) ARP2 knockdown reduced RSV-induced

filopodia. In samples from two independent experiments similar to the experiment described for A, the number and length of filopodia on

siControl- and siARP2-transfected mock-infected RSV-WT-infected cells were evaluated by automated scanning using confocal microscopy. In

brief, Z-stacking for Alexafluor488 for RSV F protein, DAPI for nuclei, rhodamine phalloidin for F-actin was performed for 50 to 100 different

random fields of interest in each coverslip. The length and number of filopodia was measured on 100 cells per treatment per experiment from the

surface to the tip of the filopodium. Error bar: SD.

doi:10.1371/journal.ppat.1006062.g007
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Fig 8. RSV appears to use filopodia for cell-to-cell spread. (A, B) Stimulated emission depletion

(STED) imaging of filopodia and virus filaments on RSV-infected cells. A549 cells or ARP2/KD-A549

cells (i.e., stable ARP2 knockdown) were infected with RSV-WT (MOI = 1). At 24 hpi, cells were fixed and

permeabilized. F-actin was visualized by rhodamine phalloidin (red); immunostaining for RSV F was done

with an RSV F mAb, followed by secondary antibody conjugated with AlexaFluor647 (pseudocolored in green;

part A, top panel) or AlexaFluor488 (green; part A, bottom panel, and part B). Examples of filopodia are

indicated with asterisks, and examples of what appear to be released filamentous RSV particles are indicated

with arrowheads, and examples of cell-associated and filopodia-associated RSV are indicated with arrows.

The areas in Panels 1 and 2 (left) that are outlined with dashed boxes are enlarged in panels 1a and 2a,

respectively (right). Part (A) illustrates that the filopodia of the RSV-infected cells (panel 1, labeled A and C)

appear to convey RSV particles to a neighboring cell (labeled B); in the enlargement 1a, a filopodium-cell

junction is indicated with a yellow arrow. In panel 2 and enlargement 2a, filopodia-driven cell-to-cell spread

was not evident. Part (B) illustrates the RSV virions at the tip of filopodia.

doi:10.1371/journal.ppat.1006062.g008
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infected with RSV-WT (MOI = 1), incubated for 24 hr, and fixed, permeabilized, and stained

for F-actin (red) and RSV F protein (green). In A549 cells, we observed abundant extracellular

filamentous structures that stained intensely with RSV-F-specific mAb and were consistent

with being RSV virions (green; examples of free virions are indicated with arrowheads and

examples of cell- and filopodia-associated virions are indicated with arrows), suggesting exten-

sive virus shedding (Fig 8A, panel 1a); in contrast, in the infected ARP2/KD-A549 cells,

reduced virus shedding was observed (Fig 8A, panel 2a). This result was consistent with the

result in the Fig 7A, bottom two rows.

Two A549 cells, labeled “A” and “C” in Fig 8A, panel 1, appear to be infected based on stain-

ing for F protein (green) and the presence of filopodia (red; some examples are indicated with

asterisks in panel 1a). Some of the filopodia from cell “A” (Fig 8A, panels 1 and 1a) appear to

be contacting (yellow arrow) cell “B” that is located on the left hand side of the panel, and this

area of contact in cell B has a number of virus-like particles, whereas the rest of cell B has little

or no staining for RSV F (except at the junction of filopodia-driven interaction by cell “C”,

shown only in Fig 8A, panel 1) and has minimal filopodia and thus appears to be otherwise

uninfected. Thus, the filopodia appeared to be conveying virions from infected cells to unin-

fected cells. RSV virions were frequently observed at the tip of the filopodia, further supporting

the idea of filopodia-driven RSV cell-to-cell spread (Fig 8B). In contrast, filopodia-driven RSV

cell-to-cell spread was not apparent in the ARP2/KD-A549 cells (Fig 8A, panels 2 and 2a).

We investigated a possible role for RSV-induced filopodia in viral spread using live cell

imaging. A549 cells were transfected with siControl or siARP2, infected with RSV-GFP, and

observed with confocal microscopy over time, with images taken every 6 min (MOI = 0.1,

imaged from 24 to 48 hpi, S1 and S2 Movies, respectively). The time-lapse images showed that

RSV infection resulted in increased cellular motility in the control-knockdown cells, but not in

the ARP2-knockdown cells. The control-knockdown infected cells were much more active in

migration and showed an increased number of filopodia (visualized as abundant hair-like

structures on the surface), compared to the ARP2-knockdown infected cells. As filopodia are a

means of cell motility [24], this suggests that the RSV-induced filopodia rendered the RSV-

infected cells able to migrate and contact other cells, which appeared to result in the secondary

cells becoming GFP-positive. This was inhibited by ARP2 knockdown.

In order to visualize actin in live cell experiments, we generated a Red F-actin-A549 cell

line, which stably expresses a 17-amino-acid-long actin-binding domain linked genetically to

red fluorescence protein (RFP). This fluorescent fusion protein binds to F-actin, reportedly

without interfering with its function [25]. siControl- and siARP2-transfected cells were mock-

infected (S3 and S4 Movies, respectively) or infected with RSV-GFP (MOI = 0.1, imaged from

24 hpi to 48 hpi, S5 and S6 Movies, respectively). In response to RSV-GFP infection, the con-

trol-knockdown cells formed filopodia containing red actin, and were motile and appeared to

spread infection to neighboring uninfected cells. A region of interest is magnified from

RSV-GFP infected Red F-actin A549 cell line (MOI = 0.01, imaged from 24 to 48 hpi) to show

viral cell-to-cell spread (S7 Movie).

ARP2 depletion reduced the progression of RSV infection

To more closely mimic RSV infection in non-ciliated respiratory epithelial cells of the lower

respiratory tract, we also performed these experiments using confluent monolayers of Red F-

actin-A549 cells (S8, S9, S10, and S11 Movies). Time lapse imaging of siControl transfected

Red F-actin-A549 cells confirmed that RSV-GFP infected cells (S10 Movie) were more

dynamic than uninfected cells (S8 Movie). Interestingly, the infected cell monolayers were dis-

rupted over time by the cytopathic effect of RSV-GFP; any void was filled quickly by actively
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migrating newly RSV infected (newly green) cells, resulting in efficient spread of RSV infection

through the monolayer (S10 Movie). As observed previously in non-confluent monolayers,

ARP2 knockdown reduced the motility and filopodia formation of infected cells (S11 Movie).

As a consequence, the cell monolayers were retained longer in siARP2 transfected cells (S11

Movie) than in siControl cells (S10 Movie).

We also used a scratch-wound assay based on A549 cells as a surrogate model for tissue

damage caused by the cytopathic effect of RSV, and we measured the migration of RSV

infected cells in this assay (Fig 9). Confluent siControl- or siARP2-transfected Red F-actin-

A549 cell monolayers were mock-infected or infected with RSV-GFP (MOI = 1). At 24 hpi, the

monolayers were scratched with a pipette and were followed by imaging every 5 min from 24

hpi to 36 hpi. To measure the migration of Red F-actin-A549 cells into the wound area, we

scored the red intensity in the scratched area over time. We confirmed that RSV infection con-

siderably increased cell motility, whereas ARP2 depletion drastically reduced RSV-induced

motility (Fig 9). In vivo, RSV promotes shedding and cell death of bronchial and lung epithe-

lial cells [26,27]. This suggests that the induction of ARP2-dependent mobility of RSV infected

cells promotes the spread of RSV infection and cytopathogenicity in the respiratory tract.

The induction of filopodia and cell motility was much more robust with

RSV than with HPIV3 or HMPV

We compared the efficiency of induction of filopodia by RSV, and their effects on motility and

virus spread, to that of two other common respiratory paramyxoviruses, namely HPIV3 and

human metapneumovirus (HMPV). A549 cells were transfected with siARP2 or siControl;

infected with RSV-GFP, HPIV3-GFP, and HMPV-GFP; incubated for 24 hr; fixed, permeabi-

lized, stained with rhodamine phalloidin (red) and DAPI (blue); and examined by confocal

microscopy. Examination of infected cells (green) showed that RSV-GFP induced abundant

Fig 9. ARP2 knockdown reduced RSV-induced cell migration. Red F-actin-A549 cells were transfected with siARP2 or

siControl. 48 hr after transfection, cells were mock-infected or infected with RSV-GFP (MOI = 1). At 24 hpi cell monolayers

were scratched with a pipette tip followed by imaging every 5 min for 12 hr. Cell migration was measured by quantifying the

intensity of Red F-actin in the scratch normalized to the intensity of Red F-actin in the field at each time point. Data obtained

from three replicates of each sample. Error bar: standard error of mean.

doi:10.1371/journal.ppat.1006062.g009
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filopodia (Fig 10A, top row left panel; examples of filopodia are indicated with arrows), as

expected. In contrast, HPIV3-GFP and HMPV-GFP induced few filopodia-like structures on

the infected cell surface (Fig 10A, middle and bottom rows, respectively). Long intracellular

actin filaments were observed in each of the cultures, and were especially evident in uninfected

cells, but the induction of filopodia was much more robust in response to RSV (Fig 10B). As

expected, RSV-induced filopodia formation was greatly reduced in siARP2-transfected,

RSV-GFP-infected cells (Fig 10A, top right), but ARP2 knockdown had little effect on the

appearance of HPIV3-GFP and HMPV-GFP infected A549 cells (Fig 10A, right middle and

bottom panels).

The ability of HPIV3-GFP and HMPV-GFP to induce mobility was investigated in parallel

with RSV-GFP using Red F-actin-A549 cells and live cell imaging. Infection with RSV-GFP

induced motility and appeared to facilitate viral spread to neighboring uninfected cells (S12

Movie), whereas this was not observed with HPIV3-GFP (S13 Movie), and was minimal with

HMPV-GFP (S14 Movie).

The RSV F protein expression induced filopodia-like structures

Since the RSV F protein mediates viral fusion and thus has dramatic effects on the cell plasma

membrane, we investigated whether it induces filopodia formation. We expressed RSV F from

a eukaryotic expression plasmid transfected into A549 cells, in parallel with a control plasmid

expressing GFP. At 12 hr post-transfection, the cells were fixed, permeabilized, and stained

with DAPI, rhodamine phalloidin and mAb specific for the RSV F protein, and analyzed by

confocal microscopy (Fig 11A). Long intracellular actin filaments were observed in each of the

cultures, but the induction of filopodia-like structures on the transfected cells (Fig 11A,

arrows) was observed in response to RSV F but not GFP expression.

We also investigated the effect of the expression of RSV F protein on filopodia formation

using a chimeric bovine/human (B/H) PIV3 (B/HPIV-3) that consists of BPIV3 in which the F

and HN genes have been replaced by those of HPIV3, and which in addition expresses RSV F

from an added gene [28]. A549 cells were transfected with siARP2 or siControl followed by

infection with B/HPIV3-RSV-F (Fig 11B). HPIV3-GFP infected cells, included here for com-

parison (Fig 11B, top row of panels), had minimal induction of filopodia, as already shown in

Fig 10. In contrast, the expression of the RSV F protein from B/HPIV3-RSV-F in control-

knockdown cells induced filopodia-like structures on the infected cells (Fig 11B, middle panel,

arrows). This was largely blocked by ARP2 knockdown (Fig 11B, bottom panel).

Discussion

Actin is a major component of the cytoskeleton, and cell shape, motility, and a multitude of

dynamic intra- and intercellular processes are dependent on actin rearrangement [9]. Actin-

dependent cellular functions require precise regulation of actin polymerization. The ARP2/3

complex plays an important role in the initiation of F-actin polymerization (also called nucle-

ation) during diverse cellular processes [29]. The ARP2/3 complex is one of the three major

classes of factors for actin nucleation [together with formins and the tandem-monomer-bind-

ing family] [21,30]. Viral infection can modulate the actin cytoskeleton morphology, reviewed

in [10]. Many enveloped and nonenveloped viruses interact with the actin cytoskeleton during

virus entry [10]; actin involvement in RSV endocytosis or macropinocytosis has been

described previously [5,31]. While this manuscript was in preparation, it was shown that

ARP2/3 complex-dependent actin rearrangement is required for alphavirus trafficking and

egress at late time points after infection [32]. Actin is also involved in RSV replication [13],

gene expression, and morphogenesis [11,12,33]. However, the mechanisms for actin
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Fig 10. RSV induced filopodia more robustly than HPIV3 or HMPV infection. (A) A549 cells were

transfected with siARP2 or siControl. 48 hr after transfection, cells were infected with RSV-GFP, HPIV3-GFP

or HMPV-GFP at MOI = 1. At 24 hpi, cells were fixed and permeabilized, and F-actin was stained with

rhodamine phalloidin. Nuclei were stained with DAPI. Infected cells were detected by GFP expression. RSV-

induced filopodia are indicated with arrows. (B) The number and length of filopodia were evaluated by

automated scanning using confocal microscopy. In brief, Z-stacking for GFP for virus, DAPI for nuclei,

rhodamine phalloidin for F-actin was performed for 50 to 100 different random fields of interest in each

coverslip. The length and number of filopodia was measured on 100 cells per treatment per experiment from

the surface to the tip of the filopodium. Data were combined from two independent experiments. Error bar:

SD.

doi:10.1371/journal.ppat.1006062.g010

ARP2 and Filopodia Promote RSV Spread

PLOS Pathogens | DOI:10.1371/journal.ppat.1006062 December 7, 2016 19 / 35



Fig 11. Expression of RSV F is sufficient to induce RSV-associated filopodia. (A) RSV F expression from transfected

plasmid. A549 cells were transfected with a eukaryotic expression plasmid expressing RSV F or GFP. 12 hr post-transfection,

cells were fixed and permeabilized. RSV F was detected with an RSV F mAb followed by anti-mouse AlexaFluor488 secondary

Ab (green). F-actin was stained with rhodamine phalloidin (red), and nuclei were stained with DAPI (blue). Examples of

filopodia are indicated with arrows. (B) RSV F expression from a viral vector. A549 cells were transfected with siARP2 or

siControl. 48 hr after transfection, cells were infected with B/HPIV3-RSV-F or HPIV3 (MOI = 1). The cells were fixed at 24 hpi

and permeabilized, and F-actin was stained with rhodamine phalloidin (red), and nuclei were stained with DAPI (blue).

Examples of filopodia are indicated with arrows.

doi:10.1371/journal.ppat.1006062.g011
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involvement in RSV infection are poorly understood, and no information was available on the

role of ARP proteins during RSV infection. We identified ARP2 in a comprehensive genome-

wide siRNA screen targeting approximately 21,500 human genes, performed on RSV-infected

human lung epithelial A549 cells. In the present study, we have systematically investigated the

effect of ARP2 on the RSV replicative cycle.

For several other viruses, actin polymerization has been shown to play a role in viral entry,

and different viruses use the cellular actin system differently. For example, primate lentiviruses

enter cells by membrane fusion followed by initiating ARP2/3 complex-driven actin polymeri-

zation to generate a mechanical force that allows the lentiviral core complex to pass through

the cortical layer and migrate to nucleus. Even though vaccinia viruses enter cells by mem-

brane fusion at the cell surface, cell cytoskeletal rearrangement immediately after viral attach-

ment is required for viral entry and transport through the cytoplasm [34]. One route of RSV

entry seems to be through Rab5-positive, fluid-filled macropinosomes. Specifically, RSV bind-

ing at the cell surface activates a signaling cascade for actin rearrangement, resulting in viral

entry through macropinocytosis [5]. Therefore, we began the present study by investigating

possible effects of APR2 on RSV entry and early steps in RSV replication.

Examination of the kinetics and distribution of viral gene expression by flow cytometry

showed that ARP2 knockdown had no or only minor effects on the efficiency of infection and

viral gene expression during the first 24 hr following inoculation (which approximately spans

the time from the initiation of infection to the time when virus production has become robust)

but thereafter ARP2 knockdown reduced the number of infected A549 cells without affecting

the magnitude of gene expression per cell. We also analyzed RSV mRNA and protein expres-

sion over time by qRT-PCR and Western blotting, and similarly showed little or no effect

prior to 24 hpi, and an overall reduction in gene expression after 24 hpi. A second ARP2-speci-

fic siRNA (Hs_ACTR2_7, QIAGEN) was evaluated with similar results, although the efficiency

of knockdown was marginally lower.

We also investigated whether the ARP2/3 complex is involved in early steps of RSV infec-

tion by using the potent ARP2/3 complex inhibitor CK-666 [17]. We found that this inhibitor

did not reduce RSV entry at concentrations that had previously been shown to be effective in

inhibiting ARP2/3 complex-driven actin nucleation [18], while the macropinocytosis inhibitor

EIPA did reduce RSV entry, as previously shown [5]. Thus, the ARP2/3 complex did not seem

to be essential for any steps of RSV entry or early events in the viral replicative cycle, in partic-

ular for actin nucleation during macropinocytosis of RSV. However, actin nucleating factors

other than the ARP2/3 complex could contribute on actin nucleation for the more localized

macropinosome formation during RSV entry. Even though macropinocytosis is a transient

actin dependent endocytic process, it is primarily associated with cell-wide plasma membrane

ruffling, and involves formation of large vacuoles for non-selective internalization of fluid and

membranes [35,36]. The Ras superfamily of GTPases plays an important role in regulating ruf-

fle formation for macropinocytosis [37], whereas other Rho GTPases such as cell division cycle

42 (Cdc42) regulates ARP2/3 complex-driven actin polymerization for filopodia formation

[38,39]. There is extensive overlap and crosstalk, and dynamic interactions are evident among

Rho GTPases signaling pathways [40,41]. A coordinated activation of several Rho GTPases

was suggested to be involved in the cytoskeleton rearrangement induced by HMPV for its cell-

to-cell spread [42]. Further research is necessary to understand whether RSV modulates the

signaling of different GTPases for cytoskeleton reorganization during entry.

We next investigated a possible role of ARP2 in RSV production, syncytium formation,

budding, and virion morphology. ARP2 knockdown resulted in a 10-fold reduction in RSV

release into the supernatant of infected A549 cells when measured two and three days post-

infection, while the release of HPIV3 into the supernatant was only minimally reduced in
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siARP2-transfected cells. A similar reduction in RSV production was observed in another

respiratory cell line, Calu-3 (S1 Fig) when infected with RSV-WT (MOI = 1). This reduction

in RSV production was partly evident by 24 hpi, suggesting that it reflected, at least in part,

reduced virus yield per infected cell. The reduction was greater by 48 and 72 hpi, suggesting

that it also reflected reduced secondary infection. We did not observe substantial effects of

ARP2 depletion on RSV fusion, suggesting that this was one aspect of RSV spread that was not

affected by ARP2 knockdown.

Consistent with the reduction in RSV production, we also observed reduced extracellular

RSV particles on the cell surface by microscopy. TEM and immuno-SEM showed that there

were many fewer virus-like particles and filaments on the surfaces of ARP2-knockdown

infected cells compared with control-knockdown infected cells. The TEM studies suggested

that, while fewer RSV progeny particles were present, their general morphology appeared

unchanged compared to control-knockdown infected cells. However, analysis by immuno-

SEM showed that, while the general morphology of progeny virions on the surface of ARP2-

knockdown infected cells was similar to that of control-knockdown infected cells, their

arrangement appeared to be less orderly. A contribution of actin filaments to RSV virion mat-

uration and egress, and to the formation of viral filaments, has been reported previously

[6,11,12,43,44]. A role of actin and myosin in the transport of the viral ribonucleoprotein

(RNP) complex has also been described previously, and the role of the ARP2/3 complex in the

terminal stage of virus budding and in the process of pinching off from the cell surface has

been proposed [6]. Conversely, a previous study showed that F protein trafficking to the cell

surface and assembly of RSV filaments appeared to take place even when cytoskeleton rear-

rangement is blocked by actin inhibitors [45]. Our results suggest that efficient RSV budding

indeed depends on functional ARP2/3 nucleation and actin rearrangement.

Perhaps our most interesting observation was that RSV infection in A549 cells induced filo-

podia, which are finger-like membrane protrusions that are rich in F-actin and mostly defi-

cient in tubulin. Lamellipodia (which are larger, broad, flat protrusions containing branched

actin and tubulin) also appeared to be formed in response to RSV infection, although this was

not further investigated in the present study. Filopodium formation is a highly orchestrated

multistep process associated with actin cytoskeleton rearrangement; however, the underlying

mechanism for initiation and maintenance of filopodia has not been fully characterized [46].

Compared to RSV viral filaments, filopodia are larger in diameter and largely devoid of RSV

proteins. We discriminated filopodia from lamellipodia based on the former’s thin extended

morphology, low microtubulin content, and intensity of F-actin staining [47]. Membrane pro-

trusions have been shown to serve as vehicles for pathogen spread for Listeria monocytogenes
and Shigella flexneri. These bacteria induce actin motility when they enter into the cytosol,

which facilitates bacterial interaction with the plasma membrane. Bacteria have been observed

to be transported within cell membrane protrusions that extended into invaginations in

adjoining cells, contributing to cell-to-cell spread, reviewed in [48]. In the present study,

STED observations of RSV particles on A549 cells suggested that clustered filamentous RSV

virions are present on filopodia, similar to filopodia-associated virions which were observed

on cells infected with murine leukemia virus (MLV) [49] and African swine fever virus

(ASFV) [50]. We also detected filamentous RSV virions clustered at the tips of filopodia, sug-

gesting that mature virion particles are shuttled to neighboring uninfected cells. In the STED

observations, immunostaining was done on permeabilized cells. This technique does not dis-

criminate whether mature virions were located intracellularly or extracellularly on the plasma

membrane. However, immuno-SEM performed using the same Ab in non-permeabilized

infected cells showed that mature RSV virions are present extracellularly on the plasma mem-

brane of filopodia, as might have been expected. These results suggest that RSV is shuttled on
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the exterior of the filopodia to infect neighboring cells. However, RSV potentially might also

shuttle through filopodia using intracellular vesicle transport, which is currently under

investigation.

We found that expression of the RSV F protein from a plasmid vector or a heterologous

viral vector was sufficient to induce filopodia, although the number and length of these struc-

tures were reduced compared to RSV-infected A549 cells. Our study identifies a new mecha-

nism by which the F protein promotes RSV spread, namely thorough inducing filopodia

formation, thus promoting filopodial spread of RSV. Filopodia induction in A549 cells due to

the expression of RSV F from a vector also was sensitive to ARP2 depletion, similar to the filo-

podia induced by RSV infection. RSV-mediated filopodia induction was not observed in either

Calu-3 or Vero cells, despite the evidence that ARP2 contributes to RSV production in both

cell types (Calu-3 cells, S1 Fig). Further research is necessary to understand whether cell-type

specificity contributes to RSV-driven filopodia induction, whether the RSV F protein uses the

actin network and filopodia for intra-and/or inter-cellular transport, whether F expression

activates filopodia signaling pathways, and whether it acts as a nucleation promoting factor

(NPF) for ARP2/3 complex-driven actin polymerization.

We found that in addition to filopodia formation, RSV infection increased cellular motility,

which promoted virus spread to neighboring cells. Virus-induced cell migration has been

reported for vaccinia virus [51]. Live cell imaging in the infected Red-F-actin A549 cells illus-

trated that filopodia-driven RSV spread was facilitated by cell mobility, and ARP2 knockdown

reduced RSV spread not only by inhibiting the induction of filopodia, but also by restricting

cell mobility.

Filopodia-driven cell-to-cell spread was much more robust for RSV compared to HPIV3

and HMPV. A recent study showed that HMPV induces intercellular extensions of a branched

actin network for its spread in human bronchial epithelial cells. However, a branched actin

network was less obvious in A549 and Vero cells [42]. Our study shows that RSV exploits the

actin cytoskeletal system of human lung epithelial cells for its spread. If our findings are rele-

vant to the situation in vivo, they suggest that RSV may promote cell motility, in particular in

areas subject to RSV cytopathic effect. Our findings also suggest that RSV induces filopodia

(through the F protein), and that filopodial spread allows rapid dissemination of the virus to

new target cells. Filopodia may also facilitate spread in the presence of biophysical barriers

such as mucous layers on mucosal surfaces [52,53], and spread under these conditions may

reduce exposure to virus-neutralizing antibodies [53,54]. In future studies, we will further

investigate the possibility of virus-induced filopodia formation and filopodia-driven viral

spread in primary human airway epithelial cells.

Filopodial protrusions can function as sensors of the local environment in migrating cells,

and the spatial-temporal dynamics of filopodia have been described [55]. The ARP2/3 complex

directly contributes to filopodia formation by nucleating actin filaments in lamellipodia [56],

but the ARP2/3 complex by itself has little actin-nucleating activity. NPF binding to the ARP2/

3 complex activate actin-polymerization and dictate where and when nucleation originates in

the cell [8]. Indeed, we showed that a depletion of another potent NPF, N-WASP, reduced or

abolished the formation of RSV-induced filopodia, and consequently reduced RSV production

in A549 cells. Results of the N-WASP depletion studies confirmed that RSV modulates filopo-

dia signaling for its direct cell-to-cell spread. However, NPF activities are highly regulated by

signal-transduction pathways such as Rho-family GTPases, Cdc42 and Rac (reviewed in [29]).

A contribution of the small GTPase RhoA, which acts through myosin II, and affects motility

independently of the ARP2/3 complex, in RSV infection has already been reported [57]; future

studies are required to explore the contributions of other small GTPases Rac1 and Cdc42 to

filopodia-driven RSV spread. More work is needed to evaluate if the RSV F protein, and
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possibly other viral proteins, interact with ARP2/3 complex-specific NPFs to initiate ARP2/3

complex-driven actin polymerization.

In conclusion, ARP2 knockdown reduced RSV production, primarily by reducing viral

budding and spread. There was no evidence of effects on RSV entry, or of significant effects

on events in the viral replicative cycle prior to approximately 24 hpi, a time when the produc-

tion of progeny virions and virus spread becomes robust. Our results show that RSV infec-

tion increases cell motility, induces filopodia formation, that filopodia promote RSV spread,

and that this occurred in human lung epithelial A549 cells. ARP2, which is part of ARP2/3

complex, was shown to be necessary for induction of filopodia in RSV-infected cells, for

increased motility of RSV-infected cells, and for filopodia-mediated spread of RSV. Filopo-

dia formation and particle formation in A549 cells were also dependent on N-WASP, which

binds to ARP2/3 and stimulates actin polymerization. ARP2 depletion reduced the spread of

RSV infection in confluent monolayers in vitro. If these results translate to respiratory epi-

thelium of the lower respiratory tract, this would suggest that inhibition of actin polymeriza-

tion may reduce the spread of RSV infection in the lower respiratory tract. This identifies a

previously unappreciated effect of the RSV F protein, a previously unappreciated mechanism

of RSV spread, a novel cellular factor for RSV spread, a new insights on the effect of RSV

infection on cellular functions, and a potential therapeutic target to combat RSV infection.

Materials and Methods

Cells and viruses

Calu-3 (ATCC HTB-55) and A549 (ATCC CCL-185) cells were obtained from the ATCC.

Calu-3 cells were maintained in EMEM (ATCC), supplemented with 10% fetal bovine serum

(FBS) (Life Technologies). A549 cells were maintained in F-12 complete medium [F-12 Nutri-

ent Mixture (Life Technologies), supplemented with 10% FBS and 1% L-glutamine]. Recombi-

nant RSV expressing enhanced GFP from an added gene, inserted between the P and M genes

(RSV-GFP), was described previously [14], and is a derivative of recombinant RSV-WT (A2

strain). For all experiments, RSV was grown in Vero cells and purified by centrifugation and

banding in discontinuous 30% to 60% (wt/vol) sucrose gradients as previously described [58].

Similarly, HPIV3-GFP [59], HMPV-GFP [60], and B/HPIV3-RSV-F were sucrose-purified.

B/HPIV3-RSV-F is a chimeric B/HPIV3 based on BPIV3 in which the fusion (F) and hemag-

glutinin-neuraminidase (HN) surface glycoproteins have been replaced by their counterparts

from HPIV3, and which in addition expresses a codon-optimized version of the RSV F protein

from an added gene [28].

Viral infections were done at an MOI of 1 unless specified otherwise. A549 cells were

seeded in 24-well plates and were incubated with virus in 100 μl of F-12 medium for 1 hr, and

rinsed twice with F-12 medium. Infected cells were incubated in F-12 medium with 2% FBS

and 1% L-glutamine. For viral infections of Calu-3 cells, EMEM medium was used instead of

F-12 medium. For live cell imaging, infected cells were kept in media with 25 mM HEPES

(Life Technologies).

Stable cell lines

ARP2/KD-A549 cell line was generated by using a lentiviral vector-based construct express-

ing three target-specific 19–25 nt (plus hairpin) small hairpin RNAs designed to knockdown

gene expression (sc-29737-V, Santa Cruz Biotechnologies, Inc) according to the manufac-

turer’s recommendations with minor modifications. Briefly, 1x105 A549 cells were infected

at a range of MOIs from 0.1 to 0.01 with 6 μg/ml polybrene (Santa Cruz Biotechnologies,

Inc) and incubated in F-12 complete medium with 10 μg/ml puromycine (Takara Clontech).
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A clonal population was obtained from a single cell. Similarly, we generated Red F-actin-

A549 cells that stably express Red F-actin, which is a fusion protein that combines an actin-

binding domain with a red fluorescent protein (RFP) (Ibidi). This was created using the len-

tiviral vector-based construct rLVUbi-LifeAct-TagRFP (Ibidi), and clonal population was

obtained.

siRNA transfection

siRNA transfections were done in 24-well plates using a reverse transfection protocol (i.e., cells

in suspension were added to wells containing the siRNA and transfection reagent), which was

optimized using the KDalert GAPDH Assay Kit (Life Technologies). Briefly, the knockdown

efficiency of different concentrations of siRNA (siGAPDH) and RNAimax transfection

reagent (Life Technologies) was tested on 3x104 cells. GAPDH knockdown was determined by

measuring the enzymatic activity according to the manufacturer’s instructions. Transfection

with 1μl of RNAiMax transfection reagent and 7.5 μl of siRNA (2 μM siRNA concentration)

reduced GAPDH activity by more than 80% without compromising cell viability. Therefore,

this concentration was used for protein knockdown experiments in A549 cells unless other-

wise mentioned. In Calu-3 cells, protein knockdown was done similarly by using twice the

amount of siRNA on 100,000 cells. Reverse transfections of A549 or Calu-3 cells were per-

formed 48 hr before virus infection and siARP2 (s223082, Life Technologies) and siControl

(Silencer Select Negative Control #2, Life Technologies) were used for all ARP2 knockdown

experiments, unless otherwise specified. For N-WASP knockdown in A549 cells, siN-WASP

(137397, Life Technologies) was used.

Cell viability was evaluated using resazurin (alamarBlue, Life Technologies) according to

the manufacturer’s protocol. Briefly, a 10% volume of alamarBlue was added to the cell culture

media and incubated at 37˚C for 3–4 hr. To evaluate the cell viability, alamarBlue fluorescence,

a marker for metabolic activity, was analyzed using a Synergy 2 Multi Mode microplate reader

(BioTeK).

Western blot analysis

Ten micrograms of total protein was separated on 4–12% Bis-tris SDS polyacrylamide gels, fol-

lowed by dry blot transfer onto polyvinylidene floride (PVDF) membranes according to the

manufacturer’s instructions (Life Technologies). For viral protein detection, samples were

denatured at 90˚C for 10 min with 1% reducing agent before gel electrophoresis. The PVDF

membranes were incubated in LI-COR blocking buffer (1:1 in PBS) (LI-COR Biosciences) for

1 hr, followed by overnight incubation with primary Ab in blocking buffer. The membranes

were washed 4x for 5 min each in wash buffer (PBS with 0.1% Tween 20, Sigma-Aldrich), fol-

lowed by incubation with secondary IRDye Ab (LI-COR Biosciences) for 1 hr. After washing

4x for 5 min in wash buffer, fluorescence was analyzed using the Odessey imaging system

(LI-COR Biosciences). ARP2 was detected using a rabbit mAb (ab129018, Abcam) and a goat

anti-rabbit IRDye800 Ab (LI-COR Biosciences). Alpha-tubulin was detected using a mouse

mAb (T6199, Sigma-Aldrich) and a goat anti-mouse IRDye680 (LI-COR Biosciences).

N-WASP was detected using a rabbit mAb (30D10, Cell Signaling Technologies) and a goat

anti-rabbit IRDye800 Ab. RSV F and P were detected using mouse mAbs (ab43812 and

ab94965, respectively) for primary and respective secondary Abs (goat anti-mouse IRDye800

and IRDye680, respectively). GAPDH was detected using a primary rabbit pAb (sc25778,

Santa Cruz Biotechnologies, Inc.) and a goat anti-rabbit IRDye680 Ab.
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Quantitative (q) RT-PCR

Cells were harvested and intracellular RNA was purified by RNAeasy (QIAGEN). The RNA

concentration was determined, and 100 ng of RNA was used for first-strand cDNA synthesis

(Superscript III, Life Technologies) using oligo(dT) primers (Life Technologies). qRT-PCR

was performed using TaqMan assays (ARP2: Hs00855199, Life Technologies and RSV ORFs:

primer sequence available upon request) in the 7900HT Fast Real-Time PCR System (Life

Technologies), and fold changes were calculated using the delta-delta-CT method using 18S

RNA (Hs99999901, Life Technologies) or beta-actin (Hs99999903, Life Technologies) as a

calibrator.

Virus titration

For quantitation of free RSV, the cell culture medium was harvested without disturbing the

cells and then clarified at 300 x g for 10 min. For quantification of total RSV in the culture

(cell-associated and free virus), monolayers were scraped into the cell culture medium, col-

lected and vortexed vigorously three times for ten seconds each, and clarified by centrifugation

at 300 x g for 5 min. Supernatants were snap frozen on dry-ice and kept at -80˚C. RSV titration

was done by plaque assay on Vero cells in which viral plaques were visualized by immunos-

taining with three mAbs against RSV F [61]. Alternatively, in the case of RSV-GFP and

HPIV3-GFP, plaques were visualized directly by GFP expression using a Typhoon Trio

+ imager (GE Healthcare), followed by quantification using the software ImageJ.

Analysis of protein expression by flow cytometry

Cells were washed in PBS and detached with 0.5% TrypLE Select 1x (Life Technologies), incu-

bated with FBS to neutralize trypsin activity, pelleted by centrifugation at 300 x g for 5 min,

and incubated with Live/Dead near-infrared fluorescence reactive dye (Life Technologies) for

30 min. Cells were washed and fixed and permeabilized with BD Cytofix/Cytoperm buffer (BD

Biosciences). Multicolor flow cytometry was used to analyze the expression of the RSV F and

M2-1 proteins and GFP simultaneously in infected cells. To detect RSV F, we used a commer-

cial biotin-labeled mAb (133-1H MAB8262B-5RSV, Millipore), and Strepatvidin BV605 (Bio-

legend). For RSV M2-1, we labeled an M2-1 specific mAb (RSV5H5, Abcam) with

AlexaFluor647 or Site-Click R-PE antibody labeling kit (Life Technologies) according to the

manufacturer’s instruction. Single color antibody labeled cells for each antibody were used for

compensation, and fluorescence minus one controls were included to aid in setting gates.

Acquisition was done until 20,000 live single cells were recorded and cells were gated on live

singlet cells, followed by gating on GFP, F and M2-1 positive cells using a BD LSR Fortessa

flow cytometer and FACSDiva software (BD Biosciences), followed by analysis with FlowJo

software version 9.7.2 (FLOWJO, LLC).

Entry assays

5x105 cells per well in 6-well plates were treated for 1 hr with a final concentration of 100μM of

the entry inhibitors EIPA or CK-666 (Sigma-Aldrich) [17,18] for 1 hr. Optimal, non-toxic con-

centrations were determined in preliminary experiments. The inhibitors were made as con-

centrated stock solutions in DMSO, and the final DMSO concentrations in the cultures were

1% or less, and a DMSO (solvent-only) control was included. Following the 1 hr incubation,

cells were infected with RSV-GFP at an MOI of 5, or with a comparable amount of UV-inacti-

vated RSV-GFP for 6 or 12 hr, or was incubated with dextran fluorescein (Life Technologies)

for 30 min. Plates were transferred onto wet ice to stop entry. To quantify dextran or RSV
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internalization by flow cytometry, cells were detached, incubated with Live/Dead near-infrared

fluorescence reactive dye, and fixed with BD Cytofix/Cytoperm buffer. Dextran fluorescein or

GFP single live positive cells were quantified using the FACS CANTO II (BD Biosciences).

FACS data analysis was done using FlowJo software version 9.7.2. UV-inactivated RSV-GFP

was prepared using a Stratalinker UV cross-linker (Agilent) at 0.5 J/cm2. Complete inactiva-

tion was evaluated by plaque assay as described previously [62].

Syncytia quantification

Infected cells grown on coverslips were fixed, permeabilized, and stained with DAPI and rho-

damine phalloidin as described for confocal microscopy, and images for quantification were

acquired using a Leica DMI6000 inverted wide-field microscope equipped with DAPI, GFP,

and rhodamine filter cubes, a HCX Pl Fluotar 20X/0.4 objective, and a DFC 360FX mono-

chrome camera. The entire coverslip was imaged in a single plane using the tiling and predic-

tive focus features in LAS software. Using Imaris image processing software, large regions of

the tiled image were selected; nuclei were automatically counted using the “Spot” feature,

while syncytia and infected cells were counted manually. Per coverslip, at least 5000 cells were

analyzed. Syncytia were counted when they contained�3 nuclei and were GFP-positive

(which was the case for the vast majority of syncytia).

Electron microscopy

For TEM, A549 cells were seeded on Thermanox coverslips (Electron Microscopy Sciences) at

a density of 3x104 cells per well and reverse transfected with siRNA for 48 hr, followed by

infection with RSV-GFP at an MOI of 1 for 24 hr. Cells were fixed with 2.5% glutaraldehyde in

Sorensen’s phosphate buffer (Electron Microscopy Sciences). Samples were post-fixed 1 hr

with 0.5% osmium tetroxide/0.8% potassium ferricyanide, 1 hr with 1% tannic acid and over-

night with 1% uranyl acetate at 4C. Samples were dehydrated with a graded ethanol series, and

embedded in Spurr’s resin. Thin sections were cut with a Leica UCT ultramicrotome (Vienna)

stained with 1% uranyl acetate and Reynold’s lead citrate prior to viewing at 120 kV on a FEI

Tecnai BT Spirit transmission electron microscope (Hillsboro, OR). Digital images were

acquired with an AMT digital camera system (AMT) and processed using Adobe Photoshop

CS5 (Adobe Systems Inc).

For immuno-SEM, A549 cells were seeded on silicon chips (Ted Pella Inc.) at a density of

3x104 cells per well were first reverse transfected with siRNA for 48 hr, followed by infection

with either RSV-GFP at an MOI of 5 for 24 hr. Cells were fixed with 4% PFA in PBS for 30

min, blocked with 3% bovine serum albumin (BSA) in PBS, incubated with mAb (ab43812)

(1:100 dilution in 0.1% BSA) overnight at 4˚C, washed with 3% BSA in PBS, followed by incu-

bation with secondary Ab (goat anti-mouse conjugated with 15nm colloidal gold particle)

(EM.GMHL15, BBInternational). After immuno-labeling, the specimens were fixed with 2.5%

glutaraldehyde in Sorensen’s phosphate buffer overnight at 4C, post-fixed for 1 hr with 1%

osmium tetroxide, and dehydrated in a graded ethanol series. The samples were critical-point

dried under CO2 in a Bal-Tec model cpd 030 dryer (Balzers), mounted on aluminum studs,

and sputter coated with 35 angstroms of chromium in a model IBS/TM200S ion beam sput-

terer (South Bay Technologies). Specimens were viewed at 10 kV in a Hitachi SU-8000 field

emission SEM (Hitachi) using mixed backscatter and secondary imaging modes.

Confocal microscopy

A549 cells were seeded onto cover glasses (Deckglaser) at a density of 3x104 cells per well and

reverse transfected with siRNA for 48 hr, followed by infection with RSV-WT at an MOI of 1.
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At 24 hpi, cells were washed with PBS, fixed with 4% PFA (Polysciences, Inc.) in PBS for 10

min at room temp, permeabilized with 0.5% Triton-X100 (Sigma-Aldrich) for 10 min and

then blocked with 3% BSA solution in PBS for 2 hr. Cells were then incubated with primary

Abs (mouse mAb, ab43812 for RSV F protein and rabbit mAb, 9F3, Cell Signaling Technology,

Inc.) (diluted 1:500 and 1:100, respectively in 0.1% BSA solution) overnight at 4˚C, followed

by incubation with secondary Abs (anti-mouse AlexaFlour488 or anti-rabbit AlexaFlour647)

(diluted 1:200 in 0.1% BSA solution) for 2 hr at 4˚C, followed by incubation with rhodamine

phalloidin (diluted 1:500) (Cytoskeleton Inc) for 30 min at room temp in the dark, followed by

nuclear staining with NucBlue Fixed cell Stain ReadyProbes (Life Technologies) for 20 min in

the dark. Coverslips were washed with PBS before mounting on microscope slides (Scientific

Device Laboratory) using ProLong Gold anti-fade mounting media (Life Technologies). Con-

focal images were collected using a Leica SP8 confocal microscope (Leica Microsystems)

enabled with 63X/1.4NA and 40X/1.25NA oil immersion objectives and hybrid (HyD) detec-

tors. To visualize the details of finer structures such as fiolopodia and lamellipodia, Z stack

slices of 0.3 to 0.5 μm were collected and random fields of the cover slip were acquired with

automated tiling methods to get an unbiased data set of approximately 50 to 100 random fields

of interest. Some confocal images were subsequently deconvolved using Huygens software

(Scientific volume imaging) to improve resolution. Filopodial structures were discriminated

from lamellipodia using microtubulin Ab staining (absent in filopodia), and number of filopo-

dia and their length was quantified using the “Measurepoint” module in Imaris image analysis

software. Data was averaged from two independent experiments.

STED imaging

RSV-WT infected A549 or ARP2/KD-A549 cells were seeded onto coverslips and fixed and

permeabilized at 24 hpi as described above. Cells were stained with a mAb specific for RSV-F

and secondary goat anti-mouse AlexaFlour488 or AlexaFlour647. F-actin was stained with rho-

damine phalloidin. Images were collected on a Leica TCS SP8 STED 3X system equipped with

a white light excitation laser, 600 nm and 775 nm depletion lasers, HC PL APO 100x/1.40 oil

STED White objective, and gated HyD detectors. Images were further deconvolved using Huy-

gens de-convolution software.

Live cell imaging

Ibiditreat (Ibidi) 8-well chambers were used to seed Red F-actin-A549 cells or parental A549

cells at a density of 3,000 per chamber and incubated at 37˚C overnight. Cells were infected

with RSV-GFP, HPIV3-GFP or HMPV-GFP at an MOI of 0.1 unless mentioned otherwise for

1 hr at 37˚C. Monolayers were washed 2x with only F-12 medium and incubated at 37˚C in F-

12 medium with 2% FBS and 1% L-glutamine and 25 mM HEPES for 24 hr prior to live cell

imaging. For ARP2 knockdown, reverse transfections with siRNA were done 48 hr prior to

infection with RSV-GFP in F-12 medium with 2% FBS, 1% L-glutamine and 25mM HEPES.

Time-lapse images were acquired on an inverted Leica SP5 confocal equipped with a Ludin

environmental chamber set to 37˚C with 5% CO2, a HCX Pl APO 63X/1.4 oil objective, PMT

detectors, Argon 488nm and DPSS 561nm lasers, and a motorized stage to enable the mark-

and-find module in LAS AF software. Imaging started at 24 hpi and images were acquired

approximately every 6 minutes, unless otherwise mentioned. Three randomly selected loca-

tions were imaged per sample per experiment. For imaging of the Red F-actin-A549 confluent

monolayer, 30,000 cells were used and ARP2 knockdown was done with siARP2 for 48 hr

before RSV-GFP infection (MOI = 0.1). To visualize nuclei in live cells, just before the start of

the imaging, 50 nM Sir-DNA (Cytoskeleton Inc.) was added to the medium according to the
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manufacturer’s instructions. Imaging started at 24 hpi, and images were collected every 5 min-

utes for 24 hr on a Leica SP5 inverted confocal microscope equipped with a 63X/1.4NA objec-

tive, hybrid HyD detectors, an environmental chamber with CO2, and argon 488nm, DPSS

561nm, and HeNe 633nm lasers. Three randomly selected locations were imaged per sample.

Scratch-wound assay

Reverse transfection with siARP2/ siControl was done for 48 hr on 30,000 Red F-actin-A549

cells in Ibiditreat 8-well chambers. Cells were mock-infected or infected with RSV-GFP at an

MOI of 1 for 1 hr at 37˚C. Monolayers were washed 2x with F-12 medium and incubated at

37˚C in F-12 medium with 2% FBS and 1% L-glutamine and 25 mM HEPES for 24 hr. Cell

monolayers were scratched with a 20 μl pipette tip (Molecular BioProducts), followed by imag-

ing every 5 min for 12 hr on a Leica DMI6000 inverted wide-field microscope equipped with a

10x/0.4NA objective, a pco.edge sCMOS camera, adaptive focus control, and an environmen-

tal chamber with CO2. Three randomly selected locations were imaged per sample. Cell migra-

tion was measured by quantifying the intensity of Red F-actin in the scratch, normalized to the

intensity of Red F-actin in the field at each time point using the image analysis software Imaris

(Bitplane).

Supporting Information

S1 Fig. ARP2 knockdown reduced RSV production in Calu-3 cells. Calu-3 cells were trans-

fected with siARP2, siControl or no siRNA for 48, 72, 96, or 120 hr. 48 hr after transfection

cells were mock-infected or infected with RSV-WT (MOI = 1). (A) ARP2 knockdown did not

reduce cell viability. Cell viability was compared using alamarBlue and expressed relative to

the siControl. Data from two independent experiments, each done in triplicate were combined

for analysis. Error bars: SD. (B) ARP2 knockdown was stable. ARP2 was detected similarly

described in Fig 1A. (C) ARP2 knockdown reduced RSV protein production. RSV F was

detected similarly as described in Fig 3A. (D & E) ARP2 knockdown reduced production of

infectious RSV. Virus titers were measured in clarified tissue culture medium harvested from

infected cell culture without disturbing the cell monolayer, (D) and virus titers were measured

in clarified tissue culture medium from infected cell cultures in which the cells had been

scraped into the medium and vortexed to release cell-associated virus (cell-associated virus

plus released virus) (E). D and E show combined data from two independent experiments,

each performed in triplicate. Error bar: SD.

(TIF)

S2 Fig. ARP2 knockdown has little effect on the release of HPIV3, and little effect on syn-

cytium formation of RSV-infected cells. Replicate cultures of A549 cells were transfected

with siARP2 or siControl for 48 hr, followed by infection with either RSV-GFP or HPIV3-GFP

(MOI = 1). (A) Effects of ARP2 knockdown on the titer of released HPIV3. At 24, 48, and

72 hpi, the cell culture medium was harvested without disturbing the cells and clarified, and

virus titers were determined by plaque assay with GFP staining (Materials and Methods). (B)

ARP2 knockdown has no effect on syncytium formation of RSV-infected cells. The

RSV-GFP-infected cell monolayers from the experiment in part A were fixed and permeabi-

lized at the indicated time points, and F-actin was stained with rhodamine phalloidin and

nuclei were stained with DAPI. The coverslips were imaged by confocal microscopy, and tiling

was performed for an area of at least 5000 cells per coverslip (Materials and Methods). Within

this area, the nuclei within GFP-positive cells (containing�2 nuclei) and GFP-positive syncy-

tia (containing�3 nuclei) were counted, and the number of nuclei present in GFP-positive
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syncytia was divided by the total number of nuclei in GFP-positive cells and GFP-positive syn-

cytium, and multiplied by 100:[(# nuclei in GFP-positive syncytia) / (# nuclei in GFP-positive

cells and GFP-positive syncytia)] X 100. This was quantified in siARP2- and siControl-treated

cells with RSV-GFP. The data in A and B were combined from two independent experiments,

each performed in duplicate. Error bar: SD.

(TIF)

S3 Fig. Evaluation of the surface of RSV-infected cells under SEM. A549 cells were trans-

fected with siARP2 (panels 3, 4 and enlargements 4a) or siControl (panels 1, 2 and enlarge-

ments 2a). 48 hr post-transfection, cells were mock-infected (panels 1 and 3) or infected with

RSV-GFP (MOI = 1, panels 2, 4, and magnified). At 24 hpi, cells were fixed with glutaralde-

hyde. Examples of filopodia on the presumptive RSV-GFP infected cells (compared with

mock-infected cells) are indicated with cyan arrows.

(TIF)

S4 Fig. RSV-induced filopodia are beta-tubulin-deficient. From the experiment shown in

Fig 7, the panels here separately show staining for rhodamine phalloidin (red) to detect F-actin

as a marker for filopodia, beta-tubulin (cyan, here a pseudocolor), RSV F protein (green), and a

merge with the nuclear DAPI stain (blue). Filopodia are indicated with arrows.

(TIF)

S5 Fig. N-WASP knockdown reduced RSV production in A549 cells. A549 cells were trans-

fected with siN-WASP, siControl or no siRNA for 48, 72, 96, or 120 hr. 48 hr after transfection

cells were mock-infected or infected with RSV-WT (MOI = 1). (A) N-WASP knockdown had

a modest effect on cell viability. Cell viability was compared using alamarBlue and expressed

relative to the siControl. Data obtained from three replicates of each sample. Error bars: SD.

(B) N-WASP knockdown was stable. N-WASP was detected using a primary rabbit mAb and

an anti-rabbit IgG IRDye800 secondary Ab. Alpha-tubulin, as a loading control, was detected

with a primary mouse mAb and an anti-mouse IgG IRDye680 secondary Ab. (C) N-WASP

knockdown reduced RSV protein production. RSV F was detected similarly described in Fig

3A. (D & E) N-WASP knockdown reduced production of infectious RSV. Virus titers were

measured similarly described in Fig 5. Data obtained from three replicates of each sample.

Error bar: SD.

(TIF)

S6 Fig. N-WASP knockdown reduced RSV-induced filopodia. A549 cells were transfected

with siN-WASP or siControl for 48 hr followed by mock infection or infection with RSV-WT

(MOI = 1) for 24 hr. Cells were then fixed, permeabilized, and immunostained similarly as

described in Figs 7 and S4. (A) RSV infected filopodia are shown in arrow. The number and

length of filopodia were evaluated by automated scanning using confocal microscopy (B). In

brief, Z-stacking for Alexafluor488 for RSV F protein, DAPI for nuclei, rhodamine phalloidin

for F-actin was performed for 50 to 100 different random fields of interest in each coverslip.

The length and number of filopodia was measured on 100 cells per treatment from the surface

to the tip of the filopodium.

(TIF)

S1 Movie. RSV-GFP infection in siControl-treated A549 cells. A549 cells were transfected

with siControl for 48 hr followed by infection with RSV-GFP (MOI = 0.1). Cells were imaged

every 6 min from 24 to 48 hpi. Time in hr: min: sec.

(MOV)
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S2 Movie. RSV-GFP infection in siARP2-treated A549 cells. A549 cells were transfected

with siARP2 for 48 hr followed by infection with RSV-GFP (MOI = 0.1). Cells were imaged

every 6 min from 24 to 48 hpi. Time in hr: min: sec.

(MOV)

S3 Movie. Mock-infection in siControl-treated Red F-actin-A549 cells. Red F-actin-A549

cells (i.e. stably expressing a RFP engineered to bind to F-actin) were transfected with siCon-

trol for 48 hr followed by mock-infection. Cells were imaged every 6 min from 24 to 48 hpi.

Time in hr: min: sec.

(MOV)

S4 Movie. Mock-infection in siARP2-treated Red F-actin-A549 cells. Red F-actin-A549 cells

were transfected with siARP2 for 48 hr followed by mock-infection. Cells were imaged every 6

min from 24 to 48 hpi. Time in hr: min: sec.

(MOV)

S5 Movie. RSV-GFP infection in siControl-treated Red F-actin-A549 cells. Red F-actin-

A549 cells were transfected with siControl for 48 hr followed by infection with RSV-GFP

(MOI = 0.1). Cells were imaged every 6 min from 24 to 48 hpi. Time in hr: min: sec.

(MOV)

S6 Movie. RSV-GFP infection in siARP2-treated Red F-actin-A549 cells. Red F-actin-A549

cells were transfected with siARP2 for 48 hr followed by infection with RSV-GFP (MOI = 0.1).

Cells were imaged every 6 min from 24 to 48 hpi. Time in hr: min: sec.

(MOV)

S7 Movie. Cell-to-cell spread of RSV-GFP in Red F-actin-A549 cells. Red F-actin-A549 cells

were infected with RSV-GFP (MOI = 0.01). Cells were imaged every 6 min from 24 to 48 hpi.

A magnified view of filopodia-driven RSV-GFP cell-to-cell spread. Time in hr: min: sec.

(MOV)

S8 Movie. Mock-infection in siControl-treated Red F-actin-A549 confluent monolayer.

Red F-actin-A549 cells were transfected with siControl for 48 hr followed by mock-infection.

Cells were imaged every 5 min from 24 to 48 hpi. Time in hr: min: sec.

(MOV)

S9 Movie. Mock-infection in siARP2-treated Red F-actin-A549 confluent monolayer. Red

F-actin-A549 cells were transfected with siARP2 for 48 hr followed by mock-infection. Cells

were imaged every 5 min from 24 to 48 hpi. Time in hr: min: sec.

(MOV)

S10 Movie. RSV-GFP infection in siControl-treated Red F-actin-A549 confluent mono-

layer. Red F-actin-A549 cells were transfected with siControl for 48 hr followed by infection

with RSV-GFP (MOI = 0.1). Cells were imaged every 5 min from 24 to 48 hpi. Time in hr:

min: sec.

(MOV)

S11 Movie. RSV-GFP infection in siARP2-treated Red F-actin-A549 confluent monolayer.

Red F-actin-A549 cells were transfected with siARP2 for 48 hr followed by infection with

RSV-GFP (MOI = 0.1). Cells were imaged every 5 min from 24 to 48 hpi. Time in hr: min: sec.

(MOV)

S12 Movie. Infection of Red F-actin-A549 cells with RSV-GFP. Red F-actin-A549 cells were

infected with the RSV-GFP (MOI = 0.1). Cells were imaged every 6 min from 24 to 48 hpi.
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Time in hr: min: sec.

(MOV)

S13 Movie. Infection of Red F-actin-A549 cells with HPIV3-GFP. Red F-actin-A549 cells

were infected with the HPIV3-GFP (MOI = 0.1). Cells were imaged every 6 min from 24 to 48

hpi. Time in hr: min: sec.

(MOV)

S14 Movie. Infection of Red F-actin-A549 cells with HMPV-GFP. Red F-actin-A549 cells

were infected with the HMPV-GFP (MOI = 0.1). Cells were imaged every 6 min from 24 to 48

hpi. Time in hr: min: sec.

(MOV)
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