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Abstract
Since 1986, studies about the escape decisions made by prey are grounded in optimal es-

cape theory (OET) which states that prey will initiate escape when the risk of remaining and

the costs of leaving are equal. However, a recent hypothesis, Flush Early and Avoid the

Rush (FEAR), acknowledged that the cost of monitoring approaching predators might be a

ubiquitous cost. The FEAR hypothesis predicts that prey will generally flee soon after they

detect a predator so as to minimize the costs incurred by monitoring the predator. Knowing

whether animals flee to reduce monitoring costs is of applied interest because wildlife man-

agers use escape behavior to create set-back zones to reduce human-wildlife conflict. Here

we provide the most comprehensive assessment of the FEAR hypothesis using data col-

lected from 178 bird species representing 67 families from two continents. The FEAR hy-

pothesis explains escape behavior in 79% of studied species. Because the FEAR

hypothesis is a widespread phenomenon that drives escape behavior in birds, alert distance

must be systematically incorporated into the design of set-back zones to protect

vulnerable species.

Introduction
Optimal escape theory (OET) states that prey initiate flight at the distance at which the risk of
remaining and the cost of flight are equal [1]. Since this seminal paper, hundreds of studies
have generated a rich and diverse set of evidence that has documented various factors that in-
fluence flight decisions (reviewed in [2–4]). However, a recent hypothesis acknowledged a
ubiquitous cost in the trade-off predicted by OET that apparently explains most of variation in
prey’s decision to flee: the cost individuals pay to monitor an approaching predator [5]. The
“Flush Early and Avoid the Rush” (FEAR) hypothesis states that animals will flee an approach-
ing predator soon after detection in order to minimize costs incurred by monitoring predator
behavior [5]. Ongoing monitoring is expected to increase costs by diverting attention away
from beneficial activities, as well as by incurring energetic costs [5–7].
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As initially formulated, FEAR is agnostic as to whether flight is initiated immediately upon
detection or soon after detection. If flight is initiated at the moment of detection, one might
question OET. However, the FEAR hypothesis does not require immediate flight, and thus can
be consistent with OET, albeit by highlighting the potential importance of on-
going monitoring.

Evidence in support of the FEAR hypothesis has come from studies showing positive rela-
tionships between alert distance (AD, the predator-prey distance when prey becomes aware of
and begins to monitor the predator) and flight initiation distance (FID, the predator-prey dis-
tance when escape begins) [8]. A meta-analysis reviewing studies up to January 2012 found
support for FEAR hypothesis in birds and mammals by showing a strong positive correlation
between FID and AD in most species [9]. Since then, more studies have identified the same
positive relationship in other taxa (e.g. [10,11]).

Despite this apparent support for FEAR, we recently reported that testing the FEAR hypoth-
esis using correlational statistics may be inappropriate much of the time because such statistics
might violate assumptions of the statistical test (heteroscedasticity), are particularly sensitive to
outliers, and because they do not directly test the key FEAR prediction about fleeing soon after
detection [12]. For this reason, we developed a new metric, the phi index (F), to correctly test
the FEAR prediction. Because conclusions one draws about FEAR are metric-dependent [12],
and because initial support for the FEAR hypothesis comes from related datasets [8,9,12], a
more comprehensive evaluation using an appropriate metric and a larger data set is warranted.

Developing a fundamental understanding of flight decisions is of applied interest because
wildlife managers use escape behavior to create set-back zones to reduce human-wildlife con-
flict [13]. An implicit assumption underlying setback zone design is that OET drives escape be-
havior [13–16]. However, if animals tend to flush earlier than predicted by traditional OET, it
is possible that current set-back zones are too small, what could result in fitness cost to pro-
tected species [17,18].

Here we provide the most comprehensive evaluation of the effect of awareness on species
fearfulness to date. Using the phi index (F), we tested the effect of alert distance on FID of 178
species of birds studied in USA and Australia, representing 127 genera and 67 families.

Materials and Methods

Flight initiation distance
FID data were collected in USA and Australia from 1999 to 2005 using a standard protocol
(sensu [8,19]). Observers identified birds that were foraging or engaged in ‘relaxed behaviors’,
such as roosting or preening. Highly vigilant, obviously alarmed or nesting individuals were
not approached, nor were endangered species. FID was measured by walking directly towards
the subject at 0.5 m/s. Observers were previously trained to maintain speed constant while min-
imizing excessive vertical movement across a variety of terrains [20,21]. A marker was dropped
at the starting point of the approach. Subsequent flags were dropped when the animal first ori-
ented itself towards the approaching human (AD) and when the animal began to flee (FID). In
some rare cases animals fled as soon as they detected the approaching human (i.e., FID = AD),
but in most cases, animals oriented towards the human for a period of time before fleeing (i.e.,
FID< AD). The distances between these markers were afterwards measured to the nearest 0.1
m. Observers attempted to avoid resampling individuals by flushing on birds in different geo-
graphical locations and not resampling the same location repeatedly. A modest degree of re-
sampling subjects, however, has been shown to not influence the results of studies like this
[21].
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Measuring the effect of awareness on species fearfulness
We used the phi index (F) to test the effect of awareness on species fearfulness [12]. F is a
goodness-of-fit metric that measures how close to AD FID is. Importantly, F can be used as an
effect size metric which provides the magnitude and direction of the effect of AD on FID
[12,22]. F is a standardized metric (i.e., it ranges from 0 to 1); F-values that deviate from 0.5
(the null expectation; analogous to a Pearson’s r = 0 in non-constrained relationships) are a ro-
bust indication of a species that flushes later (< 0.5) or earlier (> 0.5). Because AD and FID is
an envelope constraint, FID can only assume values equal to or lower than its actual AD (a
prey cannot run away from a predator before it has detected it). Thus, the significance of F is
tested using a null model that respects the constraint FID� AD [12]. Null models were tested
with 10,000 iterations. P-values� 0.05 were considered significant.

Statistical methods and phylogenetic non-independence
Closely related species are more likely to have similar phenotypes because of their common an-
cestry. The existence of a phylogenetic structure on animal responses makes observations sta-
tistically dependent [23]. We used two metrics to test for phylogenetic signal in the escape
response of species from our data set: Blomberg’s K, that assumes Brownian motion character
evolution, and a randomization procedure, PIC, which does not assume any underlying model
of evolution [24]. Blomberg’s K values range from 0 to infinity; K-values< 1 implies that close
relatives resemble each other less than expected under a Brownian motion model [24]. Signifi-
cance of observed K values was tested with a Monte Carlo test as implemented using the R
package “phytools” [25]. The PIC randomization tests if the observed structure in data differs
from that expected by chance and was implemented using the R package “picante” [26]. We
used the most recent phylogenetic avian hypothesis [27] (Fig. 1).

Of the 178 species studied, 75 were already tested in previous studies [8,9,12]. Therefore,
some of our data were not entirely independent so we present results both with (178) and with-
out the 75 species already studied (103).

Ethics statement
This study was carried out with approval of the Macquarie University Animal Care Committee
(protocol # 99021) and the University of California Los Angeles Animal Research Committee
(IACUC # 2000–147–01). Data were collected on public and private land after acquiring re-
quired permits. By design, experimental approaches were designed to create only a brief distur-
bance and we are not aware of any lasting harm caused by the experimental approaches. In
addition, and to reduce the likelihood of any negative effects, endangered species were not tar-
geted, and we only targeted birds away from their nests.

Results

Using the 178 species
The F-values ranged from 0.16 to 0.97 (Fig. 2; S1 Table) with the most frequent values occur-
ring between 0.75 and 0.8 (36 species; 20%). Overall, 144 of 178 bird species had significant F-
values: 140 species (79%) significantly flushed early, whereas only four species significantly
flushed later. We found no evidence of phylogenetic signal in F either using all 178 species (K
= 0.06, P = 0.32; PIC = 0.003, P = 0.29), or using only the 140 species that flushed early (K =
0.03, P = 0.49; PIC = 0.004, P = 0.50).
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Using only the 103 species not tested in previous study
Overall, the results were quite similar to those using the 178 species. The F-values ranged from
0.16 to 0.97 (Fig. 2; S1 Table) with the most frequent values occurring between 0.75 and 0.8 (18
species; 17%). Overall, 80 of 103 bird species had significant F-values: 78 species (76%) signifi-
cantly flushed early, whereas only two species significantly flushed later. Again, there was no
evidence of phylogenetic signal in F either using all 103 species (K = 0.12, P = 0.68; PIC =
0.002, P = 0.66), or using only the 78 species that flushed early (K = 0.04, P = 0.97; PIC = 0.002,
P = 0.98).

Fig 1. Phylogenetic hypothesis of the 178 avian species included in the present study.

doi:10.1371/journal.pone.0119906.g001
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Discussion
The Flush Early and Avoid the Rush (FEAR) hypothesis is a recent hypothesis that states that
prey flush soon after detecting a predator to reduce monitoring costs. While over 50 years of
observations have provided support for Optimal Escape Theory (OET) [1–3], there is less sup-
port of the predictions of the FEAR hypothesis. Using a metric specifically designed to quantify
how much FID is predicted by AD [12], we showed that most of the 178 bird species tested
flushed early (i.e., F> 0.5) after detecting an approaching human, in support to FEAR hypoth-
esis. Because many of our F-values are less than 1.0, yet greater than 0.5, considerable variation
in escape behavior remains to be explained and the rich literature reviewing OET has illustrat-
ed how many of the factors that influence the costs and benefits of escape can explain residual
variation [2–4].

Importantly, we demonstrated that the overall effect was not biased by results of species pre-
viously evaluated [12] since all results were essentially the same with and without the inclusion
of the species previously tested. Our present study provides additional and independent results
consistent with birds following FEAR’s key prediction.

Future work is needed: 1) to explain why some species may not follow the FEAR hypothesis;
2) to better understand post-escape behavior; 3) to develop formal mathematical models to ex-
plain FEAR; and 4) to test the effect of how the predator’s behavior influences FEAR.

Fig 2. Frequency distribution of phi indices (Φ) and their associated P-values of the avian species
studied.Results using all species (N = 178) or only the species not tested previously (N = 103) are shown
separately. Vertical dashed-line indicates the null expectation ofΦ (0.5). Black bars indicate the frequency of
species that significantly flushed early (i.e., P-values< 0.05).

doi:10.1371/journal.pone.0119906.g002
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Comparative analyses should shed light on the first question. Studying post-escape behavior is
difficult because in many cases the focal subject flees and is no longer in sight. In some cases,
however, animals move away and continue to monitor the approaching human. Understand-
ing the decision to engage in safer on-going monitoring is a question worthy of study because
this initially seems to challenge FEAR; why should an animal flush early to reduce on-going
monitoring costs only to engage in on-going monitoring? However, FEAR focuses on the deci-
sion to flee and on-going monitoring reduces foraging efficiency. It is likely that individuals
who maximize foraging efficiency while foraging will have higher expected fitness than those
who forage inefficiently; formal models of FEAR can help clarify these tradeoffs. Finally, while
this present study approached birds using a standard protocol where the experimenter walked
directly towards and looked at the prey, a recent study [28] showed that magpies, Pica pica,
flushed earlier when looked at directly than when the approacher looked elsewhere. This raises
interesting questions: Is this result generalizable to other species? Do prey not directly gazed at
flush later due the uncertainty of whether the predator has detected them? Similar unanswered
questions apply to predator’s directness of approach.

Interestingly, there was no significant phylogenetic signal in F; a finding consistent with
previous studies of FEAR [9,12]. The absence of a phylogenetic signal provides insights about
the biological factors leading to the flush early phenomenon. If flushing early was overwhelm-
ingly determined by a single factor—such as body size or some other morphological trait—we
would expect a strong phylogenetic signal, because such traits are usually highly conserved in
most taxa [29,30]. In contrast, the absence of phylogenic signal might suggest that flush early
response is influenced by multiple traits. This is because different traits can evolve according
different models of evolution (e.g., Brownian Motion, Ornstein-Uhlenbeck, etc.) thereby mask-
ing any phylogenetic signal in F [31,32]. The lack of a phylogenetic signal may also reflect the
importance of context-dependent factors such as predator pressure, current energetic condi-
tion, and the degree of habituation to humans—all of which imply that FEAR falls squarely
within OET.

Our study confirms that distance at which birds detect a predator is a main determinant in
escape decisions made by a diverse set of birds. Other findings support the importance of AD
in explaining variation in FID in other taxa. For instance, AD accounted for 72–100% percent
of variation of yellow-bellied marmot FID [33]. Likewise, AD was one of the main factors to
predict the FID of three large mammals [34].

The general importance of AD in explaining variation in FID has applied implications for
those who wish to use escape behavior as the basis of designing set-back zones to reduce
human impacts on potentially vulnerable wildlife. Thus, our findings indicate that algorithms
used to design set-back zones that seek to minimize human disturbance, should use AD, rather
than FID [13,15].

The FEAR hypothesis was originally proposed as a potential general rule in behavioral ecol-
ogy [5]. Current evidence seems to strongly support FEAR as a widespread phenomenon
among birds from different lineages. However, evidence from other taxa were based on a small
set of species (e.g., mammals, lizards, snakes and arthropods) (reviewed by [9]). We encourage
new research that will permit widespread testing of the FEAR hypothesis in other taxa.

Supporting Information
S1 Table. Summary results of the relationship between alert distance and flight initiation
distance of the 178 avian species studied.
(PDF)
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