
Citation: Maj, M.A.; Gehani, T.R.;

Immoos, C.; Medrano, M.S.; Fanter,

R.K.; Strand, C.R.; Glanz, H.; Piccolo,

B.D.; Abo-Ismail, M.K.; La Frano,

M.R.; et al. Olive- and

Coconut-Oil-Enriched Diets

Decreased Secondary Bile Acids and

Regulated Metabolic and

Transcriptomic Markers of Brain

Injury in the Frontal Cortexes of

NAFLD Pigs. Brain Sci. 2022, 12, 1193.

https://doi.org/10.3390/

brainsci12091193

Academic Editors: Sandeep Singh,

Soraya L. Valles, Burkhard Poeggeler

and Anastasiia D. Shkodina

Received: 10 August 2022

Accepted: 2 September 2022

Published: 4 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

Olive- and Coconut-Oil-Enriched Diets Decreased Secondary
Bile Acids and Regulated Metabolic and Transcriptomic
Markers of Brain Injury in the Frontal Cortexes of NAFLD Pigs
Magdalena A. Maj 1,2,* , Tanvi R. Gehani 3, Chad Immoos 4, Mikaelah S. Medrano 4, Rob K. Fanter 5,6,
Christine R. Strand 1, Hunter Glanz 7, Brian D. Piccolo 8,9 , Mohammed K. Abo-Ismail 10,
Michael R. La Frano 6,11 and Rodrigo Manjarín 10

1 Department of Biological Sciences, California Polytechnic State University, 1 Grand Ave.,
San Luis Obispo, CA 93407, USA

2 Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Ave.,
San Luis Obispo, CA 93407, USA

3 Department of Biomedical Engineering, California Polytechnic State University, 1 Grand Ave.,
San Luis Obispo, CA 93407, USA

4 Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Ave.,
San Luis Obispo, CA 93407, USA

5 College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, 1 Grand
Ave., San Luis Obispo, CA 93407, USA

6 Cal Poly Metabolomics Service Center, California Polytechnic State University, 1 Grand Ave.,
San Luis Obispo, CA 93407, USA

7 Department of Statistics, California Polytechnic State University, 1 Grand Ave.,
San Luis Obispo, CA 93407, USA

8 USDA-ARS Arkansas Children’s Nutrition Center, 1120 Marshall St. SLOT 512-20B,
Little Rock, AR 72202, USA

9 Department of Pediatrics, University of Arkansas for Medical Sciences, 4301 W Markham St.,
Little Rock, AR 72205, USA

10 Department of Animal Science, California Polytechnic State University, 1 Grand Ave.,
San Luis Obispo, CA 93407, USA

11 Department of Food Science and Nutrition, California Polytechnic State University, 1 Grand Ave.,
San Luis Obispo, CA 93407, USA

* Correspondence: mmaj@calpoly.edu; Tel.: +1-805-235-7091

Abstract: The objective of this study was to investigate the effect of dietary fatty acid (FA) saturation
and carbon chain length on brain bile acid (BA) metabolism and neuronal number in a pig model of
pediatric NAFLD. Thirty 20-day-old Iberian pigs, pair-housed in pens, were randomly assigned to
receive one of three hypercaloric diets for 10 weeks: (1) lard-enriched (LAR; n = 5 pens), (2) olive-
oil-enriched (OLI, n = 5), and (3) coconut-oil-enriched (COC; n = 5). Pig behavior and activity were
analyzed throughout the study. All animals were euthanized on week 10 and frontal cortex (FC)
samples were collected for immunohistochemistry, metabolomic, and transcriptomic analyses. Data
were analyzed by multivariate and univariate statistics. No differences were observed in relative
brain weight, neuronal number, or cognitive functioning between diets. Pig activity and FC levels
of neuroprotective secondary BAs and betaine decreased in the COC and OLI groups compared
with LAR, and paralleled the severity of NAFLD. In addition, OLI-fed pigs showed downregulation
of genes involved in neurotransmission, synaptic transmission, and nervous tissue development.
Similarly, COC-fed pigs showed upregulation of neurogenesis and myelin repair genes, which caused
the accumulation of medium-chain acylcarnitines in brain tissue. In conclusion, our results indicate
that secondary BA levels in the FCs of NAFLD pigs are affected by dietary FA composition and are
associated with metabolic and transcriptomic markers of brain injury. Dietary interventions that aim
to replace saturated FAs by medium-chain or monounsaturated FAs in high-fat hypercaloric diets
may have a negative effect on brain health in NAFLD patients.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease
globally, affecting approximately 25% of the general population [1]. NAFLD is defined
as a spectrum of diseases related to hepatic fat deposition, ranging from steatosis to
non-alcoholic steatohepatitis (NASH), which can progress to fibrosis, cirrhosis, and hep-
atocellular carcinoma [2]. In addition to liver injury, NAFLD has been associated with
neurological pathologies, including decreased cognitive function [1,3–5], and smaller brain
volume [4,6]. Further evidence of a link between liver and brain disorders is shown by the
development of neuropathological hallmarks of Alzheimer’s disease (AD) in rodent and
pig models of NASH [7–9] and the presence of altered hepatic markers in patients with
AD [10,11]. A liver–brain axis of neurodegeneration has been established through common
risk factors, such as obesity, type 2 diabetes, and high-fat diets [7,12–14]. In this regard,
recent clinical and translational studies have shown an effect of dietary interventions on
brain function, such as changes in cognitive processes, memory and learning, motor func-
tion, neuroinflammation, synaptic transmission, and neurotransmitter pathways [15–18].
In addition, emerging evidence suggests that bile acids (BAs) and BA signaling may also
play a role in liver-induced brain injury, due to their potential neurotoxic effects [19–21]
and their ability to regulate neuroinflammation and brain cholesterol metabolism [22–24].
Increased levels of circulating BAs have been correlated with the progression of NAFLD
in adults, children, and pigs [25–27], and have been found to promote hepatic stellate cell
proliferation, inflammation, and apoptosis in vitro [28,29]. Similarly, elevated BAs in the
brain or serum have been associated with neurodegeneration in mouse models of liver
failure [19,22,24,30] and in patients with AD [10,31,32] and hepatic encephalopathy [33]. A
connection between BAs and neurodegeneration is further supported by clinical interven-
tions targeting BA signaling, in which BA receptor agonists have been shown to alleviate
various aspects of AD and Parkinson’s disease (PD) [34–36].

Bile acids are of key importance in the absorption of dietary fats by solubilizing choles-
terol and lipids in the small intestine. Reciprocally, BA metabolism can be regulated by fat
intake, with fat-free diets decreasing and fat feeding increasing BA synthesis in mice [37,38].
Consumption of a diet high in milk fats also promoted hepatic taurine conjugation of BAs
in mice, which in turn caused gut dysbiosis and inflammation [39]. A role of dietary fats in
BA kinetics has also been observed in humans, with unsaturated fats increasing total BA
output [40,41], and both low- and high-fat diets decreasing primary BA synthesis [42]. Sur-
prisingly, there are no studies assessing the impact of dietary fats on brain BA metabolism
in NAFLD patients. We have previously established a pig model of pediatric NAFLD,
where Iberian pigs fed a “Western diet” for 10 weeks showed accumulation of primary
BAs in the frontal cortex (FC), astrogliosis and neuronal loss, and decreased cognitive
function compared with healthy controls [9,25]. In addition, high-fat diets enriched with
lard (high in saturated fatty acids (SFAs) and long-chain fatty acids (LCFAs)), olive oil
(high in monounsaturated fatty acids (MUFAs) and LCFAs), and coconut oil (high in SFAs
and medium-chain fatty acids (MCFAs)) differentially regulated hepatic BA metabolism
and NAFLD progression in juvenile pigs [43]. The objective of the present study was to
investigate the effects of variations in the degree of saturation and carbon chain length
of dietary fats on brain BA metabolism and neuronal number in a pig model of pediatric
NAFLD. Our results show that secondary BA levels in the FC of NAFLD pigs are affected
by dietary fatty acid (FA) composition and associated with metabolic and transcriptomic
markers of brain injury.
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2. Material and Methods
2.1. Animals and Experimental Design

All experiments were carried out with the approval of the Institutional Animal Care
and Use Committee of California State University (#1611), following guidelines issued by
the National Research Council Guide for the Care and Use of Laboratory Animals. The
diets, as well as the characterization of the NAFLD phenotype in the Iberian pigs used in
this study, have been described in detail in a recent report [43]. An outline of the study is
presented in Figure 1A,B.
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Briefly, 19 male (M) and 11 female (F) Iberian pigs from the Iberian Pig Research Colony
at California Polytechnic State University were weaned at 17± 3 d of age and 4.21 ± 1.21 kg
body weight and immediately moved into a temperature-controlled room with a 12 h light–
dark cycle. After 3 d of acclimatization, pigs were housed in pairs in 1.5 × 1.5 m pens
balanced for sex and BW, and randomly allocated to receive 1 of 3 high-fructose, high-fat
liquid diets for 10 consecutive weeks: (1) lard (LAR; n = 5 pens, 6M/4F): 21.6 g fructose,
17.2 g fat (8.8% lard, 0.5% soybean oil; w/v), and 303.0 kcal metabolizable energy (ME)
kg·BW−1·d−1; (2) olive oil (OLI; n = 5 pens, 7M/3F): 21.6 g fructose, 16.7 g fat (3.7% lard,
4.8% olive oil, 0.5% soybean oil), and 302.6 kcal·kg·BW−1·d−1; and (3) coconut oil (COC;
n = pens, 6M/4F): 21.6 g fructose, 17.0 g fat (3.7% lard, 5% coconut oil, 0.5% soybean oil),
and 302.6 kcal·kg·BW−1·d−1. Complete information about ingredient composition and
daily nutrient intake can be found in Manjarin et al., 2022 [43]. The study was conducted in
2 consecutive replicates: replicate 1 consisted of 18 pigs allocated to 9 pens (2 pigs per pen,
3 pens per diet), whereas replicate 2 consisted of 12 pigs allocated to 6 pens (2 pigs per pen,
2 pens per diet).

Animals were fed 45 mL per kg·BW−1 at 6 h intervals to match the physiological
volume of milk consumed by pigs during lactation. Diets were formulated to meet all the
nutrient requirements of growing Iberian pigs according to the NRC [44] and FEDNA [45],
and exceeded the NRC recommended daily energy intake by approximately 60%. Protein,
carbohydrate, cholesterol, vitamin, and mineral intake were the same across diets. Fat
content in LAR was provided by hydrogenated lard, whereas in the OLI diet 58% of lard
was replaced isocalorically by extra virgin olive oil to increase MUFA content. Similarly,
58% of lard was substituted isocalorically by hydrogenated coconut oil in the COC diet to
increase MCFAs.

The first day on which the experimental diets were fed was considered as d 0 of the
study. Animals were euthanized on d 70 using an intramuscular injection of tiletamine and
zolazepam (4 mg·kg−1; Zoetis, Parsippany, NJ, USA), followed by an intracardiac injection
of pentobarbital sodium (0.4 mL·kg−1; Schering-Plough, Union, NJ, USA). Brains were
removed immediately after euthanasia and weighed. Tissue from the frontal cortex (FC)
was washed for 5 s in ice-cold saline solution and frozen in liquid nitrogen or placed in
plastic cassettes (Tissue-Tek Cryomold Standard; Sakura, Torrance, CA, USA), covered with
optimum cutting temperature compound (cat. no. 4583, Tissue-Tek O.C.T; Sakura, Torrance,
CA, USA), and slowly frozen in liquid-nitrogen-cooled 2-methylbutane (cat. no. M0167,
TCI, Portland, OR, USA). Tissues were kept at −80 ◦C until processing. We analyzed
the FC tissues based on our previous work, in which juvenile Iberian pigs fed a high-fat,
high-fructose diet for 10 weeks developed neuronal loss and astrogliosis in the FC when
compared with healthy control animals [9]. In addition, neurons in the FC are among the
first to deteriorate in AD patients [46].

2.2. Pen Activity and Novel Object Recognition Test

Physical activity in the pen was observed and quantified in the same manner as
previously described [9]. In brief, videos were recorded every 2 days between d 16 and
70 of the study from 8:30 AM to 12:30 PM using cameras mounted from the ceiling. Two
independent experimenters blinded to the treatment retrospectively scored animals’ activity
using Behavioral Observation Research Interactive Software (BORIS; version 7.9) [47] based
on the ethogram shown in Table 1. Duration of behavior performance for and the number
of pigs performing each behavior were annotated individually for each pen.
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Table 1. Ethograms for novel object recognition test and pig activity in the home pens.

Behavior Description

Pig activity

Standing Both pigs in the pen are standing on four legs
Resting Both pigs in the pen are lying down on the floor
Standing/resting One pig is standing and one pig is lying down

Novel object recognition test

Learning phase
Sample Object I Pig exploring sample object on left side
Sample Object II Pig exploring sample object on right side

Memory phase
Sample Object Pig exploring sample object on left side
Novel Object Pig exploring novel object on right side

Recognition memory was assessed by the novel object recognition test conducted
between d 35 and 70 of the study once a week, as previously described [48], because
5-week-old domestic pigs have been shown to remember objects for up to 6 days [49]. In
brief, the test was performed 1 h after morning feeding by affixing two identical sample
objects to the pen gates with zip-ties to prevent them from being removed and giving
the pigs 10 min to explore the objects (sample phase). After 1 h, one sample object and
a new object (of the same color but a different shape to that of the sample object) were
affixed to the pen gates. Animals were given an additional 10 min to explore the objects
(test phase). Two independent experimenters blinded to the treatment retrospectively
scored the recorded videos using BORIS, based on the ethogram presented in Table 1.
Data are presented as recognition indexes (RIs; time spent investigating novel object/time
investigating both objects).

2.3. Fatty Acid Composition

Fatty acid composition was quantified by gas chromatography of the FA methyl
esters using an Agilent 7890B (Agilent Technologies, Palo Alto, CA, USA) equipped with
a flame ionization detector, a 7683B automatic liquid sampler (Agilent Technologies), a
split/splitless injection port, and a J&W DB-23 column (Agilent Technologies), with helium
used as the carrier gas, as described in our previous work [25]. Values for individual FAs
were expressed as peak areas under the curve. Based on FA composition, the following
indexes were calculated: saturated FAs (SFAs) = Σ [(%) 8:0 + 10:0 + 11:0 + 12:0 + 13:0 +
14:0 + 15:0 + 16:0 + 17:0 + 18:0 + 20:0 + 21:0 +22:0 +23:0 + 24:0]; unsaturated FAs (UFAs) =
Σ [(%) n-3 + n-5 + n-6 + n-7 + n-9]; monounsaturated FAs (MUFAs) = Σ [(%) n-5 + n-7 + n-9];
polyunsaturated FAs (PUFAs) = Σ [(%) n-3 + n-6] [50].

2.4. Immunofluorescence Analysis

Frontal cortex samples embedded in optimum cutting temperature compound (Sakura)
were processed for immunofluorescence staining against a marker for mature neurons,
NeuN, as previously described [9]. Briefly, samples were cut, mounted on slides, fixed in
cold acetone, washed 3× with phosphate-buffered saline (PBS), and blocked in 2% bovine
serum albumin (cat. no. 0332-500G, VWR Life Science, Radnor, PA, USA) and 10% animal-
free blocker (cat. no. SP-5030-250, Vector Laboratories, Burlingame, CA, USA) in PBS. Tissue
sections were then incubated with a primary antibody against neuronal nuclei (cat. no.
MAB377, NeuN, MilliporeSigma, Burlington, MA, USA) in blocking solution. Subsequently,
tissues were washed 3× with PBS and incubated with DyLight 594 Horse Anti-Mouse IgG
(H+L) (cat. No. DI-2594, Vector Laboratories, Burlingame, CA, USA) in 0.5% bovine serum
albumin and 10% animal-free blocker in PBS. Following washing, coverslips were mounted
with fluorescence protective medium (cat. no. H-1900, VECTASHIELD Antifade Mounting
Medium; Vector Laboratories) and left to dry. Images were taken with a FluoView 500
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Confocal Laser Scanning Microscope (Olympus; Center Valley, PA, USA) using a 40×
objective by an operator blinded to the treatments. Images were then converted into a
z-projection using ImageJ software [51], and the average staining intensity was quantified
and reported as a percentage of total area.

2.5. Analysis of Metabolites

Primary metabolomic, biogenic amine, lipidomic, and BA assays on frontal cortex
samples were performed by protein precipitation extraction with ultra-performance liquid
chromatography–tandem quadrupole mass spectrometry, as previously described [25].
Fifty-sixty milligrams of the FC tissue was spiked with 20 µL of isotopically labeled sur-
rogates (Avanti Polar Lipids, Alabaster, AL, USA; CDN Isotopes, Pointe-Claire, Quebec,
QC, Canada), followed by 750 µL chilled methanol. Samples were then vortexed for 1 min
and centrifuged at 12,000 rpm for 10 min at 4 ◦C. The supernatant was transferred to
1.5 mL high-performance liquid chromatography amber glass vials, dried by centrifugal
vacuum evaporation, and reconstituted in 3:1 methanol:acetonitrile containing 100 nM of
1-cyclohexyl-ureido, 3-dodecanoic acid (MilliporeSigma). The reconstituted solution was
vortexed for 1 min and filtered through a polyvinylidene fluoride membrane (Durapore
PVDF, 0.1 µm; MilliporeSigma) by centrifugation at 9500 rpm for 3 min at room tempera-
ture. Analyses were conducted on a Waters UPLC Acquity I-Class (Waters, Milford, MA,
USA) coupled with a 4000 QTRAP LC-MS/MS System (SCIEX, Concord, ON, Canada),
using multiple reaction monitoring [52] quantified with MultiQuant Software version 3.0
(SCIEX). General metabolites were separated using a 150 × 2.0 mm Luna NH2 column
(Phenomenex, Torrance, CA, USA) and detected by negative ion mode electrospray ion-
ization [52,53]. For the aminomic assay, metabolites were separated using a 150 × 2.1 mm
Atlantis HILIC column (Waters) and detected by positive ion mode electrospray ioniza-
tion [52]. For the lipidomic assay, metabolites were separated using a 150 × 3.0 mm
Prosphere HP C4 column (Grace Discovery Sciences, Columbia, MD, USA) and detected by
positive ion mode electrospray ionization [52,54]. For BA analysis, analytical targets were
separated using a 2.1 × 100 mm, 1.7 µm BEH C18 column (Waters) operated in negative
mode electrospray ionization.

Metabolite intensities were normalized to those of internal standards (Cayman Chemi-
cal Company, Ann Arbor, MI, and Avanti Polar Lipids) and to sample weights to account
for small variations in the starting tissues, and were expressed as peak areas under the
curve. Metabolites were quantified using internal standards (Cayman Chemical Company,
Ann Arbor, MI, USA; and Avanti Polar Lipids, Alabaster, AL, USA) with 6- to 8-point
calibration curves. In addition, BAs were standardized to relative composition (so that
sample totals were 100%).

2.6. Transcriptomic Analysis

Frontal cortex tissue from 1 pig per pen (5 LAR, 5 OLI, and 5 COC) were sent to
GENEWIZ, LLC. (South Plainfield, NJ, USA) for RNA isolation, library preparation, and
sequencing. Total RNA was extracted using the RNeasy Plus Mini Kit (cat. no. 74134,
Qiagen, Hilden, Germany), quantified using a Qubit 2.0 Fluorometer (Life Technologies,
Carlsbad, CA, USA), and assessed for integrity (RIN) using the TapeStation 4200 automated
electrophoresis tool (Agilent Technologies, Palo Alto, CA, USA). The preparation of RNA
libraries was performed using the NEBNext Ultra RNA Library Prep Kit for Illumina,
following the manufacturer’s instructions (cat. no. E7770, NEB, Ipswich, MA, USA). Briefly,
mRNA samples were poly(A)-enriched with oligo(dT) beads and heat fragmented, and
first- and second-strand cDNAs were synthesized. cDNA fragments were subjected to
end repair, 3′-end adenylation, ligation of universal adapters, and the addition of index
barcodes. The sequencing libraries were enriched with limited-cycle PCR and validated
and quantified with an Agilent TapeStation and a Qubit 2.0 Fluorometer, with additional
quantification by quantitative PCR (KAPA Biosystems, Wilmington, MA, USA). RNA
libraries were sequenced using a 2 × 150 bp Paired-End configuration of the Illumina
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HiSeq 4000 system on 2 flow cell lanes. De-multiplexing and conversion of raw sequence
data into fastq files were performed using bcl2fastq 2.17 software (Illumina), with one
mismatch allowed during index sequence identification.

The swine (Sus scrofa) reference genome, SSC11.1, and annotation file (GTF) were
downloaded from the Ensembl FTP site ((ftp://ftp.ensembl.org/pub/release-100/fasta/
sus_scrofa/dna/, accessed on 17 March 2022). The sequence quality of raw paired-end
reads was evaluated using FastQC software version 0.11.9 with default parameters (https:
//www.bioinformatics.babraham. Ac.uk/projects/fastqc/, accessed on 17 March 2022).
All the samples passed the quality control by FastQC. Then, reads were aligned to the
swine genome Sscrofa11.1 using STAR aligner software (-2.7.5a), with default parameters
which are optimized for mammalian genomes [55]. A read-count table showing how many
reads mapped to annotated genes was generated by the feature Counts package in Subread
software version 2.0.1 [56] using a reference genome sequence, a gene annotation file, and
sorted bam files. Reads that were uniquely aligned to each gene annotated in the GTF were
counted and used for further analyses, whereas the reads with multi-mapping, no features,
or ambiguity were excluded.

2.7. Statistical Methods

The pen was considered as the experimental unit for all analyses, except for the tran-
scriptomic analyses, in which each pig was analyzed individually. Univariate data were
analyzed by one-way ANOVA using a mixed model in SAS 9.2 (PROC MIXED; SAS Insti-
tute Inc., Cary, NC, USA) that included diet as the fixed effect, and both replicate and pen
nested in diet as random effects. The normality of the residuals and the presence of outliers
were assessed with PROC UNIVARIATE (SAS). Non-normally distributed parameters were
power-transformed by a parameter, ϕ, whose optimal value was estimated using the maxi-
mum likelihood method [57]. Data are presented as means ± SDs. Multiple comparisons
were corrected with Tukey’s post hoc test, and significant effects were considered at p≤ 0.05.
Identification of metabolites differentially expressed between diets was performed using
the %polynova_2way SAS macro, as previously described [58]. Metabolomics data were
further assessed by principal component analysis (PCA) to visualize group discrimination
in a two-dimensional scores plot. PCA analyses were conducted in R Statistical Language
version 4.1.0. Missing data were imputed using the K-Nearest-Neighbor imputation algo-
rithm [59]. Metabolite peak areas were log-transformed and scaled to unit variances prior
to PCA.

The statistical analyses of differentially expressed genes (DEGs) were performed using
the edgeR-Bioconductor packageBio package [60] in R software. First, the non-expressed
and very lowly expressed genes were filtered out, keeping genes that were expressed
at a reasonable level (counts per million (CPM) > 0.5). To account for the variation due
to library sequencing depths between samples, the read counts were normalized using
the trimmed means of M values (TMM) method implemented in edgeR. The read counts
were then analyzed with a generalized linear model, with an assumption of a negative
binomial distribution of gene counts to identify differentially expressed genes between
treatments. The statistical model used for analyses was as follows: log (CPM)ijk = µ +
treatmenti + eijk), where the log (CPM)ijk is the log-transformed read CPM of mapped reads
for the gene k in sample j from the ith treatment group, µ is the effect of the intercept or
the expected (average) gene expression, and eijk is the random residual error effect. A
likelihood ratio test for each gene expression level between the treatment groups was used
to identify the DEGs. To adjust p-values for multiple testing, the false discovery rate (FDR)
method was used, where the significant differentially expressed genes were determined
using a 5% FDR threshold. The functional enrichment analyses were performed on DEGs
(at p ≤ 0.05) to identify GO terms using the Database for Annotation, Visualization and
Integrated Discovery (DAVID) software version 6.8 [61]. The expression of DEGs associated
with relevant GO terms was represented in heatmaps constructed with ClustVis software
(BETA) [62].

ftp://ftp.ensembl.org/pub/release-100/fasta/sus_scrofa/dna/
ftp://ftp.ensembl.org/pub/release-100/fasta/sus_scrofa/dna/
https://www.bioinformatics.babraham
https://www.bioinformatics.babraham
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Associations between metabolites and DEGs were identified using a multivariate
application of sparse partial least squares (sPLS) [63]. The adequate number of features to
retain were calculated by optimizing the average correlation coefficients between latent
variables using 10-fold cross-validation with 10 repeats. The final sPLS model was fitted
using least absolute shrinkage and selection operator (LASSO) penalty to fit the required
features. A bipartite pair-wise similarity matrix was then calculated from the sPLS using
a threshold criterion of 0.7. The similarity matrix represented robust approximations of
Pearson’s correlations [64] and was visualized using network analysis (Cytoscape software
version 3.9.0) [65].

3. Results
3.1. COC and OLI Pigs Had Decreased Physical Activity without Changes in Cognitive Function
or Neuronal Loss

The objective of this study was to investigate the effect of fat sources with different FA
profiles on neurodegeneration in a pig model of NAFLD using immunofluorescence and
behavioral tests combined with multiomic analyses of FC tissue. The characterization of the
NAFLD phenotype in the Iberian pigs used in this study, including biochemistry, histology,
metabolomics, and transcriptomics in the liver, blood, and gut, has been described in
detail in Manjarin et al. 2022 [43]. Briefly, steatotic grade (p ≤ 0.05), necrosis (p ≤ 0.01),
hepatocellular proliferation (p ≤ 0.05), and composite lesion score (p ≤ 0.01) in liver tissues
were higher in COC and OLI compared with LAR (Table 2). Similarly, serum biochemistry
showed an increase in alanine transaminase (p ≤ 0.05), aspartate transaminase (p ≤ 0.05),
and lactate dehydrogenase (p ≤ 0.05) in COC and OLI, while gamma-glutamyl transferase
was elevated in COC-fed pigs compared with LAR (p ≤ 0.05; Table 2).

Table 2. Serum biochemistry and quantitative assessment of hepatic histology in juvenile Iberian
pigs fed LAR, OLI, and COC diets for 10 consecutive weeks. COC, coconut oil diet; LAR, lard diet;
OLI, olive oil diet.

Item 1 LAR OLI COC

Nº pigs (pen) 10 (5) 10 (5) 10 (5)
Sex (M/F) 6/4 7/3 6/4
Liver histology 2

Steatosis 2.90 a ± 0.32 3.40 ab ± 0.52 3.50 b ± 0.53
Ballooning 0 ± 0 0.40 ± 0.52 0.30 ± 0.48
Mallory–Denk Bodies 0.10 ± 0.32 0.20 ± 0.42 0.30 ± 0.48
Inflammation 1.20 ± 0.42 1.20 ± 0.42 1.33 ± 0.42
Necrosis 0 d ± 0 1.00 e ± 0.47 0.70 e ± 0.58
Ki67+ cells 3 8.23 a ± 3.45 9.56 ab ± 3.23 14.7 b ± 6.85
Composite lesion score 4.20 d ± 0.42 6.20 e ± 1.23 6.00 e ± 0.82

Serum biochemistry
Alanine aminotransferase, U·L−1 34.3 a ± 3.5 70.6 b ± 18.0 62.2 b ± 40.4
Aspartate aminotransferase, U·L−1 65.7 ± 48.5 180.5 ± 75.6 199.6 ± 149.2
Alkaline phosphatase, U·L−1 292.6 ± 80.7 387.7 ± 120.8 391.6 ± 149.2
γ-glutamyl transferase, U·L−1 33.3 a ± 9.9 37.3 ab ± 4.8 56.8 b ± 29.4
Lactate dehydrogenase, U·L−1 1819.8 a ± 1078.3 3986.5 b ± 829.1 3114.2 b ± 1492.7
Total bilirubin, mg·dL−1 0.04 ± 0.04 0.02 ± 0.02 0.05 ± 0.03

1 Data are means ± SDs. 2 Steatosis: 0 (absent), 1 (<10%), 2 (10–25%), 3 (26–50%), 4 (>50%); ballooning, Mallory–
Denk Bodies, fibrosis, inflammation, and necrosis: 0 (absent), 1 (minimal), 2 (mild), 3 (moderate), 4 (severe);
composite lesion score: sum of all histological scores. 3 Ki67+: percentage of proliferative cells in liver. p-values
were calculated by one-way ANOVA and adjusted by post hoc Tukey test. Labeled means without a common
letter differ: abc p ≤ 0.05, def p ≤ 0.01.

No differences were observed in relative brain weight and neuronal marker NeuN
immunofluorescence among the diet groups (Figure 2A,B). Next, we assessed changes
in physical activity and cognitive functioning. The mixed-model ANOVA indicated a
significant increase in daily activity levels in LAR compared with COC on d 50 and
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58 (p ≤ 0.05), and in COC and OLI on d 66, 68, and 70 (p ≤ 0.05; Figure 2C). There were no
differences in the novel object recognition test between weeks 5 and 10 across treatment
groups (Figure 2D). In addition, RI was significantly greater than 0.5 for all diets at week 5
(p ≤ 0.05), for LAR and OLI at week 6 (p ≤ 0.01), OLI and COC at week 7 (p ≤ 0.05), COC
at week 8 (p ≤ 0.05), and LAR at weeks 9 and 10 (p ≤ 0.05; Figure 2D).
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Figure 2. (A) Relative brain weight expressed as grams of brain tissue per kg of body weight.
(B) Quantification of staining intensity of neuronal nuclei (NeuN) in the frontal cortex expressed
as a percentage of the total area. (C) Pen activity, measured daily between d 1 and 70 of the study
from 8:30 AM to 12:30 PM. Values are means ± SDs. (D) Histograms representing results for the
recognition index (RI). The indexes were calculated based on the formula (time spent investigating
novel object/time investigating both objects). Significant p-values for daily activity were adjusted for
multiple testing with Tukey post hoc tests and expressed as a p ≤ 0.05, b p ≤ 0.05 LAR vs. COC, and
c p ≤ 0.05 OLI vs. COC. p-values for one-tailed t-tests significantly different from 0.5 are expressed as
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤0.001. COC, coconut oil diet; LAR, lard diet; OLI, olive oil diet.
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3.2. COC and OLI Diets Decreased Secondary BA Species Compared with LAR

Twenty BA species were detected in the FCs of juvenile Iberian pigs. Principal com-
ponent analysis separated LAR from OLI and COC, but could not separate OLI and COC
samples (p ≤ 0.05; Figure 3A).
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Figure 3. Principal component analysis of bile acids (A) and metabolites (B) in the frontal cortexes of
juvenile Iberian pigs. Data were scaled to unit variance prior to PCA assessment. Two-dimensional
visualizations of PCA scores are projected from their group centroids along components 1 and 2. p-,
R-squared, and F-statistic values are derived from ANOVA assessed on the first principal component.
Each point represents an individual pig; the color of the point denotes the diet.

Compared with LAR, secondary conjugated and unconjugated BAs in the FC de-
creased in COC and OLI (p ≤ 0.05; Figure 4A). Analysis of individual secondary uncon-
jugated BA species showed a decrease in hyodeoxycholic (HDCA) and ursodeoxycholic
(UDCA) acids in OLI and COC compared with LAR (p≤ 0.05; Figure 4B). Among secondary
conjugated BAs, taurine-conjugated deoxycholic (TDCA) and lithocholic (TLCA) acids
decreased in COC (p ≤ 0.01 and 0.05, respectively; Figure 4B), and TUDCA decreased both
in COC and OLI compared with LAR (p ≤ 0.05; Figure 4B).

3.3. COC and OLI Decreased One-Carbon Metabolites, Amino Acids, Complex Lipids, and
Carboxylic Acids in the Frontal Cortex

A total of 127 metabolites were detected in the FC, of which 23 changed between
diets. PCA plots did not separate LAR, OLI, and COC samples (Figure 3B). The amino
acids (proline, valine, glutamine, lysine, and glycine), carboxylic acids (oxalate, D-glucarate,
indole-3-propionate, and lactate), complex lipids (oleyl-carnitine and TAG 54:3), S-adenosyl-
L-homocysteine, and xanthine decreased (p ≤ 0.05) in COC compared with OLI and/or
LAR (Figure 5). In addition, citrulline, TAG 54:5, betaine, and uridine decreased (p ≤ 0.05)
in COC and OLI compared with LAR, and PC38:5, cyclic AMP, and deoxyguanosine
decreased (p ≤ 0.05) in OLI compared with COC and LAR (Figure 5). Conversely, 2-3-
dihydroxybenzoate, lauroyl-carnitine, and SM 14:0 increased (p ≤ 0.05) in COC compared
with OLI and/or LAR (Figure 5).
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Figure 4. (A) Total, primary, and secondary levels of BAs in the frontal cortex of juvenile Iberian
pigs fed LAR (n = 5 pens), OLI (n = 5 pens), and COC (n = 5 pens) diets on day 70 of the study.
(B) Abundance of individual BAs in the frontal cortex. p-values for each metabolite were calculated
by one-way ANOVA and a mixed model that included diet as fixed effect, and both replicate and
pen nested in diet as random effects, and further adjusted for multiple testing with the Benjamini–
Hochberg procedure. Values are means ± SDs. p-values were adjusted for multiple testing with
Tukey’s post hoc test. ab p ≤ 0.05, de p ≤ 0.01. CA, cholic acid; CDCA, chenodeoxycholic acid;
COC, coconut oil diet; DCA, deoxycholic acid; G, glycine conjugated; HCA; hyocholic acid; HDCA,
hyodeoxycholic acid; LAR, lard diet; LCA, lithocholic acid; OLI, olive oil diet; T, taurine conjugated;
UDCA, ursodeoxycholic acid.
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Figure 5. Heat map of absolute abundance of metabolites significantly altered by diet in the frontal
cortexes of juvenile pigs, measured by ultra-performance liquid chromatography–tandem quadrupole
mass spectrometry. Columns represent individual pigs and rows represent log2-transformed metabo-
lites. Blue and red colors represent the row minimum and maximum values, respectively. p-values for
each metabolite were calculated by one-way ANOVA and a mixed model that included diet as fixed
effect, and both replicate and pen nested in diet as random effects, and were adjusted for multiple
testing with the Benjamini-Hochberg procedure. Values are means ± SDs. p-values were adjusted for
multiple testing with Tukey´s post hoc test. a p ≤ 0.05, b p ≤ 0.05 LAR vs. COC, and c p ≤ 0.05 OLI
vs. COC. COC, coconut oil diet; LAR, lard diet; OLI, olive oil diet.

The major FAs in the FC homogenates were palmitic (16:0), stearic (18:0), oleic (18:1),
and arachidonic (20:4) acids (Table 3). No significant differences were observed in FA
composition in the FC among LAR, OLI, and COC pigs (Table 3).

Table 3. Fatty acid (FA) compositions in the frontal cortexes of pigs fed LAR, OLI, and COC diets.
Samples were analyzed by gas chromatography and values expressed as absolute FA composition.
Values are means ± SDs. COC, coconut oil diet; FA, fatty acid; LAR, lard diet; LCFA, long-chain
FA; MCFA, medium chain FA; OLI, olive oil diet; SFA, saturated FA; UFA, unsaturated FA; MUFA,
monounsaturated FA; PUFA, polyunsaturated FA; VLCFA, very-long-chain FA.

LAR OLI COC

FAs

Caprylic C8:0 515.8 ± 77.2 514.1 ± 69.3 497.5 ± 56.3
Myristic C14:0 620.1 ± 63.0 621.6 ± 76.8 664.0 ± 35.3
Pentanedecanoic C15:1 (n-5) 1122.3 ± 206.4 1134.8 ± 125.1 1267.1 ± 259.2
Palmitic C16:0 7705.1 ± 721.1 7741.0 ± 520.6 7935.6 ± 774.3
Palmitoleic C16:1 (n-7) 587.2 ± 49.0 585.8 ± 49.1 591.7 ± 38.8
Heptadecanoic C17:0 371.8 ± 32.9 392.8 ± 84.2 357.8 ± 27.7
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Table 3. Cont.

LAR OLI COC

Heptadecenoic C17:1 (n-7) 302.1 ± 22.8 309.5 ± 45.9 295.5 ± 29.5
Stearic C18:0 7470.6 ± 930.5 7277.3 ± 678.8 7682.3 ± 1207.3
Oleic C18:1 (n-9) 6305.8 ± 493.6 6572.8 ± 769.5 6559.4 ± 1388.3
Linoleic C18:2 (n-6) 473.1 ± 22.8 472.5 ± 78.2 449.2 ± 41.9
Arachidic C20:0 617.2 ± 87.8 576.8 ± 67.6 559.1 ± 35.4
Eicosenoic C20:1 (n-9) 478.3 ± 37.6 469.9 ± 43.3 449.4 ± 49.2
Eicosadienoic C20:2 (n-6) 524.7 ± 74.2 573.9 ± 58.4 578.6 ± 78.3
Heneicosanoic C21:0 323.5 ± 27.9 305.5 ± 20.1 323.8 ± 60.0
Eicosatrienoic C20:3 (n-6) 396.6 ± 35.0 422.0 ± 70.8 421.3 ± 93.6
Arachidonic C20:4 (n-6) 4119.0 ± 376.6 4228.3 ± 234.0 4224.5 ± 591.4
Behenic C22:0 600.9 ± 109.3 534.0 ± 112.8 493.6 ± 68.5
Erucic C22:1 (n-9) 182.5 ± 11.8 167.9 ± 21.4 238.6 ± 109.4
Nervonic C24:1 (n-9) 2583.2 ± 362.1 2581.6 ± 129.0 2578.5 ± 416.4

Length of FAs

MCFAs C6-12 515.8 ± 77.2 514.1 ± 69.3 497.5 ± 56.3
LCFAs C13-21 31,102.3 ± 2368.6 31,041.9 ± 2624.9 30,955.5 ± 4997.8
VLCFAs C22-24 3205.6 ± 391.5 2982.6 ± 373.4 2926.3 ± 379.2

Saturation of
FAs

Saturated 17,860.2 ± 1619.5 17,180.1 ± 1555.1 17,807.1 ± 2266.9
Unsaturated 16,963.5 ± 1182.3 17,358.5 ± 1229.7 16,572.3 ± 3217.1

MUFAs 11,450.2 ± 895.8 11,661.8 ± 1004.3 10,898.6 ± 2934.4
PUFAs 5513.3 ± 357.0 5696.7 ± 292.5 5673.7 ± 575.2

Ratio
Sat/Unsat 1.1 ± 0.1 1.0 ± 0.0 1.1 ± 0.2

3.4. COC and OLI Diets Regulated Genes Associated with Myelin Formation, Neuronal
Development, and Signaling

Diet-induced changes in the FCs of COC- and OLI-fed pigs were further evaluated
through transcriptome-wide RNA profiling. Multidimensional scaling showed the associa-
tion of FC samples in two differentiated clusters in the chart, with LAR pigs separated from
OLI and COC (Figure 6A). Functional enrichment analyses of LAR vs. COC identified terms
associated with neurogenesis, myelin formation, voltage-gated channels, organization of
extracellular matrix (ECM) and cytoskeleton, and cell adhesion (p≤ 0.05; Figure 6B). In OLI
brains, functional enrichment analyses showed deregulation of GO terms related to cell
signaling, nervous and epithelial tissue development, voltage-gated channels, synapses,
and ECM when compared with LAR (p ≤ 0.05; Figure 6B).

The transcriptional profile highlighted the upregulation (p ≤ 0.05; Figure 7A) of
many genes in COC brains associated with the formation, maintenance, and structure
of the myelin sheath, such as Myelin Oligodendrocyte Glycoprotein (MOG), Myelin-
Associated Oligodendrocyte Basic Protein (MOBP), Myelin Basic Protein (MBP), and
Myelin-Associated Glycoprotein (MAG). Gene sets related to the differentiation, migra-
tion, and regeneration of brain cells, such as Glia Maturation Factor Beta (GMFB), Shootin
1 (SHTN1), Glial-Cell-Derived Neurotrophic Factor Family Receptor Alpha 1 (GFRA1),
Semaphorin 4D (SEMA4D), Neural Progenitor Differentiation Regulator (MTURN), Neu-
romedin B Receptor (NMBR), and Contactin 1 (CNTN1) were also upregulated in COC
compared with LAR (p ≤ 0.05; Figure 7A). Conversely, transcripts associated with the
ECM, including collagen subunits (COL13A1, COL28A1, COL4A6, COL18A1, and COL27A1)
and Metalloprotease-like Enzymes that modulate microfibril assembly (ADAMTS10 and
ADAMTSL5), decreased in COC compared with LAR (p ≤ 0.05; Figure 7A).
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Figure 6. (A) Multidimensional scaling diagram of FC samples indicating the groupings obtained
from the multivariate analysis. (B) Functional enrichment analyses performed on differentially
expressed genes at 5% FDR to identify GO terms pertaining to Biological Process, Metabolic Function,
and Cellular Compartment in the frontal cortexes of juvenile Iberian pigs using the Database for
Annotation, Visualization and Integrated Discovery software version 6.8. * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001. COC, coconut oil diet; FDR, false discovery rate; LAR, lard diet; OLI, olive oil diet.
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Figure 7. Heat maps of differentially expressed genes (5% FDR) between LAR and COC (A) and
LAR and OLI (B) in the frontal cortex of juvenile Iberian pigs on d 70 of the study. RNA libraries
were sequenced using a 2 × 150 bp Paired-End configuration of the Illumina HiSeq 4000 system
on two flow cell lanes. The read counts were normalized using the trimmed means of M values
(TMM) method implemented in edgeR and then analyzed with a generalized linear model, with
an assumption of a negative binomial distribution. Columns represent individual pigs and rows
represent log-transformed read counts per million for each gene. Blue and red colors represent the
row minimum and maximum values, respectively. COC, coconut oil diet; FDR, false discovery rate;
LAR, lard diet; OLI, olive oil diet.
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In OLI-fed pigs, the transcriptional profile showed the downregulation (p ≤ 0.05;
Figure 7B) of genes coding for voltage-gated sodium and potassium channels (SCN9A,
SCN1B, SCN4B, and KCNIP2), as well as genes associated with the development and activity
of synapses and neurotransmitters, such as Polypeptide-Interacting Protein-Binding Protein
2 (PPFIBP2), Proenkephalin (PENK2), Extracellular Leucine Rich Repeat And Fibronectin
Type III Domain Containing 1 (ELFN1), Synapse Differentiation Inducing 1 (SYNDIG1),
and Glutamate Ionotropic Receptor Kainate Type Subunit 1 (GRIK1). Gene sets related
to cancer, cell division, cell growth and transcription/translation, coagulation, immune
response, and lipid and protein metabolism were also differentially regulated in the FCs
of the COC and OLI groups compared with LAR (p ≤ 0.05; Figure 7A,B), but were not
consistently up- or downregulated nor significantly associated with GO terms in the FC.

3.5. Secondary Bile Acids Were Correlated with Expression of Frontal Cortex Genes Involved in
Neurogenesis, Neurotransmission, and Extracellular Matrix Organization

The correlation analysis between BAs and DEGs in FC tissues revealed an association
between both TUDCA and UDCA and several genes involved in neuronal development and
ECM organization (p≤ 0.001; Figure 8A). For example, negative associations were identified
between TUDCA and neurogenesis, neurotransmission, and synapse development genes
STMN4, FOXO6, BMP4, PPFIBP2, SLC6A11, and KCNG1, and between TUDCA and ECM
genes COL27A1 and ADAMTSL5. Similarly, UDCA was correlated with genes involved in
nervous system functions (negative: SPRY1 and KCTD8; positive: BEND6 and TMEFF2).
Several metabolites were also associated with DEGs in the FC; however, none of the
correlation nodes involved metabolites that were significantly different between diets
and/or genes associated with relevant cell functions (Figure 8B).
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Figure 8. Associations between differentially expressed genes (DEGs) and bile acids (A) and metabo-
lites (B) in the frontal cortexes of juvenile Iberian pigs fed LAR (n = 5 pens), OLI (n = 5 pens), and
COC (n = 5 pens) diets on day 70 of the study. Network displays robust approximations of Pearson’s
correlations using sparse partial least square (sPLS) with LASSO penalization. Orange and blue edges
represent positive and negative correlations, respectively.

4. Discussion

The main objective of this study was to investigate the effect of fat sources with differ-
ent FA profiles on brain BA metabolism and neuronal loss in a pig model of NAFLD using
a multiomic approach combined with immunohistochemistry and behavioral analyses.
In a completely randomized design with two consecutive replicates, 30 juvenile Iberian
pigs were fed one of three high-fat, high-fructose diets enriched with lard (high in SFAs
and LCFAs), olive oil (high in MUFAs and LCFAs), and coconut oil (high in SFAs and
MCFAs). Our results show that the COC and OLI diets lowered secondary conjugated and
unconjugated BAs in the FCs of NAFLD pigs, reduced physical activity, and altered ex-
pression of metabolic and transcriptomic markers of brain injury. In addition, diet-induced
changes in FC metabolites and genes paralleled the severity of NAFLD, as both COC and
OLI diets increased steatosis, necrosis, and cellular proliferation in the liver compared with
LAR [43]. However, recognition memory and neuronal number did not differ between diets,
suggesting that metabolic and transcript abnormalities may precede more severe functional
or histopathological changes in the cortex. Interestingly, NeuN average staining intensities
in the FCs of the COC, LAR, and OLI groups were similar to the NeuN intensity in the
FCs of high-fructose, high-fat-diet-fed juvenile Iberian pigs with neurodegeneration [9],
suggesting that the three high-fat diets may have promoted some degree of neuronal loss
in the animals when compared with healthy controls.

Many preclinical studies have demonstrated a neuroprotective role for secondary BAs
in the brain [66]. For example, TLCA, which was lower in COC-fed pigs compared with
the LAR group, decreased microglial production of interleukins 1β and 6 in an LPS model



Brain Sci. 2022, 12, 1193 18 of 25

of neuroinflammation [67]. Similarly, administration of HDCA prevented apoptosis and
necrosis in astrocytes and neurons exposed to oxygen–glucose deprivation in vitro [68].
Particularly interesting in our study is the decrease in UDCA and TUDCA in COC- and OLI-
fed pigs, given that both BAs have been shown to prevent apoptosis, oxidative stress, and
inflammation in ex vivo, in vitro, and in rodent models of AD and PD [66]. Furthermore,
UDCA is a Farnesoid X receptor antagonist [69], and inhibition of Farnesoid X signaling in
the FC has been shown to protect against toxic cholesterol accumulation in mouse models of
hepatic encephalopathy [23]. UDCA is produced by gut bacteria through the deconjugation
of primary BAs in the distal ileum and colon [1]. Most UDCA is then excreted in the feces,
with a small fraction being reabsorbed in the colonic mucosa and circulated into the liver
with the portal blood. Once in the liver, UDCA is reconjugated with taurine (t) or glycine
(g) before being released again into the small intestine [1]. It is thought that most UDCA
and TUDCA in the brain comes from peripheral circulation, as both BAs can be detected in
blood and brain and can penetrate across the blood–brain barrier and the cerebrospinal
fluid [70–72]. However, levels of conjugated and unconjugated UDCA did not decrease
in the livers, sera, or colons of COC- or OLI-fed pigs [43], suggesting an alteration of BA
transport in the brain rather than systemic BA dysregulation. Similar results were observed
in our previous study, in which high-fat-diet-fed pigs with NAFLD and neuronal loss had
decreased levels of UDCA and TUDCA in the brain but not in the liver or serum [9,25].
A possible explanation for this effect could be attributed to the decrease in circulating
FGF19 levels in OLI and COC animals [43], which has been shown to downregulate the BA
transporters OATP and NTCP in the liver and to decrease BA uptake [73]. In this regard,
OATP and NTCP have also been detected at the blood–brain barrier in humans and rats
and have been shown to participate in UDCA and TUDCA transport [74,75].

We also observed a decrease in one-carbon metabolites [76], amino acids [77], and
lactate [78] in the FCs of COC- and OLI-fed pigs compared with LAR. The depletion
of brain levels of glutamine and creatinine suggests alterations in neuronal nitric oxide
production, which have been associated with the development of AD [79–81]. Similarly,
decreases in cerebral lactate contents were correlated with reduced amounts of neurons
and oligodendrocytes and increased quantities of astrocytes in a mouse model of AD [78].
Of particular importance in the context of brain injury is the decrease in betaine levels in
OLI- and COC-fed pigs. Changes in betaine levels in the brain occur as a result of betaine
being converted back to choline, which is required for neurotransmitter synthesis and lipid
metabolism in neurons [82,83]. In addition, betaine can serve as a methyl donor for the
homocysteine-to-methionine reaction in one-carbon metabolism [82,83]. As such, a decrease
in betaine levels in COC- and OLI-fed pigs may have altered choline, homocysteine, and
gene methylation levels in the FC, with potential neurodegenerative effects [84–86]. In this
regard, we have previously shown a disproportionate decrease in FC levels of betaine in
NAFLD pigs which was positively correlated with astrogliosis and neuronal loss [9]. Given
that betaine levels were also lower in OLI and COC livers compared with LAR [43], it is
possible that OLI and COC diets caused a systemic dysregulation of choline metabolism.
In agreement with this idea, we have previously shown that our pediatric pig model
resembles choline-deficient dietary models of NASH, in which pigs develop steatosis,
lobular inflammation, and ballooning in the absence of other metabolic features seen in
human NAFLD [9,25].

Diets high in total and saturated fats are known to induce brain inflammation, immune
cell infiltration, and mitochondrial alterations in mice [87–89] and deterioration of cognitive
functions in healthy patients [90,91]. Conversely, consumption of the MUFA-enriched
Mediterranean diet has been associated with protection against cognitive decline [92–94]
and reduced neurological dysfunction in rodent models of AD [1,95–97]. However, OLI-fed
pigs (high in MUFAs) showed downregulation of genes involved in neurotransmission,
synaptic transmission, and nervous tissue development, which have been linked to neuro-
logical disorders [98,99]. These contradictory results are likely due to the elevated amount
of olive oil in the OLI diet (>100 g/d in 20 kg pig), as short-term consumption of low
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doses of extra virgin olive oil (26 g/d) had a neuroprotective effect in elderly patients [92],
whereas high intake of MUFAs (42 g/d) was associated with decreased learning and mem-
ory abilities in younger women [100]. Similarly, high MUFA consumption was predictive
of mild cognitive impairment in 60- to 64-year-old patients assessed over 4 years [101]. It
has been suggested that excessive MUFA intake may have detrimental effects on cognitive
function via regulating inflammatory markers and inflammatory signaling pathways in
the brain. For example, feeding mice an obesogenic diet with 45% total kcal as oleic acid
instead of palmitic acid predisposed neurons and microglia towards an inflammatory
phenotype ex vivo [102]. In a separate study, mice fed a high-fat diet enriched with MUFAs
showed decreased learning and memory in parallel with the upregulation of interleukin 6
and TLR-MyD88-NF-κB inflammatory signaling pathways in the brain [103]. Interestingly,
levels of oleic acid and expression of genes associated with inflammatory cytokines and
immune response did not differ between OLI and LAR. Similarly, we did not observe
changes in the FC cytokine levels or microglia activation in response to high-fat-diet intake
in our previous work [9]; therefore, the etiology of brain transcriptome changes in OLI-fed
pigs remains unknown. We cannot discard the possibility that these differences were due
to the duration of the study or diet composition. In this regard, previous work has shown
an amelioration of NAFLD following inhibition of microglia [104,105].

In addition to the degree of saturation, there is evidence to suggest that carbon chain
length is a major determinant of the metabolic effects of dietary FAs in the brain. Substitu-
tion of LCFAs with MCFAs, by replacing sunflower oil with medium-chain triacylglyceride
(MCT) oils, had a positive effect on cognition and markers of synapse formation in rats
fed a weight-maintenance diet [106]. Similarly, isocaloric replacement of LCFAs derived
from tallow by MCTs promoted cognition-improving effects in non-obese dogs [107]. Data
from clinical trials also suggest that MCTs improved cognitive abilities in patients with
AD [108,109]. However, a positive role for FA saturation and chain length in brain function
is less clear in high-fat hypercaloric diets, with several studies resulting in negative findings
associated with MCT intake. Haghikia et al. [110] reported a decrease in the integrity of the
blood–brain barrier in mice fed a high-fat diet enriched with lauric acid [110]. A coconut
oil high-fat diet was also found to cause neurotoxicity and impair learning and memory
ability in obese mice through upregulation of inflammatory signaling pathways in brain
tissue [103]. Moreover, short-term ingestion of high levels of coconut oil margarine instead
of lard decreased hypothalamic serotonin in mice [111]. The results from our study demon-
strate that partial replacement of lard with an isocaloric amount of coconut oil increased
the expression of many remyelination genes in the FC, which are upregulated after injuries
to the CNS, such as acute demyelination episodes in neurodegenerative diseases [112–114].
In addition, compared to LAR, the COC diet downregulated the expression of genes and
enzymes involved in ECM organization, including several collagen subunits, which have
also been associated with brain injury in mice [115]. Moreover, we report the accumula-
tion of medium-chain acylcarnitines in brain tissue compared with LAR and OLI. Since
coconut oil is rich in lauric acid, COC brains may have been overloaded with an excess of
medium-chain FAs, resulting in incomplete FA oxidation and subsequent accumulation
of lauryl-acylcarnitine in the FC [116], with potential neurotoxic effects [110]. Limitations
of the current study are associated with the experimental design and analysis. Most pens
in our study contained a male and a female, and therefore it was not possible to address
the influence of sexual dimorphism in diet response. In addition, we did not analyze the
hippocampus or hypothalamus, which are also studied in diet-induced neurodegeneration
research. Finally, we did not investigate microglia and cytokines in FC tissues, as our
previous work did not show changes in these parameters in response to high-fat diets.

5. Conclusions

In conclusion, our results showed a decrease in neuroprotective secondary BAs and
betaine levels in the FCs of OLI and COC pigs which paralleled the severity of NAFLD,
suggesting a link between liver and brain disease. In addition, we have also shown a direct
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effect of dietary FA composition on the expression of genes linked to brain injury, as the
COC diet upregulated markers of myelin repair, whereas the OLI diet downregulated genes
involved in synapse development and cell signaling. Nutritional recommendations for
NAFLD patients suggest limiting fat intake and a reduction in LCFA consumption in favor
of MUFAs and MCTs. While this approach has been shown to be beneficial in balanced
diets, our findings do not support replacing large amounts of SFAs by MCFAs and MUFAs
in high-fat hypercaloric diets, as this may have a negative effect on brain health.
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