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Costimulatorymolecules have been found to play significant roles in anti-tumor

immune responses, and are deemed to serve as promising targets for adjunctive

cancer immunotherapies. However, the roles of costimulatory molecule-

related genes (CMRGs) in the tumor microenvironment (TME) of acute

myeloid leukemia (AML) remain unclear. In this study, we described the

CMRG alterations in the genetic and transcriptional fields in AML samples

chosen from two datasets. We next evaluated their expression and identified

two distinct costimulatory molecule subtypes, which showed that the

alterations of CMRGs related to clinical features, immune cell infiltration, and

prognosis of patients with AML. Then, a costimulatory molecule-based

signature for predicting the overall survival of AML patients was constructed,

and the predictive capability of the proposed signature was validated in AML

patients. Moreover, the constructed costimulatory molecule risk model was

significantly associated with chemotherapeutic drug sensitivity of AML patients.

In addition, the identified genes in the proposed prognostic signaturemight play

roles in pediatric AML. CMRGs were found to be potentially important in the

AML through our comprehensive analysis. These findings may contribute to

improving our understanding of CMRGs in patients with AML, as well as provide

new opportunities to assess prognosis and develop more effective

immunotherapies.
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1 Introduction

Acute myeloid leukemia (AML) is one of the most prevalent

hematological tumors. It is defined by the increase of

undifferentiated myeloid progenitor cells in the hematopoietic

system (Short et al., 2018). For decades, chemotherapy with or

without transplantation has been the standard treatment for

AML patients (Mazzarella et al., 2014; Bose et al., 2017; Jiang

et al., 2021a). Despite advances in drug extraction, therapeutic

care, and early detection, the overall long-term survival of AML

patients remains dismal (Zeidan et al., 2019; Jiang et al., 2021b;

Jiang et al., 2021c). Therefore, identifying novel and effective

biomarkers, as well as prognostic risk models, become urgent.

The tumor microenvironment (TME) plays a crucial role in

AML growth, development, and therapy (Jiang et al., 2022). In TME,

T cells often aid in the differentiation of cancerous cells from healthy

cells. Before launching the second assault, the naïve T cells must be

activated by two signals, a specific antigen that can be recognized by

receptors on the T cells and nonspecific costimulatory molecule

signals (Bluestone, 1995). By changing the latter, cancer cells could

prevent the recognition and escape from the attack (Sanmamed and

Chen, 2018). Apart from the checkpoint pathway belonging to the

B7-CD28 family (Janakiram et al., 2015; Zhang et al., 2018),

costimulatory molecular signals also contain molecules from the

tumor necrosis factor (TNF) family (Ward-Kavanagh et al., 2016).

These costimulatory molecule-related genes (CMRGs) are possible

targets for the creation of new immune therapies, and they may be

good supplements to current methods (Croft et al., 2013; Schildberg

et al., 2016). However, the majority CMRGs’ expression and their

clinical implications in AML remain unknown.

This work systematically assessed the expression patterns of

CMRGs and obtained a complete picture of the intra-tumoral

immunological landscape via using CIBERSORT and

ESTIMATE algorithms. First of all, expression levels of

CMRGs were used to divide a total of 242 AML patients into

two clustered costimulatory molecule subgroups. AML patients

were then classified into CMRG-related gene subtypes according

to those chosen differentially expressed genes between two

costimulatory molecule subtypes. In addition, we constructed

a signature that accurately predicted the clinical outcomes of

AML patients and characterized the AML immune landscape.

Our work, in a nutshell, systematically describes the landscape of

costimulatory molecules and highlights their potential

applications clinically, so aiding the creation of a rationale to

guide AML patient care and treatment.

2 Methods and materials

2.1 Acquisition of data

Gene expression and relevant clinicopathological

information on AML were from databases named The Cancer

Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) and the

Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.

gov/geo/). One GEO AML cohort named GSE10358 and the

TCGA-AML cohort were obtained for further relative analyses.

The fragments per kilobase million (FPKM) values from the

TCGA-AML set were converted to transcripts per kilobase

million (TPM) and were then assumed to be the same as

those from microarrays (Conesa et al., 2016; Zhao et al.,

2021). The two chosen AML cohorts were combined. We

removed data from individuals for whom we had no

information on their overall survival; hence, 242 AML

patients were included in our analysis. The clinical factors

shared by the two AML groups were gender, age, duration of

follow-up, and survival status. To confirm our proposed

prognostic risk model, we also gathered expression data of

pediatric AML samples from the Therapeutically Applicable

Research to Generate Effective Treatments (TARGET)

database (https://ocg.cancer.gov/programs/target) as an

external validation cohort. Whole blood cohorts from GTEx

downloaded from the UCSC Xena database (https://

xenabrowser.net/datapages/) served as control samples for the

analyses on the TCGA-AML and TARGET-AML samples.

2.2 Clustering analyses of costimulatory
molecule-related genes

A total of 60 CMRGs were retrieved from previous

publications (Zhang et al., 2020), as shown in

Supplementary Table S1. We used the package named

“ConsensusClusterPlus” in R software to perform

consensus clustering analysis. The criteria were as follows:

Firstly, the cumulative distribution function (CDF) curve

should increase gradually and smoothly. Then, the size of all

groups was large enough. Finally, the intra-group correlation

should increase after clustering, while the inter-group

correlation decreased. Also, gene set variation analysis

(GSVA) was carried out using the hallmark gene set (c2.

cp.kegg.v7.2) to investigate differences in chosen CMRGs in

the biological processes.

2.3 Relationship between costimulatory
molecule subtypes and clinical features of
acute myeloid leukemia patients

We evaluated the relationships between clustered

costimulatory molecule subtypes, clinical features, and

outcomes. The characteristics mainly included gender and age.

In addition, Kaplan-Meier curves, which were created using the

“survival” and “survminer” packages, were used to evaluate the

differences in overall survival across various costimulatory

molecule subtypes.
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2.4 Correlations of costimulatory
molecule subtypes with tumor
microenvironment in patients with acute
myeloid leukemia

We assessed the immune, estimate and stromal scores of each

AML sample in this study by using the ESTIMATE algorithm.

Using the CIBERSORT algorithm, the fractions of 22 immune

cell subgroups of each AML sample were estimated (Newman

et al., 2015). The immune cell infiltration in the TME of AMLwas

also identified by using an algorithm named single-sample gene

set enrichment analysis (ssGSEA) (Rooney et al., 2015).

2.5 Identification of differentially
expressed genes and annotation of their
functions in detail

Differentially expressed genes between the two different

costimulatory molecule subtypes were identified in R

software. To explore the probable activities of

costimulatory molecule profile-related differentially

expressed genes and determine associated functions, we

used “clusterprofiler” package to carry out functional

enrichment analyses on the chosen gene.

2.6 Construction and validation for the
costimulatory molecule risk model

The CMRG-related risk model was generated, and the score

was estimated for each AML sample to quantify the

costimulatory molecule patterns. Differentially expressed genes

were subjected to univariate Cox analysis. Using an unsupervised

clustering technique, AML patients were divided into three

distinct CMRG-related gene subtypes (gene subtypes A, B,

and C) based on the findings of the univariate Cox analysis.

The chosen 242 patients with AML were then randomly

categorized into two sets at a ratio of 1:1, a training AML set

(n = 121) and a testing AML set (n = 121). Based on CMRG-

related genes with prognostic value, we carried out the Lasso Cox

algorithm to minimize the over-fitting risk in the training AML

set. We next analyzed each independent variable’s change and

established a risk model by using 10-fold cross-validation.

Candidate genes were further analyzed and chosen in the

training AML set based on the using multivariate Cox

regression results. The costimulatory molecule signature was

calculated using the data of each gene’s coefficient and

expression. Then, based on the median score of whole

samples in the AML training set, samples of two sets were

respectively divided into low- or high-risk groups. Survival

analysis and the creation of receiver operating characteristic

(ROC) curves were performed on AML patients belonging to

two risk categories.

2.7 Drug susceptibility analysis

To explore differences in the chemotherapeutic drug

curative effect in AML patients between two risk groups

from the whole set, we calculated the values of semi-

inhibitory concentration (IC50) of drugs using the

“pRRophetic” package in R software.

2.8 Statistical analyses

All statistics were analyzed in R software (version 4.1.0).

Statistical significance was all set at p < 0.05.

3 Results

3.1 Genetic and transcriptional alterations
of costimulatory molecule-related genes
in patients with acute myeloid leukemia

This research contained 60 CMRGs in total. We firstly

investigated the somatic copy number variations in the

60 CMRGs. Figure 1A showed the locations of the copy

number variation (CNV) alterations in the CMRGs on their

respective chromosomes. Among all the CMRGs, ICOSLG,

TNFRSF14, TNFRSF4, TNFRSF18, TNFRSF8, TNFRSF1B,

RELT, TMIGD2, CD70, TNFSF14, and TNFRSF6B had

widespread CNV increases, while TNFRSF25, TNFRSF9,

TNFRSF11B, VTCN1, TNFRSF10D, TNFRSF13B, CD40,

TNFRSF13C, and EDA showed CNV decreases (Figure 1B).

A comparison on the mRNA levels of CMRGs between AML

and normal samples revealed that the majority of CMRGs

were positively linked with CNV alteration. Some CMRGs

with CNV gain, including TNFRSF18, TNFRSF1B, RELT,

TMIGD2, and CD70, were significantly elevated in samples

from the AML cohort. Meanwhile, CMRGs with CNV loss,

including TNFRSF25, TNFRSF11B, VTCN1, CD40, and EDA,

were expressed at lower levels in patients with AML when

compared to normal samples (Figure 1C), suggesting CNV

might participate in regulating the CMRGs’ expression.

However, several CMRGs with a high frequency of CNV

gain or loss did not vary between AML and normal

samples. Thus, CNV is not the sole factor involved in

CMRGs’ expression regulation. Both the genetic landscape

and expression levels of CMRGs were significantly different

between AML samples and controls, showing that CMRGs

play a latent role in the oncogenesis of AML.
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3.2 Identification of costimulatory
molecule subtypes in acute myeloid
leukemia and their tumor
microenvironment characteristics

A total of 455 patients from two AML cohorts (TCGA-

AML and GSE10358) were integrated into our study at the

beginning. Since only 242 AML samples had information on

clinical results, we extracted their data of them for further

analysis. The univariate Cox regression and Kaplan-Meier

analyses revealed that 44 CMRGs were found might be

related to the prognosis of AML (Supplementary Figure

S1). A costimulatory molecule network illustrated the full

picture of CMRG connections, regulator linkages, and their

predictive relevance in AML patients (Figure 2A). To further

investigate the expression features of CMRGs in AML, we

categorized the AML samples based on the expression

profiles of 60 CMRGs using a consensus clustering

technique. We found that k = 2 seemed to be the ideal

choice for classifying the complete cohort into two

categories (Figure 2B). Next, the results of PCA analysis

revealed the obvious costimulatory molecule differences

between the two costimulatory molecule subtypes

(Figure 2C). Kaplan-Meier curves then showed that

subtype A patients had longer overall survival than

subtype B patients (Figure 2D). Furthermore, we made a

FIGURE 1
Genetic and transcriptional alterations of CMRGs in AML patients. (A) Locations of CNV alterations in CMRGs on 23 chromosomes. (B)
Frequencies of CNV loss and CNV gain among CMRGs. (C) Expression distributions of CMRGs between normal samples fromGTEx and AML samples
from TCGA database.
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FIGURE 2
Identification of costimulatorymolecule subtypes and related biological characteristics. (A) Interactions among 60CMRGs in patients with AML.
(B) Consensus matrix heatmap defining two costimulatory molecule clusters. (C) PCA analysis between the two costimulatory molecule subtypes.
(D) Result of the univariate analysis of CMRGs. (E) Differences between the two subtypes in clinical features, as well as the CMRGs’ expression levels.
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comparison of the clinical features between the two various

subtypes of AML. As demonstrated in Figure 2E, cluster A

was more strongly associated with a younger age than

cluster B.

We found that subtype B was enriched in activated immune

pathways, such as cytokine receptor interaction, cell adhesion

molecules, graft versus host disease, antigen processing and

presentation, B cell receptor signaling pathway, allograft

rejection, Toll-like receptor signaling pathway, regulation of

actin cytoskeleton, and chemokine signaling pathway

(Figure 3A). To investigate the functional role of CMRGs in

the TME of AML, we used the CIBERSORT algorithm to analyze

the correlations between the costimulatory molecule subtype and

the 22 immune cell subsets of each AML sample. As shown in

Figure 3B, there had been significant differences in most immune

cell infiltration between subtype A and subtype B. The infiltration

FIGURE 3
Correlations of immune cell infiltration. (A) GSVA analysis between two costimulatory molecule subtypes. (B) The abundance of 22 infiltrating
immune cells.
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levels of activated CD8+ T cells, activated B cells, activated CD4+

T cells, natural killer cells, immature B cells, activated dendritic

cells, monocytes, macrophages, mast cells, neutrophilia,

regulatory T cells, follicular helper T cells, type 1 helper

T cells, type 2 helper T cells and type 17 helper T cells were

higher in patients in subtype B than in those in subtype A.

3.3 Gene subtypes derived from
differentially expressed genes

The biological role of costimulatory molecule patterns in

AML remains unknown. We used the “limma” package in R

software to identify costimulatory molecule subtype-related

differential expressed genes and then carried out the

functional enrichment analysis based on them (Figures 4A,B).

KEGG analysis indicated these identified costimulatory molecule

subtype-related genes enriched in pathways related to cancers

and immunology, suggesting that costimulatory molecules play

vital roles in TME regulation (Figure 4A). The GO chord in

Figure 4B also showed the GO mainly enriched terms and the

significantly involved differential expressed genes. We then

carried out the univariate Cox regression analysis on the

subtype-related genes to screen out 501 genes that were

closely related to overall survival time (Supplementary Table

S2). To further explore potential regulation mechanisms, we

performed a consensus clustering algorithm, which divided all

AML patients into three subtypes named gene subtypes A-C.

Kaplan-Meier curve in Figure 4C showed that patients in the

subtype C group had the best favorable clinical outcome, whereas

patients in subtype B showed the worst overall survival. The

costimulatory molecule subtypes showed significant differences

in the expression levels of CMRGs, which was consistent with the

results of the costimulatory molecule patterns (Figure 4D).

Moreover, costimulatory molecule gene subtype B patterns

seemed more associated with elder age (Figure 4E).

3.4 Construction and validation of the
costimulatory molecule-related gene-
based risk model

The CMRG-related prognostic signature was then

established. First, we randomly divided the AML patients into

two groups, including a training group (n = 121) and a testing

group (n = 121) at a ratio of 1:1. Following, LASSO and

multivariate Cox analyses for costimulatory molecule subtype-

related differentially expressed genes were carried out to identify

CMRG-related genes with prognostic value in AML patients.

According to the minimum partial probability of deviance

(Snyder et al., 2014), hub overall survival-related genes

remained after LASSO regression analysis (Figure 5A). We

then carried out a multivariate Cox analysis to finally obtain

15 ones (GPR18, LGALS1, AOAH, DNMT3B, CBR1, ANKRD55,

SIRPB2, DPY19L2, IL1R2, ST8SIA4, DOC2A, SERPINI2,

GZMB, TNNT1, and SORCS2), which included nine high-risk

genes and six low-risk genes (Supplementary Table S3). Hence,

the CMRG-related risk model was constructed as follows: Risk

score = -0.4339 * GPR18 + 0.3393 * LGALS1 - 0.3897 * AOAH +

0.3038 * DNMT3B + 0.2168 * CBR1 + 0.3566 *

ANKRD55–0.3112 * SIRPB2 - 0.2369 * DPY19L2 + 0.1176 *

FIGURE 4
Identification of gene subtypes. (A) Bubble plot of KEGG
enrichment analyses based on differentially expressed genes
between two subtypes. (B) Ring plot showing results of GO
enrichment. (C) Kaplan-Meier curve analysis for overall
survival of the three gene subtypes. (D) Differences in the CMRGs’
expression among the three gene subtypes. (E) Relationships
between clinical features of AML patients and gene subtypes.
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IL1R2 -0.3160 * ST8SIA4 -0.2405 * DOC2A + 0.4186 * SERPINI2

+ 0.3901 * GZMB + 0.1895 * TNNT1 + 0.3065 * SORCS2. The

score of each AML patient was measured according to the

signature, the median of which was chosen as the cutoff to

divide AML patients into two risk score groups. The

distribution of AML patients in the two costimulatory

molecule subtypes, three gene subtypes, two risk score groups,

and clinical outcomes were shown in Figure 5B. We then

analyzed the risk scores and discovered a statistically

significant difference among the three CMRG-related gene

subtypes. As shown in Figure 5C, risk scores in the gene

subtype B group were the highest, while the risk scores in the

gene subtype C group were the lowest, which indicated that lower

costimulatory molecule score might be related to immune

activation. It was noteworthy that gene subtype B had a

higher risk score than gene subtype A. Furthermore,

Figure 5D showed the distribution of scores in two

costimulatory molecule subtypes, where AML patients in the

costimulatory molecule subtype B group had significantly higher

scores than others in the costimulatory molecule subtype A

group.

To validate the predictive value of the CMRG-related risk

model in patients with AML, we separately divided AML patients

in each set into two different risk groups according to the cutoff,

which was the median value of those in the AML training set. In

detail, AML patients whose scores were larger than the chosen

cutoff were grouped as low risk, while others whose scores were

smaller than the chosen cutoff were grouped as high risk. The

survival curves revealed that AML patients in the training set

with lower scores significantly had a favorable overall survival

time when they were compared to those with higher scores

(Figure 6A). In the training set, the 1-, 3-, and 5-year survival

rates for AML patients were respectively 0.913, 0.94, and 0.978,

which were represented by AUC values (Figure 6B). The heatmap

showed the 15 CMRG-related genes’ expression in two risk

groups in the AML training set (Figure 6C). The distribution

of the costimulatory molecule risk score revealed that the overall

survival time of AML patients in the training set decreased with

the scores increase (Figure 6D). Patients in the AML testing set

were similarly divided into two risk categories using the same

algorithm and cutoff as the training set. Survival analysis revealed

that the group with lower scores had considerably better clinical

FIGURE 5
Construction of CMRG-related signature in the training set. (A) Results of LASSO analysis. (B) Alluvial diagram illustrating the subtype
distributions in the training set. (C)Differences in risk model scores among the three gene subtypes. (D)Differences in riskmodel scores between the
two costimulatory molecule subtypes.
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FIGURE 6
Validation of the constructed CMRG-related risk model in both training and testing sets. (A) Kaplan-Meier analysis of the overall survival
between groups in the AML training set. (B) ROC curve analysis predicting the 1-, 3-, and 5-year survival sensitivity and specificity in the AML training
set. (C)Heatmap of the 15 identified genes’ expression in the constructed risk model in the AML training set. (D) The CMRG-related score distribution
and survival status in the AML training set. (E) Kaplan-Meier analysis of overall survival between groups in AML testing set. (F) ROC curve analysis
predicting the 1-, 3-, and 5-year survival sensitivity and specificity in the AML testing set. (G)Heatmap showing the expression of 15 identified genes in
the constructed risk model in the AML training set. (H) The CMRG-related score distribution and survival status in the AML testing set.
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FIGURE 7
Evaluation of the TME and checkpoints. (A–F)Correlations between the risk model and immune cell types. (G)Correlations between the CMRG
signature and immune or estimate scores. (H) Expression of immune checkpoints in groups. (I) Correlations between the 15 identified genes in the
proposed risk model and immune cell abundance.
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results (Figure 6E). While studies of 1-, 3-, and 5-year prognosis

prediction efficiencies revealed that the CMRG-related risk score

maintained high AUC values, this was not the case for the 5-year

prognostic efficiency (Figure 6F). The heatmap and survival

status of AML patients showing the variation tendencies of

two risk groups from the testing set were shown in

Figures 6G,H, respectively, further confirming the

costimulatory molecule signature had an excellent ability to

predict the clinical outcome of patients with AML.

3.5 Evaluation of tumor
microenvironment and checkpoints

To investigate the difference in TME and expression of

checkpoints between two risk groups divided by constructed

signature, we divided all the 242 AML patients into two groups

according to cutoff and perform the CIBERSORT algorithm, by

which we could assess the correlations between risk scores and

immune cell abundance. As the scatter diagrams in Figure 7A

showed the constructed costimulatory molecule risk score was

positively correlated with monocytes and was negatively

correlated with plasma cells, resting memory CD4+ T cells,

resting mast cells, memory B cells, and gamma delta T cells

(Figures 7A–F). Higher risk scores were also closely linked with

higher immune scores as well as higher estimate scores

(Figure 7G). Figure 7H shows that a total of 25 immune

checkpoints, including LAG3, IDO1, and PDCD1, were

different between the two groups from the total AML set.

Moreover, the majority of immune cells were linked with the

genes in the proposed model (Figure 7I).

3.6 Analysis of drug susceptibility and
validation in pediatric acute myeloid
leukemia

We then selected chemotherapy drugs to evaluate the

treatment sensitivities of patients in different risk AML

groups. Interestingly, we found that the patients with higher

costimulatory molecule scores had lower IC50 values for WZ-1-

84, WO2009093972, SL 0101–1, S-trityl-L-cysteine, Roscovitine,

Rapamycin, Parthenolide, NVP-TAE684, Kin001-135, GNF-2,

Dasatinib, CGP-082996, CGP-60474, Bortezomib, and AZ628,

while IC50 values of chemotherapeutics such as VX-702,

Vorinostat, Thapsigargin, SB 216763, Plx4720, PF-562271,

OSI-906, MK-2206, Mitomycin-C, Midostaurin, Gemcitabine,

Embelin, Cytarabine, BX-795, Bosutinib, BI-D1870, AZD7762,

Axitinib, AP-24534, AKT inhibitor III, AG014699 and

ABT263 were significantly lower in the patients with lower

costimulatory molecule scores (Supplementary Figure S2).

Moreover, to validate the prognostic performance of the

costimulatory molecule signature in pediatric AML, we

extracted the data of samples from the TARGET database. It

is obvious that most CMRG-related genes in the proposed

signature were differentially expressed between pediatric AML

samples and control samples (Supplementary Figure S3),

suggesting these CMRG-related genes also played important

roles in pediatric AML.

4 Discussion

The involvement of costimulatory molecule signal in innate

immunity and anticancer effects has been shown by research

(Tang et al., 2018; Zhang et al., 2020). Nonetheless, the global

impact mediated by the combined numerous CMRGs has not

been completely understood. The current investigation indicated

widespread alterations in the CMRGs at the levels of

transcription and genetics (Figure 1). We next identified two

unique costimulatory molecule subtypes according to the

expression levels of 60 CMRGs. Patients in the subtype B

group showed more advanced clinical characteristics and

worse overall survival rates (Figure 2). The TME features

between subtypes also varied. The costimulatory molecule

subtypes were distinguished by the activation of the immune

system (Figure 3). The differences in transcriptomes of mRNA

between costimulatory molecule subtypes were strongly

associated with immune biological pathways (Figure 4).

Following, we identified three gene subtypes according to the

expression of differentially expressed genes between two

costimulatory molecule subtypes. We finally construct the

effective prognostic costimulatory molecule signature and

validated its predictive ability (Figures 5,6). Diverse

costimulatory molecule scores were associated with markedly

different prognosis, clinical features, immunological checkpoints,

TME, and drug susceptibility among AML patients (Figure 7 and

Supplementary Figure S2). Further validation revealed that the

identified CMRGs in the proposed signature might also play

important roles in pediatric AML (Supplementary Figure S3).

The prognostic model may be used to predict the prognosis of

AML patients and will aid in the comprehension of AML’s

molecular process.

The clinical outcome of AML after conventional

chemotherapy is still poor (Prebet et al., 2012; Boddu et al.,

2017). Despite the achieved advances in immunotherapy in

recent years, the outcomes of AML patients are heterogeneous

(Johnson et al., 2022), which highlights the role of TME (Huang

et al., 2019). Immune cells, the main components of TME, take

part in various immune activities (Seager et al., 2017). Evidence

has shown the effects of TME on the development, progression of

tumors, as well as therapeutic resistance (Hinshaw and Shevde,

2019; Banerjee et al., 2021). In our study, the costimulatory

molecule pattern which was characterized by immune inhibition

was found significantly associated with higher costimulatory

molecule scores. Also, the characteristics of TME in AML, as

Frontiers in Genetics frontiersin.org11

Mao et al. 10.3389/fgene.2022.973319

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.973319


well as the 22 immune cell abundance, differed significantly

between costimulatory molecule subtypes (Figure 3). More and

more evidence has shown that immune cells play vital roles in

AML (Ma Y et al., 2020). Macrophages could support the

progression and tumor drug resistance by providing

nutritional support (Vitale et al., 2019; Boutilier and Elsawa,

2021). They were also reported as pro-tumoral, as well as

neutrophils, both of which promote invasion and metastasis

and suppress surveillance (Powell and Huttenlocher, 2016;

Hinshaw and Shevde, 2019; Wu et al., 2020). Dendritic cells

are tumor-promoting (Chaput et al., 2008; Veglia and

Gabrilovich, 2017; Wculek et al., 2020), while natural killer

cells eliminate tumor cells. Additionally, regulatory T cells

also suppress immunological responses with anti-cancer

impact (De Simone et al., 2016; Elkord and Sasidharan, 2018).

Gamma delta T cells may efficiently identify and eliminate tumor

cells, hence they could suppress the progression of tumors (Ma R

et al., 2020). Subtype B and high costimulatory molecule scores,

with worse prognosis, had higher activated CD4+, CD8+, and

gamma delta T cell infiltration, which suggest that they play

negative roles in the development of AML.

Checkpoints in the immune system play crucial roles in the

immunosuppression of most cancers (Pardoll, 2012; Ribas and

Wolchok, 2018). In hematological malignancies, common

immune checkpoint targets are reported mainly include

PDCD1, IDO1, PD-L1, LAG3, and CTLA-4 (Ok and Young,

2017). Here, we found three common immune checkpoints,

including PDCD1, LAG3, and IDO1, elevated in the group

with higher costimulatory molecule scores (Figure 7),

indicating the state of immunosuppression in the bone

marrow microenvironment. While the immunosuppressive

state of AML patients was reported might be the reason

causing the immunotherapy resistance (Xu et al., 2021). In

addition, tumor cells in leukemias could help create the

immunosuppressive state by generating energy that is enough

for escaping from antitumor immune surveillance (Xu et al.,

2021). Finally, we explored the association between the signature

and medication response to facilitate the development of

individualized treatment plans. It is crucial to identify novel

biomarkers for immunotherapy patient selection. The findings

indicated that low-risk individuals may benefit from these

medications. Our signature may further assist in identifying

patients who may benefit from antitumor immunotherapy and

aid in the formulation of a more rational and effective treatment

regimen, therefore contributing to personalized therapy for

individuals with varying risk profiles.

Absolutely, this study had several limitations. First of all, the

analyses were all carried out on the samples obtained from the

public databases with retrospective data. Large-scale prospective

studies in vivo and in vitro need to be performed to confirm the

findings in this study. Also, the number of clinical characteristics

that both datasets in this study contained is too small. Some

common and crucial clinical variables for AML patients were

unavailable for further analysis, which may affect the

confirmation of the prognostic value of constructed signature

in the immune response in AML.

5 Conclusion

Our analysis based on the CMRGs revealed a potential

regulatory mechanism in AML, by which they might affect

the TME, clinical features, drug susceptibility, and prognosis

of patients with AML. These findings highlight the applications

of CMRGs in AML in clinics and provide ideas for applying

personalized immunotherapy to AML patients.
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